/**************************************************************************** * vector.h * * This module contains macros to perform operations on vectors. * * from Persistence of Vision Raytracer * Copyright 1993 Persistence of Vision Team *--------------------------------------------------------------------------- * NOTICE: This source code file is provided so that users may experiment * with enhancements to POV-Ray and to port the software to platforms other * than those supported by the POV-Ray Team. There are strict rules under * which you are permitted to use this file. The rules are in the file * named POVLEGAL.DOC which should be distributed with this file. If * POVLEGAL.DOC is not available or for more info please contact the POV-Ray * Team Coordinator by leaving a message in CompuServe's Graphics Developer's * Forum. The latest version of POV-Ray may be found there as well. * * This program is based on the popular DKB raytracer version 2.12. * DKBTrace was originally written by David K. Buck. * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins. * *****************************************************************************/ /* Misc. Vector Math Macro Definitions */ extern DBL VTemp; /* Vector Add */ #define VAdd(a, b, c) {(a).x=(b).x+(c).x;(a).y=(b).y+(c).y;(a).z=(b).z+(c).z;} #define VAddEq(a, b) {(a).x+=(b).x;(a).y+=(b).y;(a).z+=(b).z;} /* Vector Subtract */ #define VSub(a, b, c) {(a).x=(b).x-(c).x;(a).y=(b).y-(c).y;(a).z=(b).z-(c).z;} #define VSubEq(a, b) {(a).x-=(b).x;(a).y-=(b).y;(a).z-=(b).z;} /* Scale - Multiply Vector by a Scalar */ #define VScale(a, b, k) {(a).x=(b).x*(k);(a).y=(b).y*(k);(a).z=(b).z*(k);} #define VScaleEq(a, k) {(a).x*=(k);(a).y*=(k);(a).z*=(k);} /* Inverse Scale - Divide Vector by a Scalar */ #define VInverseScale(a, b, k) {(a).x=(b).x/(k);(a).y=(b).y/(k);(a).z=(b).z/(k);} #define VInverseScaleEq(a, k) {(a).x/=(k);(a).y/=(k);(a).z/=(k);} /* Dot Product - Gives Scalar angle (a) between two vectors (b) and (c) */ #define VDot(a, b, c) {a=(b).x*(c).x+(b).y*(c).y+(b).z*(c).z;} /* Cross Product - returns Vector (a) = (b) x (c) WARNING: a must be different from b and c.*/ #define VCross(a,b,c) {(a).x=(b).y*(c).z-(b).z*(c).y; \ (a).y=(b).z*(c).x-(b).x*(c).z; \ (a).z=(b).x*(c).y-(b).y*(c).x;} /* Evaluate - returns Vector (a) = Multiply Vector (b) by Vector (c) */ #define VEvaluate(a, b, c) {(a).x=(b).x*(c).x;(a).y=(b).y*(c).y;(a).z=(b).z*(c).z;} #define VEvaluateEq(a, b) {(a).x*=(b).x;(a).y*=(b).y;(a).z*=(b).z;} /* Divide - returns Vector (a) = Divide Vector (b) by Vector (c) */ #define VDiv(a, b, c) {(a).x=(b).x/(c).x;(a).y=(b).y/(c).y;(a).z=(b).z/(c).z;} #define VDivEq(a, b) {(a).x/=(b).x;(a).y/=(b).y;(a).z/=(b).z;} /* Square a Vector */ #define VSqr(a) {(a).x*(a).x;(a).y*(a).y;(a).z*(a).z;} /* Simple Scalar Square Macro */ #define Sqr(a) ((a)*(a)) /* Square a Vector (b) and Assign to another Vector (a) */ #define VSquareTerms(a, b) {(a).x=(b).x*(b).x;(a).y=(b).y*(b).y;(a).z=(b).z*(b).z;} /* Vector Length - returs Scalar Euclidean Length (a) of Vector (b) */ #define VLength(a, b) {a=sqrt((b).x*(b).x+(b).y*(b).y+(b).z*(b).z);} /* Normalize a Vector - returns a vector (length of 1) that points at (b) */ #define VNormalize(a,b) {VTemp=sqrt((b).x*(b).x+(b).y*(b).y+(b).z*(b).z);(a).x=(b).x/VTemp;(a).y=(b).y/VTemp;(a).z=(b).z/VTemp;} /* Compute a Vector (a) Halfway Between Two Given Vectors (b) and (c) */ #define VHalf(a, b, c) {(a).x=0.5*((b).x+(c).x);(a).y=0.5*((b).y+(c).y);(a).z=0.5*((b).z+(c).z);}