
N
http://www.ifconnection.de/~tm

PD
F_
ci
rc
le
()

PD
F_
se
t_
fo
nt
()

PDF_arc()

PDF_show() PDF
_li

net
o()

PD
F_
op
en
_T
IF
F(
)

PD
F_
ar
c(
)

PD
F

PDFlib
Reference ManualTh

om
as

 M
er

z

Programming reference for PDFlib 2.01, a library for generating PDF on the fly

http://www.ifconnection.de/~tm
How to view this manual
You can view this manual one page at at time by clicking the tiny page icon in Acrobat's status line (close to the page size display) and choosing "Single Page"

Copyright © 1997 - 1999 Thomas Merz. All rights reserved.

Thomas Merz Consulting & Publishing
Tal 40, 80331 München, Germany
http://www.ifconnection.de/~tm
tm@muc.de
fax +49/89/29 16 46 86

This publication and the information herein is furnished as is, is subject to change without
notice, and should not be construed as a commitment by Thomas Merz. Thomas Merz as-
sumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims
any and all warranties of merchantability, fitness for particular purposes and noninfringe-
ment of third party rights.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated. Microsoft and Windows
are registered trademarks of Microsoft Corp. Macintosh is a trademark of Apple Computer.
All other products or name brands are trademarks of their respective holders.

Author: Thomas Merz
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Karsunke
Quality control (software): a cast of thousands

Version information on PDFlib itself can be found in the distribution.

Revision history of this manual

Date Changes
Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01
June 29, 1999 > Clarifications in the API description

> Separate sections for the individual language bindings
> Extensions for PDFlib 2.0
> Enlarged the page size of the manual

Feb. 01, 1999 > Minor changes for PDFlib 1.0 (not publicly released)
Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)
July 08, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6
Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5
Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

mailto:tm@muc.de
http://www.ifconnection.de/~tm

Contents
1 Introduction 7

1.1 PDFlib Programming 7

1.2 PDFlib Features 8

1.3 Features not implemented in PDFlib 10

2 PDFlib Language Bindings 11
2.1 Overview of the PDFlib Language Bindings 11

2.1.1 What’s all the Fuss about Language Bindings? 11
2.1.2 Availability and Special Considerations 12
2.1.3 The »Hello world« Example 13
2.1.4 Error Handling 13
2.1.5 Memory Management 14
2.1.6 Version Control 14
2.1.7 Summary of the Language Bindings 15

2.2 C Binding 15
2.2.1 How does the C Binding work? 15
2.2.2 Availability and Special Considerations for C 15
2.2.3 The »Hello world« Example in C 15
2.2.4 Error Handling in C 16
2.2.5 Memory Management in C 16
2.2.6 Version Control in C 17

2.3 C++ Binding 17
2.3.1 How does the C++ Binding work? 17
2.3.2 Availability and Special Considerations for C++ 17
2.3.3 The »Hello world« Example in C++ 18
2.3.4 Error Handling in C++ 19
2.3.5 Memory Management in C++ 19
2.3.6 Version Control in C++ 19

2.4 Java Binding 19
2.4.1 How does the Java Binding work? 19
2.4.2 Availability and Special Considerations for Java 20
2.4.3 The »Hello world« Example in Java 20
2.4.4 Error Handling in Java 21
2.4.5 Memory Management in Java 21
2.4.6 Version Control in Java 21

2.5 Perl Binding 22
2.5.1 How does the Perl Binding work? 22
2.5.2 Availability and Special Considerations for Perl 22
2.5.3 The »Hello world« Example in Perl 23
2.5.4 Error Handling in Perl 23
2.5.5 Memory Management in Perl 24
Contents iii

2.5.6 Version Control in Perl 24

2.6 Python Binding 24
2.6.1 How does the Python Binding work? 24
2.6.2 Availability and Special Considerations for Python 24
2.6.3 The »Hello world« Example in Python 25
2.6.4 Error Handling in Python 25
2.6.5 Memory Management in Python 25
2.6.6 Version Control in Python 26

2.7 Tcl Binding 26
2.7.1 How does the Tcl Binding work? 26
2.7.2 Availability and Special Considerations for Tcl 26
2.7.3 The »Hello world« Example in Tcl 27
2.7.4 Error Handling in Tcl 28
2.7.5 Memory Management in Tcl 28
2.7.6 Version Control in Tcl 28

2.8 Visual Basic Binding 28
2.8.1 How does the Visual Basic Binding work? 28
2.8.2 Availability and Special Considerations for Visual Basic 29
2.8.3 The »Hello world« Example in Visual Basic 29
2.8.4 Error Handling in Visual Basic 30
2.8.5 Memory Management in Visual Basic 30
2.8.6 Version Control in Visual Basic 30

3 Programming Concepts 31
3.1 General Programming Issues 31

3.2 Coordinate Systems 31

3.3 Graphics and Text Handling 32

3.4 Font Handling 33
3.4.1 The PDF Core Fonts 33
3.4.2 Character Sets and 8-Bit Encoding 33
3.4.3 Font Outline and Metrics Files 35
3.4.4 Resource Configuration and the UPR Resource File 36
3.4.5 Unicode Support 39

3.5 Image Handling 40
3.5.1 Image File Formats 40
3.5.2 Embedding Images in PDF 41
3.5.3 Re-using Image Data 41
3.5.4 Memory Images and External Image References 41

3.6 Error Handling 42
iv Contents

4 PDFlib API Reference 44
4.1 General Functions 44

4.2 Text Functions 46
4.2.1 Font Handling Functions 46
4.2.2 Text Output Functions 47

4.3 Graphics Functions 49
4.3.1 General Graphics State Functions 49
4.3.2 Special Graphics State Functions 50
4.3.3 Path Segment Functions 51
4.3.4 Path Painting and Clipping Functions 51

4.4 Color Functions 52

4.5 Image Functions 52

4.6 Hypertext Functions 54
4.6.1 Bookmarks 55
4.6.2 Document Information Fields 55
4.6.3 Page Transitions 55
4.6.4 File Attachments 56
4.6.5 Note Annotations 56
4.6.6 Links 57

4.7 Convenience Stuff 58

5 The PDFlib License 59

6 References 60

Index 61
Contents v

1 Introduction

1.1 PDFlib Programming
What is PDFlib? PDFlib is a library which allows you to programmatically generate
files in Adobe’s Portable Document Format (PDF). PDFlib acts as a backend processor to
your own programs. While you (the programmer) are responsible for retrieving or
maintaining the data to be processed, PDFlib takes over the task of generating the PDF
code which graphically represents your data. While you must still format and arrange
your text and graphical objects, PDFlib frees you from the internals and intricacies of
PDF. PDFlib offers many useful functions for creating text, graphics, images and hyper-
text elements in PDF files.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows NT, and MacOS. Although PDFlib itself is programmed in C, its functions can
be accessed from several other languages and programming environments which we
will call language bindings. The Application Programming Interface (API) is easy to
learn, and is the same for all environments. Currently the following bindings are sup-
ported:
> ANSI C library (static or dynamic)
> ANSI C++ class via an object wrapper
> Perl
> Tcl
> Python
> Java
> Visual Basic

Besides, there are a number of additional PDFlib bindings which are supported by other
people, most notably PHP3.

What can I use PDFlib for? PDFlib’s primary target is creating dynamic PDF on the
World Wide Web. Similar to HTML pages dynamically generated with a CGI script on the
Web server, you may use a PDFlib program for dynamically generating PDF reflecting

...

C
Visual
Basic

C++

Java

Python

Tcl

Perl PDFlib

Fig. 1.1. PDFlib language bindings
1.1 PDFlib Programming 7

user input or some other dynamic data, e.g. data retrieved from the Web server’s data-
base. The PDFlib approach offers several advantages as opposed to creating PDF from
PostScript files with Acrobat Distiller:
> The PDFlib »driver« can be integrated directly in the application generating the data,

eliminating the convoluted creation path application–PostScript–Acrobat Distiller–
PDF.

> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-
ing method, making it perfectly suited for the Web.

> PDFs need not be created ahead of time and stored on the server, but can be generat-
ed if needed. This is a big win not only if you want to deal with dynamic data which
do not exist prior to the Web interaction, but also if large amounts of data have to be
handled which make it impractical to pre-generate all the necessary PDF.

> PDFlib’s thread-safety as well as its robust memory and error handling support the
implementation of high-performance server applications.

However, PDFlib is not restricted to dynamic PDF on the Web. Equally important are all
kinds of converters from X to PDF, where X represents any text or graphics file format.
Again, this replaces the sequence X–PostScript–PDF with simply X–PDF, which offers
many advantages for some common graphics file formats like GIF or JPEG. Using such a
PDF converter, batch converting lots of text or graphics files is much easier than using
the Adobe Acrobat suite of programs. Several converters of this kind are supplied with
the library.

Requirements for using PDFlib. PDFlib tries to make possible PDF generation without
wading through the 500+ page PDF specification. While PDFlib tries to hide technical
PDF details from the user, a general understanding of PDF is useful. In order to make the
best use of PDFlib, application programmers should ideally be familiar with the basic
graphics model of PostScript (and therefore PDF). However, a reasonably experienced
application programmer who has dealt with any graphics API for screen display or
printing of her application data shouldn’t have much trouble adapting to the PDFlib API
which is described in this manual.

About this manual. This manual describes the API implemented in PDFlib. It does not
describe the process of building the library on specific platforms. The function interfac-
es described in this manual are believed to remain unchanged during future PDFlib de-
velopment. Functions not described in this manual are unsupported, and should not be
used.

This manual doesn’t even attempt to explain Acrobat/PDF features or internals.
Please refer to the Acrobat product literature, and the material cited at the end of the
manual for further reference.

1.2 PDFlib Features
Table 1.1 lists the major PDFlib API features for generating PDF documents.

About PDFlib-generated documents. Generally, we strive to produce PDF documents
which may be used with a wide variety of PDF consumers. According to common PDF
practise, PDFlib generates binary compressed output compatible with Acrobat 3 and
higher (although compression may be deactivated by the client).
8 Chapter 1: Introduction

However, certain features either require Acrobat 4, or don’t work in Acrobat Reader but
only the full Acrobat product. Table 1.2 lists those features. More details can be found at
the respective function descriptions.

PDFlib doesn’t offer any compatibility option regarding the generated PDF. Asking
PDFlib functions to produce one of the above-mentioned features implies that the PDF
output will require Acrobat 4 (PDF 1.3) for proper use (although the output may be used
with restrictions in Acrobat 3).

Table 1.1. PDFlib features for generating PDF

Topic Features
PDF
Documents

> PDF documents of arbitrary length
> Arbitrary page size–each page may have a different size
> Compression for image data and file attachments

Vector
graphics

> Common vector graphics primitives: lines, curves, arcs, rectangles, etc.
> Use vector paths for stroking, filling, and clipping
> RGB color for stroking and filling objects

Fonts > Text output in different fonts and different encodings (character sets)
> Built-in font metrics for PDF’s 14 base fonts
> Font embedding
> Use AFM files for font metrics
> Support for the Euro symbol
> Library clients can retrieve character widths for exact formatting
> Flexible font and metrics file configuration via UPR file

Hypertext > Page transition effects such as shades and mosaic
> Nested bookmarks
> PDF links, launch links (other document types), Web links, configurable link border style

and color
> Document information: four standard fields (Title, Subject, Author, Keywords) plus user-

defined info field (e.g., part number)
> File attachments
> Note annotations

Unicode > Bookmarks (e.g., Greek or Russian)
> Contents and title of text annotations
> Document information fields, including user-defined field
> Attachment description and author name

Images > Embed images in GIF, TIFF, JPEG, or CCITT file formats
> Images constructed by the client directly in memory
> Re-use image data, e.g., for repeated logos on each page

Pro-
gramming

> Thread-safe: suited for deployment in multi-threaded server applications
> Configurable error handler, integrated with the host language’s exception handling

where available
> Configurable memory management procedures
> Configurable debugging facilities
> No memory leaks as confirmed by »Purify« check
1.2 PDFlib Features 9

1.3 Features not implemented in PDFlib
Table 1.3 lists PDF features which are currently not implemented in PDFlib.

Table 1.2. PDFlib features which require Acrobat 4

Topic Remarks
Hypertext > File attachments are not recognized in Acrobat 3 (require full Acrobat 4)

> Different icons for notes are not recognized in Acrobat 3
Page size > Acrobat 4 extends the limits for acceptable PDF page sizes
Unicode > Unicode text doesn’t work in Acrobat 3
Font > The Euro symbol is not supported in Acrobat 3
JPEG images > Acrobat 3 supports only baseline JPEG images, but not the progressive flavor
External
images

> Acrobat 4 (but not the free Acrobat Reader) support external image references via URL.
Acrobat 3 (Reader and Exchange) is unable to display such referenced images.

Table 1.3. Features which are currently not implemented in PDFlib

Feature Remarks
Dealing with
existing PDFs

PDFlib generates new PDF documents, but doesn’t integrate or manipulate existing PDF
content.

Encryption Encryption requires all page contents to be cryptographically processed.
Thumbnails Thumbnails require a rasterizer for the page contents.
Linearization Linearization (Web optimization) requires a complex rewrite of the PDF file.
EPS
embedding

Embedding EPS graphics requires a PostScript interpreter.

Font
subsetting

Font subsetting requires extended font processing.

TrueType
fonts

Embedding TrueType fonts in PDF is a delicate and error-prone process. PDFlib currently
doesn’t support any kind of TrueType embedding.
10 Chapter 1: Introduction

2 PDFlib Language Bindings
This chapter is meant to give you a jump start to programming PDFlib in one or more of
the supported languages. The first section gives a general overview, while each of the
following sections will cover a particular language binding. The suggested reading order
is to take a look at Section 2.1, »Overview of the PDFlib Language Bindings«, and subse-
quently pick the section(s) describing your favorite language binding(s).

2.1 Overview of the PDFlib Language Bindings
2.1.1 What’s all the Fuss about Language Bindings?

While the C programming language has been one of the cornerstones of systems and
applications software development for decades, a whole slew of other languages have
been around for quite some time which are either related to new programming para-
digms (such as C++), open the door to powerful platform-independent scripting capabil-
ities (such as Perl, Tcl, and Python), give rise to a new quality in software portability
(such as Java), or provide the glue among many different technologies while being com-
pletely operating system specific (such as Visual Basic).

It is our firm believe that a generic library such as PDFlib benefits very much from
supporting a wide range of programming environments, thereby enlarging the poten-
tial user base while giving everyone the freedom to pick his favorite language for solv-
ing the particular problem at hand. This means you can call PDFlib routines without
any C programming by simply writing a couple of script language instructions. PDFlib
scripting greatly simplifies small to medium programming tasks, and is appropriate in
many application areas in which the development, build, and debug overhead of C is
considered too high.

This goal gives rise to quite a new issue in software portability. Instead of porting a
given program in a given language to many different platforms, we are trying to main-
tain a coherent programming interface across many different languages! Keeping this
in mind is very important when dealing with the PDFlib API. Despite the fact that early
incarnations of the library supported some scripting languages, the programming in-
terface has been very C-centric. Starting with PDFlib 2.0, the internals as well as the in-
terface have been redesigned, so that they are usable from a wide variety of languages.
The goal of multi-language portability also explains some properties of the interface
which may be considered quirky in a pure C environment. In case you wonder about a
particular interface feature, or some »obvious« enhancement to the interface comes to
your mind, please reconsider the issue, taking into a account the compatibility of your
proposed enhancement to all supported languages.

Naturally, the question arises how to support so many languages with a single li-
brary. Fortunately, all modern language environments are extensible in some way or
another. This includes support for extensions written in the C language in all cases.
Looking closer, each environment has its own restrictions and requirements regarding
the implementation of extensions. The facilities provided for extension developers are
numerous, and differ significantly among the languages. Given the amount of changes
occurring in actively developed software, and the number of supported languages, this
may quickly result in a maintenance nightmare, especially when we take the number of
supported platforms into account.
2.1 Overview of the PDFlib Language Bindings 11

Fortunately enough, this isn’t the case due to a cute facility called SWIG1 (Simplified
Wrapper and Interface Generator), written by Dave Beazley <beazley@cs.uchicago.edu>.
SWIG is brilliant in design and implementation. With the help of SWIG, PDFlib can easi-
ly be integrated into the Perl, Tcl, and Python scripting languages, and even Java with a
hacked-up version of SWIG.

It’s important to note that you don’t need to install or use SWIG in order to make use
of PDFlib scripting. All files necessary for a certain language binding are contained with-
in the PDFlib distribution. By the way, SWIG support for PDFlib was suggested and in its
first incarnation implemented by Rainer Schaaf <Rainer.Schaaf@t-online.de>2.

For other language bindings not supported by SWIG it is either rather obvious what
to do (such as C++), or a matter of digging through the relevant interface specifications
and implementing the necessary glue material manually (such as Visual Basic).

PDFlib Scripting API. In order to avoid duplicating the PDFlib API reference manual for
all supported scripting languages, this manual is considered authoritative not only for
the C binding but also for the other languages. Of course, the script programmer has to
mentally adapt certain conventions and syntactical issues from C to the relevant lan-
guage. However, translating C API calls to, say, Perl calls should be a straightforward pro-
cess. Alas, I was able to translate a C PDFlib application to Perl by simply deleting the in-
clude directives and adding a bunch of dollar signs to all variable names!

2.1.2 Availability and Special Considerations
Given the broad range of platforms and languages (let alone different versions of both)
supported by PDFlib, it shouldn’t be much of a surprise that not all combinations of
platforms, languages, and versions thereof have been tested. However, we strive to
make the latest available versions of the respective environments work with PDFlib. Ta-
ble 2.1 lists the language/platform combinations we used for testing.

Note Currently only the C language binding is fully regression-tested for a PDFlib release. Also, the C
API is expected to be more stable than the scripting APIs since we intend to integrate the PDFlib
scripting APIs into the native language paradigms more smoothly.

1. More information on SWIG can be found at http://www.swig.org.
2. On a totally unrelated note, Rainer and his wonderful family live in a nice house close to the Alps – definitely a great place
for biking!

Table 2.1. Tested language and platform combinations

Language Unix (Linux and others) Windows NT 4.0 MacOS 8.6 PPC
ANSI C GCC (egcs-2.1.1)

and other C compilers
Microsoft Visual C++ 6
and Watcom C 10.6

Metrowerks CodeWarrior 4

ANSI C++ GCC (egcs-2.1.1) Microsoft Visual C++ 6
and Watcom C 10.6

Metrowerks CodeWarrior 4

Java JDK 1.1.7 JDK 1.1.8 and 1.2.1 Macintosh Runtime for Java
(MRJ) 2.1, based on JDK 1.1.7

Perl Perl 5.005_03 ActivePerl build 517,
based on Perl 5.005_03

MacPerl 5.2.0r4, based on
Perl 5.004

Python Python 1.5 Python 1.5.2 Python 1.51
Tcl Tcl 8.1 Tcl 8.1 Tcl 8.1a2
Visual Basic – Visual Basic 6.0 –
12 Chapter 2: PDFlib Language Bindings

http://www.swig.org
mailto:beazley@cs.utah.edu
mailto:Rainer.Schaaf@t-online.de

Although all language bindings make use of shared libraries on Unix or dynamic link li-
braries (DLLs) on Windows, we don’t make any attempt to build a unified shared library
which can be used for one or more language bindings at the same time. Instead, each
language binding will be served by a separate library. There are several technical rea-
sons for such a strict distinction, and we expect the future life of PDFlib applications to
be much easier that way.

2.1.3 The »Hello world« Example
Being a well-known classic, the »Hello, world!« example will be used for the first PDFlib
program. It uses PDFlib to generate a one-page PDF file with some text on the page. In
the following sections, the »Hello, world!« sample will be shown for all supported lan-
guage bindings. The code for all language samples is contained in the PDFlib distri-
bution.

2.1.4 Error Handling
Errors of a certain kind are called exceptions in several languages for good reasons –
they are mere exceptions, and are not expected to occur very often during the lifetime
of a program. The general strategy, then, is to use conventional error reporting mecha-
nisms (read: special function return codes) for function calls which may go wrong often
times, and use a special exception mechanism for those rare occasions which don’t war-
rant cluttering the code with conditionals. This is exactly the path that PDFlib goes:
Some operations can be expected to go wrong rather frequently, for example:
> Trying to open an output file for which one doesn’t have permission
> Using a font for which metrics information cannot be found
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually – 1) as documented in
the API reference.

Other events may be considered harmful, but will occur rather infrequently, e.g.
> running out of virtual memory
> not adhering to programming restrictions (e.g., closing a document before opening

it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

a negative radius, or supplying NULL pointers for required string arguments)

If the library detects such an exceptional situation, a central error handler is called in
order to deal with the situation, instead of passing special return values along the call
stack.

Obviously, the appropriate way to deal with an error heavily depends on the lan-
guage used for driving PDFlib. For this reason, details on error handling are given in the
subsequent sections below. Generally, we strive to promote the error to the respective
language’s native exception handling mechanism (if any), or let the library client decide
what to do by installing his own error handler in PDFlib. In the case of native language
exceptions, the library client has the choice of catching exceptions and appropriately
dealing with them, using the means of the respective language. The implementation of
raising language-specific exceptions is based on SWIG as far as SWIG supports it; for
other languages, we cooked up our own exception propagation mechanism.

If no special precautions like installing one’s own error handler, or catching excep-
tions are taken, the default action is to issue an appropriate message on the standard
2.1 Overview of the PDFlib Language Bindings 13

output channel and exit on fatal errors. The PDF output file may be left in an inconsis-
tent state! Since this may not be adequate for a library routine, for serious PDFlib
projects it is strongly advised to leverage PDFlib’s error handling facilities. A user-de-
fined error handler may, for example, present the error messages in a GUI dialog box,
and take other measures instead of aborting. More information on installing a custom
error handler can be found in the respective language sections below; the details of im-
plementing a custom error handler are discussed in Section 3.6, »Error Handling«.

2.1.5 Memory Management
A library such as PDFlib dynamically allocates and frees lots of small and large memory
chunks.

Note This is probably the right place to mention that due to rigorous testing, debugging, and »Puri-
fying«1 PDFlib is known not to lose a single allocated byte during a test run which generates
thousands of PDF pages.

The general strategy is to strictly separate PDFlib memory from client memory. In order
to achieve this, data supplied by the client to PDFlib functions is copied into PDFlib
memory space if the data is still needed after the call is finished. Consequently, PDFlib is
responsible for freeing such memory when the data is no longer needed.

In order to allow for maximum flexibility, PDFlib’s internal memory management
routines (which are based on standard C free/restore) may in some language bindings be
replaced by external procedures provided by the client. These procedures will be called
for all PDFlib-internal memory allocation or deallocation.

It’s generally not reasonable to provide custom memory management routines from
the scripting language bindings (since freeing the programmer from memory manage-
ment chores is a major advantage of scripting languages). For this reason, custom mem-
ory management routines will mainly be of interest to the C or C++ programmer.

2.1.6 Version Control
Taking into account the rapid development cycles of software in general, and Internet-
related software in particular, it is important to allow for future improvements without
breaking existing clients. In order to achieve compatibility across multiple versions of
the library, PDFlib supports several version control schemes depending on the respec-
tive language. If the language supports a native versioning mechanism, PDFlib seam-
lessly integrates it so the client doesn’t have to worry about versioning issues except
making use of the language-supplied facilities. In other cases, where the language
doesn’t support a suitable versioning scheme, PDFlib supplies its own major and minor
version number at the interface level. These may be used by the client in order to decide
whether the given PDFlib implementation can be accepted or should be rejected be-
cause a newer version is required.
Generally, applications written for PDFlib 2.0 or higher are expected to be compatible
with later versions of the library.

1. See http://www.rational.com
14 Chapter 2: PDFlib Language Bindings

2.1.7 Summary of the Language Bindings
For easy reference, Table 2.2 summarizes important features of the available PDFlib lan-
guage bindings. More details can be found in the respective section of this manual and
further documentation in the PDFlib distribution.

2.2 C Binding
2.2.1 How does the C Binding work?

In order to use the PDFlib C binding, you need to build a static or shared library (DLL on
Windows), and you need the central PDFlib include file pdflib.h for inclusion in your
PDFlib client source modules. The PDFlib distribution is prepared for building both stat-
ic or dynamic versions of the library.

On Windows, using DLLs involves some special issues related to the calling conven-
tion and export or import of DLL functions. The pdflib.h header file deals with these is-
sues by defining appropriate macros for both the library itself as well as for PDFlib cli-
ents. This macro system is set up in a way that PDFlib clients don’t need to take any
special measures in order to get the required import statements from the header file.

2.2.2 Availability and Special Considerations for C
PDFlib itself is written in the ANSI C language, and assumes ANSI C clients as well as 32-
bit platforms (at least). No provisions have been made to make PDFlib compatible with
older C compilers or 16-bit platforms.

2.2.3 The »Hello world« Example in C
/* hello.c
 *
 * PDFlib client: hello example in C
 *
 */

#include <stdio.h>

Table 2.2. Summary of the language bindings

Language Custom
error handling

Custom memory
management

Version
control

thread-
safe

C client-supplied
error handler

client-supplied
functions

manually yes

C++ client-supplied
error handler

client-supplied
functions

manually yes

Java Java exceptions – automatically –
Perl Perl exceptions – via package

mechanism
–

Python Python exceptions – manually –
Tcl Tcl exceptions – via package

mechanism
–

Visual Basic client-supplied
error handler

– unique GUID and
type library

–

2.2 C Binding 15

#include <stdlib.h>

#include "pdflib.h"

int
main(void)
{
 PDF *p;
 int font;

p = PDF_new();

/* open new PDF file */
if (PDF_open_file(p, "hello_c.pdf") == -1) {

fprintf(stderr, "Error: cannot open PDF file hello_c.pdf.\n");
exit(2);

}

 PDF_set_info(p, "Creator", "hello.c");
 PDF_set_info(p, "Author", "Thomas Merz");
 PDF_set_info(p, "Title", "Hello, world (C)!");

 PDF_begin_page(p, a4_width, a4_height); /* start a new page*/

 font = PDF_findfont(p, "Helvetica-Bold", "default", 0);
 if (font == -1) {

fprintf(stderr, "Couldn't set font!\n");
exit(3);

 }

 PDF_setfont(p, font, 24);
 PDF_set_text_pos(p, 50, 700);
 PDF_show(p, "Hello, world!");
 PDF_continue_text(p, "(says C)");
 PDF_end_page(p); /* close page*/

 PDF_close(p); /* close PDF document*/

 exit(0);
}

2.2.4 Error Handling in C
As noted in Section 2.1.4, »Error Handling«, PDFlib clients may install a custom error
handler. This feature is mainly intended for clients written in the C or C++ language. It
requires opening the PDF object with the PDF_new2() function, as opposed to the sim-
pler call PDF_new(). A detailed description of the error handling machinery can be
found in Section 3.6, »Error Handling«.

2.2.5 Memory Management in C
Similar to error handling, memory management for PDFlib can be completely delegated
to client-supplied routines, which have to be installed with a call to PDF_new2(), and will
be used in lieu of PDFlib’s internal memory management routines. Either all or none of
the following routines must be supplied:
> an allocation routine.
16 Chapter 2: PDFlib Language Bindings

> a deallocation (free) routine
> a reallocation routine for enlarging memory blocks previously allocated with the al-

location routine.
These routines must adhere to the standard C alloc/free/realloc semantics, but may
choose an arbitrary implementation. All routines will be supplied with a pointer to the
calling PDF object. The single exception is that the very first call to the allocation rou-
tine will supply a PDF pointer of NULL. Client-provided memory allocation routines
must be prepared to deal with such a NULL pointer.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDF object. The opaque pointer itself is supplied by the client in the
PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread-specific data inside the PDF object, for use in
memory management or error handling routines.

The signature of the memory management routines can be found in Section 4.1,
»General Functions«.

2.2.6 Version Control in C
In the C language binding there are two basic versioning issues:
> Does the PDFlib header file in use for a particular compilation correspond to the

PDFlib binary?
> Is the PDFlib library in use suited for a particular application, or is it too old?

The first issue can be dealt with by comparing the version macros PDFLIB_
MAJORVERSION and PDFLIB_MINORVERSION supplied in pdflib.h with the return values of
the API functions PDF_get_majorversion() and PDF_get_minorversion() which return
PDFlib major and minor version numbers.
The second issue can be dealt with by comparing the return values of the above-men-
tioned functions with fixed values corresponding to the needs of the application.

In addition, the PDFlib library file name will contain major and minor version num-
bers on some platforms.

2.3 C++ Binding
2.3.1 How does the C++ Binding work?

In addition to the pdflib.h C header file, an object wrapper for C++ is supplied for PDFlib
clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h which must
also be available. The corresponding pdflib.cpp module should be linked to the applica-
tion which in turn should be linked to the generic PDFlib C library.

Using the C++ object wrapper effectively replaces the PDF_ prefix in all PDFlib func-
tion names with the more object-oriented p-> object reference. Keep this in mind when
reading the PDFlib API descriptions.

2.3.2 Availability and Special Considerations for C++
Although the PDFlib C++ binding assumes an ANSI C environment, this is not strictly re-
quired by the implementation. In fact, we work around some issues related to non-
ANSI-conforming compilers in pdflib.hpp and pdflib.cpp. It may be worthwhile to add
2.3 C++ Binding 17

namespace support to the PDFlib C++ wrapper, but this is currently not implemented
due to restrictions in the namespace handling of some compilers.

In most environments there are inherent issues related to C++ deployment in shared
libraries which adversely affect portability. For this reason it is suggested to statically
bind pdflib.cpp to your application, and use the generic PDFlib C library as a shared li-
brary (if shared libraries are to be used at all).

2.3.3 The »Hello world« Example in C++
// hello.cpp
//
// PDFlib client: hello example in C++
//
//

#include <stdio.h>
#include <stdlib.h>

#include "pdflib.hpp"

int
main(void)
{
 PDF *p; // pointer to the PDF class
 int font;

 p = new PDF();

 // Open new PDF file
 if (p->open("hello_cpp.pdf") == -1) {

fprintf(stderr, "Error: cannot open PDF file hello_cpp.pdf.\n");
exit(2);

 }

 p->set_info("Creator", "hello.cpp");
 p->set_info("Author", "Thomas Merz");
 p->set_info("Title", "Hello, world (C++)!");

 // start a new page
 p->begin_page((float) a4_width, (float) a4_height);

 font = p->findfont("Helvetica-Bold", "default", 0);
 if (font == -1) {

fprintf(stderr, "Couldn't set font!\n");
exit(3);

 }

 p->setfont(font, 24);

 p->set_text_pos(50, 700);
 p->show("Hello, world!");
 p->continue_text("(says C++)");
 p->end_page(); // finish page

 p->close(); // close PDF document
 delete p;
18 Chapter 2: PDFlib Language Bindings

 exit(0);
}

2.3.4 Error Handling in C++
Taking the close relationship between C and C++ into account, it’s amazing that there
doesn’t seem to be a portable way of integrating PDFlib’s C-based error handling with
the exception handling of C++. Although some combinations of setjump/longjump and
C++ exceptions work with some compilers, we were unable to come up with a robust
and portable solution to this problem. For this reason we stick to the C method of sup-
plying an error handler when a PDF object is generated. An optional client-provided er-
ror handler can be supplied in the PDF constructor, which has the same signature as the
PDF_new2() function.

It’s important to note that in the C++ binding, the PDF data type refers to a C++ class,
not to the structure used in the C binding (this change is automatically accomplished
via simple macro substitution in the header files). However, the C++ error handler lives
on the C++ side, but has to deal with the C structure. For this reason, C++ error handlers
must use the (rather private) data type name PDF_c although the signature in the API
reference calls for the PDF data type.

2.3.5 Memory Management in C++
The PDF constructor accepts an optional error handler, optional memory management
procedures, and an optional opaque pointer argument. Default NULL arguments are
supplied in pdflib.hpp which will result in PDFlib’s internal error and memory manage-
ment routines becoming active.

Client-supplied memory management for the C++ binding works the same as with
the C language binding. As with the error handler, the signatures of the memory man-
agement routines must be slightly changed to use PDF_c instead of PDF as their first ar-
gument (see above).

2.3.6 Version Control in C++
Version control for the C++ binding is identical to the C binding.

2.4 Java Binding
2.4.1 How does the Java Binding work?

Starting with the Java1 Development Kit (JDK) 1.1, Java supports a portable mechanism
for attaching native language code to Java programs, the so-called Java Native Interface
(JNI)2. The JNI provides programming conventions for calling native C routines from
within Java code, and vice versa. Each C routine has to be wrapped with the appropriate
code in order to be available to the Java VM, and the resulting library has to be generat-
ed as a shared or dynamic object in order to be loaded into the Java VM.

Fortunately, Harco de Hilster has provided a hacked version of SWIG which imple-
ments JNI support simply as another SWIG module. SWIG generates a C wrapper file, as
well as a Java class definition file. This technique allows us to attach PDFlib to Java by

1. See http://java.sun.com
2. See http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
2.4 Java Binding 19

http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html
http://java.sun.com

simply generating a wrapper file with SWIG, and loading the shared library from Java.
The actual loading of the library is accomplished via a static member function in the
pdflib Java class. Therefore, the Java client doesn’t have to bother with the specifics of
loading the shared library.

2.4.2 Availability and Special Considerations for Java
Obviously, for developing Java applications you will need the JDK which includes sup-
port for the JNI. For compiling the PDFlib-supplied JNI wrapper file, you will need the
Java include files for C.

Although Sun only delivers the JDK (and therefore the JNI) to the Win32 and Solaris
platforms, the JDK has successfully been ported by the Linux community.1 The Mac OS
Runtime for Java (MRJ)2, version 2.0 and above, also supports the JNI.

For the PDFlib binding to work, the Java VM must have access to the PDFlib shared li-
brary and the PDFlib Java class file:
> On Unix systems the library name supplied in the PDFlib Java class file will be deco-

rated according to the system’s conventions for the names of shared libraries (usual-
ly by transforming pdf_java2.01 to libpdf_java2.01.so). The library must be placed in
one of the default locations for shared libraries (e.g., the /lib directory), or in an ap-
propriately configured directory (most systems use the LD_LIBRARY_PATH environ-
ment variable). The PDFlib class file pdflib.java must be compiled to pdflib.class and
must be accessible via the CLASSPATH environment variable.

> On Windows systems the library name supplied in the PDFlib Java class file will be
decorated according to the usual Windows conventions for DLLs (by transforming
pdf_java2.01 to pdf_java2.01.dll). The DLL must be placed in the Windows system direc-
tory, the current directory, or a directory which is listed in the PATH environment
variable. The PDFlib class file pdflib.java must be compiled to pdflib.class and must be
accessible via the CLASSPATH environment variable.

> On the Mac the library name supplied in the PDFlib Java class file is used without any
change (pdf_java2.01). The shared library is searched in the Systems Extensions folder,
the MRJ Libraries folder within the Extensions folder, and the folder where the starting
application lives (JBindery, for example). Note that the above naming not only re-
lates to the file name, but also to the fragment name of the library which must be
correctly set by the linker. The PDFlib class file pdflib.java must be compiled to
pdflib.class and must be accessible via the CLASSPATH environment variable.

2.4.3 The »Hello world« Example in Java
/* hello.java
 * Copyright (C) 1997-99 Thomas Merz. All rights reserved.
 *
 * PDFlib client: hello example in Java
 */

import pdflib.*;

public class hello
{
 public static void main (String argv[])

1. See http://www.blackdown.org
2. See http://devworld.apple.com/java
20 Chapter 2: PDFlib Language Bindings

http://www.blackdown.org
http://devworld.apple.com/java

 {
long p;
int font;

p = pdflib.PDF_new();

if (pdflib.PDF_open_file(p, "hello_java.pdf") == -1) {
 System.err.println("Couldn't open PDF file hello_java.pdf\n");
 System.exit(1);
}

pdflib.PDF_set_info(p, "Creator", "hello.java");
pdflib.PDF_set_info(p, "Author", "Thomas Merz");
pdflib.PDF_set_info(p, "Title", "Hello world (Java)");

pdflib.PDF_begin_page(p, 595, 842);

font = pdflib.PDF_findfont(p, "Helvetica-Bold", "default", 0);
if (font == -1){
 System.err.println("Couldn't find font!\n");
 System.exit(1);
}
pdflib.PDF_setfont(p, font, 18);

pdflib.PDF_set_text_pos(p, 50, 700);
pdflib.PDF_show(p, "Hello world!");
pdflib.PDF_continue_text(p, "(says Java)");
pdflib.PDF_end_page(p);

pdflib.PDF_close(p);
pdflib.PDF_delete(p);

 }
}

2.4.4 Error Handling in Java
The Java binding installs a special error handler which translates PDFlib errors to native
Java exceptions. The Java exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

try {
p = pdflib.PDF_new();

} catch (Throwable e) {
System.err.println("Exception caught:\n" + e);
return;

}

2.4.5 Memory Management in Java
There are currently no provisions for client-side memory management, or for integrat-
ing PDFlib’s internal memory management into the Java VM.

2.4.6 Version Control in Java
Version control for the Java binding is done transparently when loading the shared li-
brary. The Java code for loading the PDFlib shared library relies on the major and minor
2.4 Java Binding 21

version numbers being contained in the library file name. This means that an exact
match of the library version is required.

2.5 Perl Binding
2.5.1 How does the Perl Binding work?

Perl1 supports a mechanism for extending the language (interpreter) via native C librar-
ies. SWIG frees us from the chore of writing the necessary C interface files. In the case of
Perl, SWIG generates a C wrapper file and a perl package module. The C module and the
core PDFlib library are linked to a shared library which is loaded at runtime by the Perl
interpreter, with some help from the package file. The shared library module is referred
to from the Perl script via use and package statements.

2.5.2 Availability and Special Considerations for Perl
The Perl extension mechanism works by loading dynamic libraries at runtime, or stati-
cally linking the extension library to the Perl archive library. However, only the shared
library method has been tested with PDFlib (instructions on building statically extend-
ed versions of the Perl interpreter can be found in the SWIG and Perl documentation).

In order to compile the PDFlib-supplied Perl wrapper file, you will need to have the
Perl sources installed because the wrapper file needs the EXTERN.h, perl.h,and XSUB.h
header files from the Perl source file set.

For the PDFlib binding to work, the Perl interpreter must have access to the PDFlib
shared library and the module file pdflib.pm:
> On Unix systems both pdflib.so and pdflib.pm will be found if placed in the current di-

rectory, or the directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib. PDFlib’s install mechanism will
place the files in the correct directories. The PDFlib base shared library pdflib2.01.so
must also be accessible. Typical output of the above command (on a Linux system)
looks like

/usr/lib/perl5/site_perl/5.005/i686-linux

> On the Windows platform PDFlib supports the ActiveState port of Perl 5 to Windows,
also known as ActivePerl.2 Both pdflib.dll and pdflib.pm will be found if placed in the
current directory, or the directory printed by the following Perl command:

perl -e "use Config; print $Config{sitearchexp};"

Perl will also search the subdirectory auto/pdflib. Typical output of the above com-
mand looks like

C:\Program Files\Perl5.005\site\lib

> For the Mac it should first be noted that shared libraries are by default only suppor-
ted on the PowerPC platform. 68K-based machines require installing a facility called
CFM68K (a description of this is beyond the scope of this manual). PDFlib supports

1. See http://www.perl.com
2. See http://www.activestate.com
22 Chapter 2: PDFlib Language Bindings

http://www.activestate.com
http://www.perl.com

the Macintosh port of Perl known as MacPerl1. Both the shared library pdflib and
pdflib.pm will be found if placed in the current folder, or in one of the following fol-
ders:

<MacPerl>:lib:auto:pdflib
<MacPerl>:lib:MacPPC:auto:pdflib

where <MacPerl> denotes the Perl installation folder. The module file pdflib.pm may
also be placed directly in the lib folder. In order to run the supplied samples, start
Perl and open the script via »Script«, »Run Script«. It should be noted that the gener-
ated PDF output ends up in the Perl interpreter’s folder if a relative file name is sup-
plied as in the sample scripts.

2.5.3 The »Hello world« Example in Perl
#!/usr/bin/perl
hello.pl
Copyright (C) 1997-99 Thomas Merz. All rights reserved.
#
PDFlib client: hello example in Perl
#

use pdflib 2.01;
package pdflib;

$p = PDF_new();

die "Couldn't open PDF file" if (PDF_open_file($p, "hello_pl.pdf") == -1);

PDF_set_info($p, "Creator", "hello.pl");
PDF_set_info($p, "Author", "Thomas Merz");
PDF_set_info($p, "Title", "Hello world (Perl)");

PDF_begin_page($p, 595, 842);
$font = PDF_findfont($p, "Helvetica-Bold", "default", 0);
die "Couldn't set font" if ($font == -1);

PDF_setfont($p, $font, 18.0);

PDF_set_text_pos($p, 50, 700);
PDF_show($p, "Hello world!");
PDF_continue_text($p, "(says Perl)");
PDF_end_page($p);
PDF_close($p);

PDF_delete($p);

2.5.4 Error Handling in Perl
The Perl binding installs a special error handler which translates PDFlib errors to native
Perl exceptions. The Perl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

eval { $p = PDF_new() };
die "Exception caught" if $@;

1. See http://www.macperl.com
2.5 Perl Binding 23

2.5.5 Memory Management in Perl
There are currently no provisions for client-side memory management, or for integrat-
ing PDFlib’s internal memory management into the Perl interpreter.

2.5.6 Version Control in Perl
Perl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Perl binding. PDFlib applications written in
Perl simply use the line

use pdflib 2.01;

in order to make sure they will get the required library version (or a newer one). Since
the library version number is contained in the package file, there is no need to retain
the version number in the file name of the shared library.

2.6 Python Binding
2.6.1 How does the Python Binding work?

Python1 supports a mechanism for extending the language (interpreter) via native C li-
braries. SWIG frees us from the chore of writing the necessary C interface files. In the
case of Python, SWIG generates a single C wrapper file. The C module is linked to a
shared library which is loaded at runtime by the Python interpreter. The shared library
module is referred to from the Python script via an import statement.

2.6.2 Availability and Special Considerations for Python
The Python extension mechanism works by loading dynamic libraries at runtime, or
statically linking the extension library to the Python archive library. However, only the
shared-library method has been tested with PDFlib (instructions on building statically
extended versions of the Python interpreter can be found in the SWIG documentation).

In order to compile the PDFlib-supplied Python wrapper file, you will need to have
the Python sources installed because the wrapper file needs the Python.h header file
from the Python source file set. On the Mac, it suffices to install the Python Developer
Kit instead of the full source package.

For the PDFlib binding to work, the Python interpreter must have access to the PDF-
lib shared library:
> On Unix systems the PDFlib shared library for Python pdflib.so will be searched in the

directories listed in the PYTHONPATH environment variable. The PDFlib base shared
library pdflib2.01.so must also be accessible.

> On Windows systems the PDFlib shared library pdflib.dll will be searched in the direc-
tories listed in the PYTHONPATH environment variable.

> On the Mac the PDFlib shared library pdflib.ppc.slb will be searched in the Plugins fol-
der of the Python application folder.

1. See http://www.python.org
24 Chapter 2: PDFlib Language Bindings

http://www.python.org

2.6.3 The »Hello world« Example in Python
#!/usr/bin/python
hello.py
Copyright (C) 1997-99 Thomas Merz. All rights reserved.
#
PDFlib client: hello example in Python
#

from sys import *
from pdflib import *

p = PDF_new()

if PDF_open_file(p, "hello_py.pdf") == -1:
 print 'Couldn\'t open PDF file!', "hello_py.pdf"

exit(2);

PDF_set_info(p, "Author", "Thomas Merz")
PDF_set_info(p, "Creator", "hello.py")
PDF_set_info(p, "Title", "Hello world (Python)")

PDF_begin_page(p, 595, 842)
font = PDF_findfont(p, "Helvetica-Bold", "default", 0)
if font == -1:
 print 'Couldn\'t set font!'

exit(3);

PDF_setfont(p, font, 18.0)

PDF_set_text_pos(p, 50, 700)
PDF_show(p, "Hello world!")
PDF_continue_text(p, "(says Python)")
PDF_end_page(p)
PDF_close(p)

PDF_delete(p);

2.6.4 Error Handling in Python
The Python binding installs a special error handler which translates PDFlib errors to na-
tive Python exceptions. The Python exceptions can be dealt with by applying the appro-
priate language constructs, i.e., by bracketing critical sections:

try:
p = PDF_new();

except:
print 'Exception caught!'

2.6.5 Memory Management in Python
There are currently no provisions for client-side memory management, or for integrat-
ing PDFlib’s internal memory management into the Python interpreter.
2.6 Python Binding 25

2.6.6 Version Control in Python
We are currently not aware of any intrinsic versioning scheme available in Python (if
you know better, please let us know). Currently PDFlib applications in Python must use
manual version control.

2.7 Tcl Binding
2.7.1 How does the Tcl Binding work?

Tcl1 supports a mechanism for extending the language (interpreter) via native C librar-
ies. SWIG frees us from the chore of writing the necessary C interface files. In the case of
Tcl, SWIG generates a single C wrapper file. The C module is linked to a shared library
which is loaded at runtime by the Tcl interpreter.
In addition, the PDFlib Tcl binding leverages the idea of extension packages introduced
in Tcl 7.5. All PDFlib functions are packed into a single Tcl extension package. The shared
library module is referred to from the Tcl script via a package statement.

2.7.2 Availability and Special Considerations for Tcl
The Tcl extension mechanism works by loading dynamic libraries at runtime, or stati-
cally linking the extension library to the Tcl archive library. However, only the shared-li-
brary method has been tested with PDFlib (instructions on building statically extended
versions of the Tcl interpreter can be found in the SWIG documentation). For extending
the Tcl interpreter with PDFlib, Tcl 7.5 or higher is recommended.

In order to compile the PDFlib-supplied Tcl wrapper file, you will need to have the Tcl
sources installed because the wrapper file needs the tcl.h and tk.h header files from the
Tcl source file set.

For the PDFlib binding to work, the Tcl shell must have access to the PDFlib shared li-
brary (the supplied test programs use auto_path to make the library available from the
current directory; this facilitates testing) and the package index file pkgindex.tcl:
> On Unix systems the library name pdflib.so supplied in the pkgIndex.tcl file must be

placed in one of the default locations for shared libraries (e.g., the /lib directory), or in
an appropriately configured directory (most systems use the LD_LIBRARY_PATH en-
vironment variable). The PDFlib base shared library pdflib2.01.so must also be accessi-
ble.

> Unfortunately, Tcl doesn’t itself produce a platform-specific decoration of the li-
brary name. On Windows you have to change the library name pdflib.so supplied in
the pkgIndex.tcl file to the appropriate name pdflib.dll. A library by this name will be
searched in the Tcl shell’s directory, the current directory, the Windows and Win-
dows\system32 directories, and the directories listed in the PATH environment vari-
able. The index file (and the DLL) will be searched for in the directories

C:\Program Files\Tcl 8.1\lib\tcl8.1\

C:\Program Files\Tcl 8.1\lib\tcl8.1\pdflib

> On the Mac the library pdflib.so and pkgIndex.tcl will be searched in the Tcl shell’s fol-
der, and in the folders

1. See http://www.scriptics.com and www.tclconsortium.org
26 Chapter 2: PDFlib Language Bindings

http://www.scriptics.com

System:Extensions:Tool Command Language:tcl8.1
System:Extensions:Tool Command Language:tcl8.1:pdflib

In order to run the supplied samples, start the Wish application and use the »Source«
menu command to locate the Tcl script. It should be noted that the generated PDF
output ends up in the Tcl shell’s folder if a relative file name is supplied as in the
sample scripts.

2.7.3 The »Hello world« Example in Tcl
#!/bin/sh
#
hello.tcl
Copyright (C) 1997-99 Thomas Merz. All rights reserved.
#
PDFlib client: hello example in Tcl
#

Hide the exec to TCL but not to the shell by appending a backslash\
exec tclsh "$0" ${1+"$@"}

The lappend line is unnecessary if PDFlib has been installed
in the Tcl package directory
lappend auto_path .

package require pdflib 2.01

set p [PDF_new]

if {[PDF_open_file $p "hello_tcl.pdf"] == -1} {
 puts stderr "Couldn't open PDF file!"
 exit
}

PDF_set_info $p "Creator" "hello.tcl"
PDF_set_info $p "Author" "Thomas Merz"
PDF_set_info $p "Title" "Hello world (Tcl)"

PDF_begin_page $p 595 842
set font [PDF_findfont $p Helvetica-Bold "default" 0]

if { $font == -1 } {
 puts stderr "Couldn't set font!"
 exit
}
 PDF_setfont $p $font 18.0

PDF_set_text_pos $p 50 700
PDF_show $p "Hello world!"
PDF_continue_text $p "(says Tcl)"
PDF_end_page $p
PDF_close $p

PDF_delete $p
2.7 Tcl Binding 27

2.7.4 Error Handling in Tcl
The Tcl binding installs a special error handler which translates PDFlib errors to native
Tcl exceptions. The Tcl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

if [catch { set p [PDF_new] } result] {
puts stderr "Exception caught!"
puts stderr $result

}

2.7.5 Memory Management in Tcl
There are currently no provisions for client-side memory management, or for integrat-
ing PDFlib’s internal memory management to the Tcl interpreter.

2.7.6 Version Control in Tcl
Tcl’s package mechanism supports a major/minor version number scheme for exten-
sion modules which is used by the PDFlib Tcl binding. PDFlib applications written in Tcl
simply use the line

package require pdflib 2.01

in order to make sure they will get the required library version (or a newer one, which is
ok for PDFlib). Since the library version number is contained in the package file, there is
no need to retain the version number in the file name of the shared library.

2.8 Visual Basic Binding
2.8.1 How does the Visual Basic Binding work?

Visual Basic1 applications can easily access functions exported from a Dynamic Link Li-
brary (DLL), provided the function interface is supplied via a Type Library. Ideally, SWIG
would also take care of this case and generate the necessary glue files. Unfortunately, a
SWIG module for Visual Basic is currently not available. The PDFlib distribution there-
fore contains a hand-written module definition file pdflib.def which describes the func-
tions exported from the PDFlib DLL, and a function description file pdflib.idl written in
the Interface Definition Language (IDL). While the module definition file is used for gen-
erating the DLL, the IDL file is used for creating the PDFlib Type Library pdflib_vb.tlb. Al-
so, the pdflib.h header file has been prepared to declare the necessary export rules as
well as the calling conventions required by Visual Basic. IDL implies using Microsoft’s ID
scheme for uniquely identifying an interface (see below).

In order to use the PDFlib DLL from a Visual Basic application, the PDFlib type library
must be loaded into the VB project. This frees us from having to declare all PDFlib func-
tions within the Visual Basic code. Since the PDFlib type library is supplied along with
help strings for all functions, development tools with object browsers, such as Visual

1. Visual Basic is a commercial product of Microsoft and not freely available. Visual Basic should not be confused with (al-
though it’s closely related to) Visual Basic for Applications (which is integrated in several Microsoft and third-party appli-
cations) or VBScript (which is integrated in some Web server and browser products). More information about Visual Basic
can be found at http://msdn.microsoft.com/vbasic/prodinfo.
28 Chapter 2: PDFlib Language Bindings

http://msdn.microsoft.com/vbasic/prodinfo

Basic 6.0, will let you browse the PDFlib functions and display short descriptions for
each function.

2.8.2 Availability and Special Considerations for Visual Basic
In order to not confuse the PDFlib DLL for Visual Basic and the PDFlib C/C++ DLL, the
former uses a file name of pdflib_vb.dll. This file name is published via the type library,
so registering the PDFlib type library or including it in your Visual Basic project is suffi-
cient. In the Visual Basic 6 environment, this can be done by clicking Project, References,
Browse, and pointing to the PDFlib type library (pdflib_vb.tlb). The PDFlib Visual Basic
DLL must be available in one of the directories searched by Windows, i.e., the current
directory, the Windows and Windows\system32 directories, and the directories listed in
the PATH environment variable.

Note The location of the PDFlib DLL cannot easily be changed after registering PDFlib without break-
ing the connection between type library and DLL.

2.8.3 The »Hello world« Example in Visual Basic
Attribute VB_Name = "Module1"
'
' hello.bas
' Copyright (C) 1997-99 Thomas Merz. All rights reserved.
'
' PDFlib client: hello example in Visual Basic
' Requires the PDFlib type library
' Load pdflib_vb.tlb via Project, References, Browse

Option Explicit

Sub main()
 Dim p As Long
 Dim err, font As Integer

 p = PDF_new

 ' Open new PDF file
 err = PDF_open_file(p, "hello_vb.pdf")
 If (err = -1) Then
 MsgBox "Couldn't open PDF file!"
 End
 End If

 PDF_set_info p, "Creator", "hello.bas"
 PDF_set_info p, "Author", "Thomas Merz"
 PDF_set_info p, "Title", "Hello, world (Visual Basic)!"

 ' start a new page
 PDF_begin_page p, 595, 842

 font = PDF_findfont(p, "Helvetica-Bold", "winansi", 0)
 If (font = -1) Then
 MsgBox "Couldn't set font"
 End
 End If
2.8 Visual Basic Binding 29

 PDF_setfont p, font, 24

 PDF_set_text_pos p, 50, 700
 PDF_show p, "Hello, world!"
 PDF_continue_text p, "(says Visual Basic)"

 PDF_end_page p' finish page

 PDF_close p ' close PDF document

 PDF_delete p
End Sub

2.8.4 Error Handling in Visual Basic
Due to the nature of the VB/DLL integration it’s possible to call Visual Basic functions
from C code via callbacks. This feature can be used in order to install a PDFlib error han-
dler written in Visual Basic along the following lines:

Public Sub Errorhandler(ByVal p As Long, ByVal typ As Integer, _
ByRef msg As String)
MsgBox "PDFlib Error:" & typ
End

End Sub

...

p = PDF_new2(AddressOf Errorhandler, 0#, 0#, 0#, 0#)

The address of the VB error handler is being passed to PDFlib in a call to PDF_new2().
However, we were unable to find a way to access the DLL-supplied error message string
within the error handler. Although it compiles fine, the whole thing crashes as soon as
we try to access the error string inside the VB error handler.

2.8.5 Memory Management in Visual Basic
There are currently no provisions for client-side memory management, or for integrat-
ing PDFlib’s internal memory management into the Visual Basic machinery.

2.8.6 Version Control in Visual Basic
Instead of simple major and minor version numbers, type libraries support the concept
of a globally unique identifier (GUID) which uniquely describes a particular program-
ming interface. Instead of messing around with different version numbers, a new soft-
ware release may decide whether or not to actually support a certain interface identi-
fied via its GUID.

The PDFlib DLL for Visual Basic makes use of the GUID mechanism. The GUID for
PDFlib 2.01 can be found in pdflib_vb.idl, although it will only rarely be used directly.
30 Chapter 2: PDFlib Language Bindings

3 Programming Concepts

3.1 General Programming Issues
PDFlib Program Structure. PDFlib applications must obey certain structural rules.
These rules are very easy to understand and to obey. Writing applications according to
these restrictions should be straightforward. For example, you don’t have to think
about opening a page first before closing it. Since the PDFlib API is very closely modelled
after the document/page paradigm, generating documents the »natural« way usually
leads to well-formed PDFlib client programs.

PDFlib checks for several conditions in the ordering of API calls, but doesn’t attempt
to trap all kinds of illegal function call combinations. In the development phase it will
be helpful to take a look at all warning messages generated by PDFlib, since these usual-
ly point to problems in the client’s ordering of function calls. PDFlib will throw an ex-
ception if bad parameters are supplied by a library client.

3.2 Coordinate Systems
PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space) has its origin in the lower left corner of the page, and uses the
DTP point as its unit:

1 pt = 1 inch / 72 = 25.4 mm / 72 = 0.3528 mm

PDFlib client programs may change the default user space by rotating, scaling, or trans-
lating, resulting in new user coordinates. The respective functions for these transforma-
tions are PDF_rotate(), PDF_scale(), and PDF_translate(). If the user space has been trans-
formed, all coordinates in graphics and text functions must be supplied according to
the new coordinate system. The coordinate system is reset to the default coordinate sys-
tem at the start of each page.

Note Hypertext functions, such as those for creating text annotations, links, and file annotations are
not affected by user space transformations, and always use the default coordinate system in-
stead.

Although PDF and PDFlib don’t impose any restriction on the usable page size, Acrobat
implementations suffer from architectural limits concerning the page size. Note that
other PDF interpreters (such as Ghostscript) may well be able to deal with larger or
smaller document formats. Although PDFlib will generate PDF documents with page
sizes outside these limits, the default error handler will issue a warning message.

Table 3.1. Minimum and maximum page sizes supported by Acrobat 3 and 4

Acrobat viewer Minimum page size Maximum page size
Acrobat 3 1" = 72 pt = 2.54 cm 45" = 3240 pt = 114.3 cm
Acrobat 4 1/24" = 3 pt = 0.106 cm1

1. The documented limit for Acrobat 4 is 1/4" = 18 pt = 0.635 cm, but the above seems to be the real limit.

200" = 14400 pt = 508 cm
3.1 General Programming Issues 31

Common standard page size dimensions can be found in Table 3.2.1 C macro definitions
for these formats are available in pdflib.h.

3.3 Graphics and Text Handling
Graphics paths. A path is a shape made of an arbitrary number of straight lines, rect-
angles, or curves. A path may consist of several disconnected sections. Paths may be
stroked or filled, or used for clipping. Stroking draws a line along the path, using client-
supplied parameters for drawing. Filling paints the entire region enclosed by the path,
using client-supplied parameters. The interior is determined by one of two algorithms.
Clipping reduces the imageable area by replacing the current clipping area (which is the
page size by default) with the intersection of the current clipping are and the path.

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

Color. PDFlib clients may specify the colors used for filling and stroking the interior of
paths and text characters. Colors may be specified as gray values between 0 and 1, or as
RGB triples, i.e., three values between 0 and 1 specifying the percentage of red, green,
and blue. The default value for stroke and fill colors is black, i.e. (0, 0, 0).

Ordering constraints for path functions. For the sake of efficiency, PDF page descrip-
tions must obey certain restrictions related to the ordering of path description, build-
ing, and using. In particular, none of the following functions must be used between the
beginning of a path (i.e., one of the functions listed in Section 4.3.3, »Path Segment Func-
tions«) and its natural demise (i.e., one of the functions listed in Section 4.3.4, »Path
Painting and Clipping Functions«):
> all functions listed in Section 4.3.1, »General Graphics State Functions« (e.g., chang-

ing line width or linecap)
> all functions listed in Section 4.3.2, »Special Graphics State Functions«

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLs:
http://www.twics.com/~eds/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

Table 3.2. Common standard page sizes dimensions

Page format Width Height
A0 2380 3368
A1 1684 2380
A2 1190 1684
A3 842 1190
A4 595 842
A5 421 595
A6 297 421
B5 501 709
letter 612 792
legal 612 1008
ledger 1224 792
11 x 17 792 1224
32 Chapter 3: Programming Concepts

http://www.twics.com/~eds/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

> all functions listed in Section 4.4, »Color Functions« (e.g., changing the fill or stroke
color)

These rules may easily be summarized as »Don’t change the appearance within a path
description«.

Interactions among graphics and text functions. At the beginning of each page, the
text matrix is reset to the identity matrix, and the text position to the coordinate origin
at (0,0). It is very important to understand that both text matrix and position are also
reset to their respective defaults when one of the following PDFlib functions is called:
> all functions listed in Section 4.3.2, »Special Graphics State Functions«
> all functions listed in Section 4.3.3, »Path Segment Functions«
> all functions listed in Section 4.3.4, »Path Painting and Clipping Functions«
> The function PDF_place_image() for placing images

3.4 Font Handling
3.4.1 The PDF Core Fonts

PDF and Acrobat viewers support a core set of 14 fonts which need not be embedded in
any PDF file. Even when a font isn’t embedded in the PDF file, PDF and therefore PDFlib
need to know about the width of individual characters. For this reason, metrics infor-
mation for the core fonts is already built into the PDFlib binary. However, the builtin
metrics information is only available for the native platform encoding (see below). Us-
ing another encoding than the platform’s default PDFlib encoding requires metrics in-
formation files. Metrics files for the PDF core fonts are included in the PDFlib distribu-
tion in order to make it possible to use encodings other than the current platform
encoding. The core fonts are the following:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

3.4.2 Character Sets and 8-Bit Encoding
PDF supports several encoding methods (character sets) for 8-bit text fonts. PDFlib in-
cludes provisions for supporting diverse encoding vectors in the generated PDF output.
The supported encoding vectors are referred to via symbolic names. Table 3.3 lists the
symbolic encoding names supported in PDFlib (they are further described below). The
supported encodings can be arbitrarily mixed in one document.

Table 3.3. Character encodings supported in PDFlib

Encoding Description
pdfdoc PDF’s internal encoding which is similar to winansi
winansi Windows encoding
macroman Mac Roman encoding, i.e., the default MacOS character set
builtin Original encoding used by non-text (symbol) or non-latin text fonts
default macroman on the Mac, winansi on all other systems
3.4 Font Handling 33

The pdfdoc encoding. PDFDocEncoding (which is a superset of ISO 8859-1, also known
as Latin 1) is shown in Figure 3.1 and plays a special role, since this encoding is always
used for hypertext elements, such as bookmarks, annotations, or document informa-
tion fields. For most clients this won’t be much of a problem. However, since the Mac
encoding substantially differs from PDFDocEncoding, it is necessary to convert Mac
special characters to PDFDocEncoding when it comes to hypertext elements. For the
same reason, it’s impossible to incorporate several characters contained in the Mac
character set in bookmarks.

The winansi and macroman encodings. These encodings reflect the »main« Windows
character set and the MacOS character set, respectively. The exact definitions can be
found in the respective header files in the PDFlib source file set, or in [1].

The builtin encoding. The encoding name builtin doesn’t describe a particular charac-
ter set but rather means »take this font as it is, and don’t mess around with the charac-
ter set«. This concept is sometimes called a »font specific« encoding and is very impor-
tant when it comes to non-text fonts (such as logo and symbol fonts), and non-latin text
fonts (such as Greek and Cyrillic). Such fonts cannot be reencoded using one of the sup-

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177

200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1 H I J K L M N O

2 ! " # $ % & ™ () * + , − . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ‚ a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8 Ł ƒ ⁄ – Š Œ … ⁄ ‰ ł − › — fi fl ‚

9 ™ ‡ Ž fi fl Ł „ − Ž ı ł œ ı ž

A ¡€ ¢ £ ¤ ¥ ¦ § ¨ ' ª « ¬ ® ¯

B ° Œ ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

C À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï

D Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

E à á â ã ä å æ ç è é ê ë ì í î ï

F ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Fig. 3.1. The PDFDocEncoding character set as defined in PDF 1.3 (note the Euro character at
position 0xA0)
34 Chapter 3: Programming Concepts

ported encodings since their character names don’t match those in these encodings.
Therefore, builtin must be used for all symbolic or non-text fonts. Non-text fonts can be
recognized by the following entry in their AFM file:

EncodingScheme FontSpecific

while latin-text fonts will usually have the entry

EncodingScheme AdobeStandardEncoding

Fonts with the Adobe StandardEncoding can be reencoded to pdfdoc, winansi, and
macroman encodings, while fonts with FontSpecific encoding can’t, and must use builtin
encoding instead. PDFlib will issue a warning message when an attempt is made to re-
encode symbol fonts.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many latin text fonts labeled as FontSpecific encoding, and many symbol fonts labeled
with Adobe StandardEncoding.

The default encoding. Like builtin, the default encoding plays a special role since it
doesn’t refer to some fixed character set. Instead, default encoding will be mapped to
macroman on the Mac, and winansi on all other systems. The default encoding is primari-
ly useful as a vehicle for writing platform-independent test programs (like those con-
tained in the PDFlib distribution) or other encoding-wise simple applications. Due to
the nature of the macroman and winansi encoding, the default encoding is guaranteed to
contain the usual ASCII character set in its lower half, while the upper half of the charac-
ter set is platform-dependent. Apart from testing, these properties are only useful if the
ASCII character set is sufficient for the application, e.g., plain English text without any
special characters. Because of the varying contents of the upper half of the character set,
default encoding is not recommended for more sophisticated applications.

Note The preceding discussion relates to 8-bit encodings only. PDFlib also supports 16-bit Unicode
encoding for hypertext elements as discussed in Section 3.4.5, »Unicode Support«.

3.4.3 Font Outline and Metrics Files

PDF font embedding. PDF supports fonts outside the set of 14 core fonts in several
ways. PDFlib is capable of embedding PostScript type 1 font descriptions into the gener-
ated PDF output. Alternatively, a font descriptor consisting of the character metrics and
some general information about the font (without the actual character outline data)
can be embedded. If a font is not embedded in a PDF document, Acrobat will take it from
the target system if available, or construct a substitute font according to the font de-
scriptor in the PDF. Table 3.4 lists different situations with respect to font usage, each of
which poses different requirements on the necessary font and metrics files.
Currently, PDFlib supports the AFM (Adobe Font Metrics) file format for metrics infor-
mation, and PFA (Printer Font ASCII) for PostScript Type 1 font outline information. PFA
files must use Unix-style line-end conventions (NL = 0x0A as a line-end separator).
There are several tools floating around the Internet for converting font and metrics file
formats, most notably the Type 1 Utilities (t1utils) for converting the PFB (Printer Font Bi-
3.4 Font Handling 35

nary) font file format common on Windows systems to PFA, and the pfm2afm utility for
converting Windows PFM (Printer Font Metrics) files to AFM format.

Note Future versions of PDFlib will support PFB and PFM files directly.

When a font with font-specific encoding (a symbol font) is used, but not embedded in
the PDF output, the resulting PDF will be unusable unless the font in question is already
natively installed on the target system (since Acrobat can only simulate latin text
fonts). Such PDF files are inherently nonportable, although they may be of use in con-
trolled environments such as intra-corporate document exchange.

Use of TrueType fonts in PDF. Although PDF technically supports embedded TrueType
fonts, this is a murky area of PDF technology. The internals of TrueType and their be-
havior in PDF are not clearly documented, which in practise gives rise to several prob-
lems (such as missing characters or unsearchable text). For this reason, it is generally
not possible to use a TrueType font in a PDF »by reference« (i.e., the PDF file doesn’t con-
tain the font, but only a font descriptor), and rely on Acrobat’s use of installed TrueType
fonts on the target system.

These problems are especially distinct for TrueType fonts which support multiple
code pages. For these reasons PDFlib doesn’t support the use of TrueType fonts in PDF
(and you are well advised to avoid them in other PDF contexts, too).

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors impose restrictions on the use of their fonts for non-print usage.
Some type foundries completely forbid PDF font embedding, others offer special online
or embedding licenses for their fonts, while still others allow font embedding provided
the fonts are subsetted. Please check the legal issues of font embedding before attempt-
ing to embed fonts with PDFlib.

Note PDFlib currently doesn’t implement font subsetting.

3.4.4 Resource Configuration and the UPR Resource File
In order to make PDFlib’s font handling platform-independent and customizable, a con-
figuration file can be supplied for describing the available fonts along with the names
of their outline and metrics files. In addition to the static configuration file, dynamic

Table 3.4. Different font usage situations and required metrics and outline files

Font usage Required metrics files Required font outline files
One of the 14 core fonts with
PDFlib’s default encoding1,2

None, since the platform metrics are
built into the PDFlib binary

None, since the core font outlines
are supplied by the Acrobat viewer

One of the 14 core fonts with
an encoding other than
PDFlib’s default encoding2

The AFM core font metrics which
are supplied with the PDFlib
distribution

None, since the core font outlines
are supplied by the Acrobat viewer

Non-core font which will
not be embedded

Metrics file for the font None

Non-core font which will be
embedded

Metrics file for the font Font outline file for the font

1. See Section 3.4.1, »The PDF Core Fonts« for a list of core fonts.
2. See Section 3.4.2, »Character Sets and 8-Bit Encoding« for the definition of PDFlib’s default encoding.
36 Chapter 3: Programming Concepts

font configuration can be accomplished at runtime by adding resources with PDF_set_
parameter(). For the configuration file we dug out a simple text format called »Unix
PostScript Resource« (UPR) which came to life in the era of Display PostScript. However,
we will take the liberty to extend the original UPR format for our purposes. The UPR file
format as used by PDFlib will be described below.1 There is an Adobe-supplied utility
called makepsres floating around the Internet which can be used to automatically gener-
ate UPR files from PostScript font outline and metrics files.

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:
> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes any character, including newline characters. This may be used

to extend lines.
> The period character ’ . ’ serves as a section terminator, and must therefore be es-

caped when used at the start of any other line.
> All entries are case-sensitive.
> Comment lines may be introduced with a percent ’%’ character.
> Whitespace is ignored everywhere.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all types of resources described in the file. Each line describes one re-
source type. The list is terminated by a line with a single period character. Available
resource types are described below.

> The optional directory line may be used as a shortcut for a directory prefix common
to all resource files described in the file. The prefix will be added to all file names giv-
en in the UPR file. If present, the directory line starts with a slash character, immedi-
ately followed by the directory prefix. Using the directory prefix a UPR file may, for
example, point to some central PostScript font directory somewhere in the file sys-
tem.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted), an equal sign, and the corresponding relative or ab-
solute file name f0r the resource. Relative file names will have the directory prefix
(see above) applied. Using a double equal sign forces the file name to be interpreted
absolute, i.e., the prefix is not used.

Supported resource categories. The resource categories currently supported in PDFlib
are listed in Table 3.5. Other resource categories may be present in the UPR file for com-
patibility with Display PostScript installations, but they will silently be ignored.

1. For those interested, the complete specification can be found in the book »Programming the Display PostScript System
with X« (appendix A), available at http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf
3.4 Font Handling 37

http://partners.adobe.com/asn/developer/PDFS/TN/DPS.refmanuals.TK.pdf

Sample UPR file. The following listing gives an example of a UPR configuration file as
used by PDFlib. It describes the 14 PDF core fonts’ metrics, plus metrics and outline files
for one extra font:

PS-Resources-1.0
FontAFM
FontOutline

//usr/local/lib/fonts
FontAFM
Code-128=Code_128.afm
Courier=Courier.afm
Courier-Bold=Courier-Bold.afm
Courier-BoldOblique=Courier-BoldOblique.afm
Courier-Oblique=Courier-Oblique.afm
Helvetica=Helvetica.afm
Helvetica-Bold=Helvetica-Bold.afm
Helvetica-BoldOblique=Helvetica-BoldOblique.afm
Helvetica-Oblique=Helvetica-Oblique.afm
Symbol=Symbol.afm
Times-Bold=Times-Bold.afm
Times-BoldItalic=Times-BoldItalic.afm
Times-Italic=Times-Italic.afm
Times-Roman=Times-Roman.afm
ZapfDingbats=ZapfDingbats.afm

FontOutline
Code-128=Code_128.pfa
.

Searching for the UPR resource file. If only the PDF core fonts with PDFlib’s default en-
coding are to be used, a UPR configuration file is not necessary, since PDFlib contains all
necessary font information built-in.

If other fonts or encodings are to be used, PDFlib will search several places for a re-
source file. The process is client-configurable and consists of the following steps:
> The environment variable PDFLIBRESOURCE is examined and used as a resource file

name, if set (this doesn’t apply to the MacOS)
> If no file name is found, the client-settable resource parameter (which may be set

using PDF_set_parameter()) is examined and used as a resource file name, if set.
> If no file name is found, the file name pdflib.upr in the current directory is used.
> If the file can’t be opened, an IOError is raised.
> If the file can be opened, but a required resource category cannot be found, a

SystemError is raised.

Table 3.5. Resource categories supported in PDFlib

Resource type name Explanation
FontAFM PostScript font metrics file in AFM format
FontPFM (reserved for future use)
FontOutline PostScript font outline file
FontTT (reserved for future use)
38 Chapter 3: Programming Concepts

Setting resources without a UPR file. In addition to using a UPR file for font configura-
tion, it is also possible to directly configure individual resources within the source code
via the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

PDF_set_parameter(p, "FontAFM", "Foobar-Bold=foobb___.afm"
PDF_set_parameter(p, "FontOutline", "Foobar-Bold=foobb___.pfa"

3.4.5 Unicode Support
Starting with version 4, Acrobat fully supports Unicode text encoding. Unicode is a 16-
bit character encoding scheme which covers all current and many ancient languages
and scripts in the world.1 PDFlib supports Unicode for the following features:
> Bookmarks (see Figure 3.2)
> Contents and title of note annotations (see Figure 3.2)
> Standard and user-defined document information field contents (but not the corre-

sponding field names)
> Description and author of file attachments

Before delving into the Unicode implementation, however, you should be aware of the
following restrictions regarding Unicode support in Acrobat:
> Unicode support is not available for the actual page descriptions but only for hyper-

text elements as described above.
> The usability of Unicode-enhanced PDF documents heavily depends on the Unicode

support available on the target system. Unfortunately, most systems today are far
from Unicode-enabled in their default configurations. Although Windows NT and
MacOS support Unicode internally, availability of appropriate Unicode fonts is still
an issue.2

> Acrobat doesn’t seem to be able to handle more than one script in a single annota-
tion. (It’s currently unclear how »script« might be defined in this context – probably
a Unicode codepage.)

In order to avoid duplicating all text-related API functions, PDFlib supports a dual-
encoding approach with respect to all text strings supplied by the client for one of the
above-mentioned Unicode-enabled functions. Unicode text can be processed by obey-
ing the following principles:
> In order to distinguish »regular« 8-bit encoded text strings from 16-bit Unicode

strings, the Unicode Byte Order Mark (BOM) is used as a sentinel at the beginning of
the string. The BOM consists of the following two byte values which must be the first
16-bit character in all Unicode strings:

Hex (FE, FF) or octal (376, 377)

> Subsequent characters in the Unicode string are encoded with 2 bytes each, where
the high order byte occurs first in the linear ordering.

> Since Unicode strings may contain null characters, the usual C convention for
strings cannot be used. For this reason, Unicode strings must end with a Unicode
null character, i.e., two null bytes.

1. More information on Unicode can be found at http://www.unicode.org.
2. For testing and producing screenshots we used a German version of Windows NT 4.0.
3.4 Font Handling 39

http://www.unicode.org

For example, the following string (in C notation) encodes the Greek string »ΛΟΓΟΣ« (see
Figure 3.2):

\xFE\xFF\003\233\003\237\003\223\003\237\003\243\0\0

Note Several languages among the PDFlib bindings natively support Unicode. However, the current
PDFlib language bindings don’t automatically convert from native language Unicode strings
to PDFlib Unicode strings as described above.

3.5 Image Handling
3.5.1 Image File Formats

Embedding raster images in the generated PDF is an important feature of PDFlib. PDFlib
currently deals with the following image sources:
> JPEG images: All versions of PDF directly support the »baseline« flavor of JPEG com-

pression which accounts for the vast majority of available JPEG files. In addition,
Acrobat 4 and PDF 1.3 support progressive JPEG compression. PDFlib correctly deals
with baseline and progressive JPEG images, but issues a warning message for pro-
gressive images since these are not compatible with Acrobat 3. PDFlib also applies a
workaround which is necessary for correctly processing Photoshop-generated CMYK
JPEG files.

> GIF images: PDFlib contains internal GIF handling code. Regular or interlaced GIFs
may be used.

> TIFF images: Sam Leffler’s TIFFlib can be plugged into PDFlib in order to support zil-
lions of TIFF compression and encoding flavors. As driven by PDFlib, TIFFlib current-
ly requires width x height x 4 bytes of virtual memory for the decompressed image

Fig. 3.2. Unicode bookmarks (left) and Unicode text annotations (right) as displayed in
Acrobat 4 on Windows NT
40 Chapter 3: Programming Concepts

data. Also, converted TIFF images always end up with 8 bit per color component per
pixel, which is inadequate for black-and-white images. Both issues are expected to be
resolved in future versions of PDFlib.

> CCITT images with raw Group 3 or Group 4 fax compressed image data.
> Raw uncompressed image data may be useful for some special applications, e.g., con-

structing a color ramp directly in memory.

If PDFlib is configured for compression, all image data will be output in the generated
PDF in ZIP-compressed format (this behavior can be changed by using debug parame-
ters). Notable exceptions are JPEG and CCITT images, which always retain their original
compression scheme.

3.5.2 Embedding Images in PDF
Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_open_*() functions return a handle which serves as an image descriptor. This
handle can be used in a call to PDF_place_image(), along with positioning and scaling pa-
rameters:

if ((image = PDF_open_JPEG(p, "image.pdf")) == -1) {
fprintf(stderr,"Error: Couldn't read image.\n");

} else {
PDF_place_image(p, image, 0.0, 0.0, 1.0);
PDF_close_image(p, image);

}

Note that the call to PDF_close_image() may or may not be required, depending on
whether the same image will be used again (see below).

3.5.3 Re-using Image Data
It should be emphasized that PDFlib supports an important PDF optimization tech-
nique for using repeated raster images.

Consider a layout with a constant logo or background on several pages. In this situa-
tion it is possible to include the image data only once in the PDF, and generate only a
reference on each of the pages where the image is used. Simply open the image file and
call PDF_place_image() every time you want to place the logo or background on a partic-
ular page. You can place the image on multiple pages, or use different scaling factors for
different occurrences of the same image (as long as the image hasn’t been closed). De-
pending on the image’s size and the number of occurrences, this technique may ac-
count for enormous space savings.

3.5.4 Memory Images and External Image References
While the majority of image data for use with PDFlib will be pulled from some disk file
on the local file system, other image data sources are also supported.

For performance reasons supplying existing image data directly in memory may be
preferable over opening a disk file. PDFlib supports in-core image data for certain image
file formats.

PDFlib also supports an experimental feature which isn’t recommended for general-
use PDF files, but may offer some advantages in certain environments. While almost all
3.5 Image Handling 41

PDF documents are completely self-contained (the only exception being non-embedded
fonts), it is also possible to store only a reference to some external data source in the
PDF file instead of the actual image data, and rely on Acrobat to fetch the required im-
age data when needed. This mechanism works similar to the well-known image refer-
ences in HTML documents. Usable external image sources include data files in the local
file system, and URLs. It is important to note that while file references work in Acrobat 3
and 4, URL references only work in Acrobat 4 (full product). PDF documents which in-
clude image URLs are neither usable in Acrobat 3 nor Acrobat Reader 4!

The PDF_open_image() interface can be used for both in-memory image data and ex-
ternal references.

3.6 Error Handling
As described in Chapter 2, PDFlib provides a flexible mechanism for dealing with a cer-
tain kind of programming errors. Runtime errors in PDFlib applications fall into one of
several classes, as shown in Table 3.6. Macro definitions for the error types are available
in pdflib.h, and can be constructed by prefixing the error name with PDF_ (e.g., PDF_
MemoryError). The error handler will receive the kind of PDFlib error as an argument,
and use the error type in its decision what to do.

The opaque data pointer argument to PDF_new2() is useful for multi-threaded applica-
tions which may want to supply a handle to thread-specific data in the PDF_new2() call.
PDFlib supplies the opaque pointer to the user-supplied error and memory handlers via
a call to PDF_get_opaque(), but doesn’t otherwise use it.

When the error handler is called, the PDF output file is still open. Client-supplied er-
ror handlers may wish to close the output file (if they are not responsible themselves
anyway, which would be the case if they opened the PDF with PDF_open_fp()). Another
important task of the error handler is to clean up PDFlib internals using PDF_delete()
and the supplied pointer to the PDF object. PDFlib functions other than PDF_delete()
should not be called from within a client-supplied error handler.

Table 3.6. PDFlib runtime errors

Error name Explanation
MemoryError Not enough memory
IOError Input/Output error, e.g. disk full
RuntimeError Wrong order of PDFlib function calls
IndexError Array index error
TypeError Argument type error
DivisionByZero Division by zero
OverflowError Arithmetic overflow
SyntaxError Syntactical error
ValueError A value supplied as argument to PDFlib is invalid
SystemError PDFlib internal error
NonfatalError A problem was detected but processing continues
UnknownError Other error
42 Chapter 3: Programming Concepts

Client supplied error handlers are expected to not return to the library function which
raised the exception. C programmers may achieve this by using the setjump/longjump
facility.
3.6 Error Handling 43

4 PDFlib API Reference
The API reference documents all supported PDFlib functions. A few functions are not
supported in certain language bindings since they are not necessary. These cases are
discussed in appropriate notes.

The exact syntax to be used for a particular language binding may actually vary
slightly from the C syntax shown here in the reference. This especially holds true for the
(PDF *) parameter which has to be supplied as the first argument to almost all PDFlib
functions. Also, where the C API allows a NULL value for a string argument, an empty
string "" may also be used to achieve the same effect from the scripting languages.
Please refer to the respective language section in Chapter 2 for more language-specific
details.

4.1 General Functions
void PDF_boot(void)

Boot PDFlib. Recommended for the C language binding, although currently not neces-
sarily required. For all other language bindings, booting is either not necessary, or ac-
complished automatically by the language binding mechanism.

void PDF_shutdown(void)

Shut down PDFlib. Recommended for the C language binding, although currently not
required.

int PDF_get_majorversion(void)

Returns the PDFlib major version number.

Note This function is not available in the Java, Perl, Tcl, and Visual Basic bindings because these bind-
ings supply their own versioning scheme.

int PDF_get_minorversion(void)

Returns the PDFlib minor version number.

Note This function is not available in the Java, Perl, Tcl, and Visual Basic bindings because these bind-
ings supply their own versioning scheme.

PDF *PDF_new(void)

Create a new PDF object, using PDFlib’s internal default error handling and memory al-
location routines. PDF_new() returns a handle used to refer to a PDF object which is to be
used in subsequent PDFlib calls. The contents of the PDF structure are considered pri-
vate to the library, only pointers to the PDF structure are used at the API level.

The data type used for the opaque PDF object handle varies among language bind-
ings. For example, in the Java binding the long data type is used. This doesn’t really af-
fect PDFlib clients, since all they have to do is to pass the PDF handle as the first argu-
ment to all functions.

Note This function is not available in the C++ binding since it is hidden in the PDF constructor.
44 Chapter 4: PDFlib API Reference

PDF *PDF_new2(
void (*errorhandler)(PDF *p, int type, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDF object. Returns a pointer to the opaque PDF data type which is re-
quired as the p argument for all other functions. When creating a new PDF object, the
caller may optionally supply own procedures for error handling and memory alloca-
tion. The function pointers for the error handler, the memory procedures, or both may
be NULL. PDFlib will use default routines in these cases. Either all three memory rou-
tines must be provided, or none.

Note In the C++ binding this function is indirectly available via the PDF constructor. The function ar-
guments need not be given since default values of NULL are supplied.

void PDF_delete(PDF *p)

Delete a PDF object. This will free all PDFlib-internal resources. Although not necessarily
required for single-document generation, deleting the PDF object is heavily recom-
mended for all server applications when they are done producing PDF.

Note PDF_delete() should also be called from client-supplied error handlers.

Note In the C++ binding this function is indirectly available via the PDF destructor.

void *PDF_get_opaque(PDF *p)

Return the opaque application pointer stored in PDFlib which has been supplied in the
call to PDF_new2(). PDFlib never touches the opaque pointer, but supplies it unchanged
to the client. This may be used in multi-threaded applications for storing private
thread-specific data within the PDF object.

int PDF_open_file(PDF *p, const char *filename)

Open a new PDF file associated with p, using the supplied filename. PDFlib will attempt
to open a file with the given name, and close the file when the PDF document is fin-
ished. The function returns -1 on error, and 1 otherwise.

Note In the C++ binding this function is hidden in the overloaded PDF_open() call.

int PDF_open_fp(PDF *p, FILE *fp)

Open a new PDF file associated with p, using the supplied file handle. The function re-
turns -1 on error, and 1 otherwise.

The supplied file handle fp must have been opened for writing by the caller. It’s im-
portant to note that for some platforms, most notably Windows, it is absolutely neces-
sary to open the file in binary mode in order to prevent the C runtime library from
messing with the line end characters which would result in corrupt PDF output. In order
to open files in binary mode, use something like

fp = fopen("filename.pdf", "wb");

Note This function is only available in the C binding. In the C++ binding, it is hidden in the overload-
ed PDF_open() call.
4.1 General Functions 45

void PDF_close(PDF *p)

Finish the generated PDF document, and close the output file if the PDF has been
opened with PDF_open().

void PDF_begin_page(PDF *p, float width, float heigth)

Start a new page in the PDF file. The width and height parameters are the dimensions of
the new page in points. Acrobat’s page size limits are documented in Section 3.2, »Coor-
dinate Systems«. A list of commonly used page formats can be found in Table 3.2. Note
that there are C convenience data structures for some common page formats (see Sec-
tion 4.7, »Convenience Stuff«).

void PDF_end_page(PDF *p)

Must be used to finish a page description.

void PDF_set_parameter(PDF *p, const char *key, const char *value)

Set some PDFlib-internal parameters controlling PDF generation. Currently supported
parameter keys and values are shown in Table 4.1.

4.2 Text Functions
4.2.1 Font Handling Functions

int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int embed)

Prepare a font with the supplied encoding for later use with PDF_setfont(). The metrics
will be loaded, and if embed has the value 1, the font file will be checked (but not yet
used, since font embedding is done at the end of the generated PDF file). encoding is one
of builtin, pdfdoc, macroman, macexpert, winansi or default (see Section 3.4.2, »Character

Table 4.1. Keys and values for the PDFlib configuration parameters

Key Values and explanation
any category name
allowed in UPR files

The corresponding resource file line as it would appear for the respective category
in a UPR file (see Section 3.4.4, »Resource Configuration and the UPR Resource
File«)

resourcefile Relative or absolute file name of the PDFlib resource file in UPR format. The
resource file will be loaded at the next attempt to access resources. The resource
file name can only be set once. This call should occur before the first page.

debug A string in which each character activates some debugging feature within PDFlib.
The debugging options below are available (provided PDFlib has been built in a
debugging configuration). All debugging options are off by default except where
noted otherwise.

a Produce ASCII instead of hex output for image and font data
c Disable compression
w Issue warning messages for non-fatal errors (on by default)
m Memory allocation (malloc)
r Memory allocation (realloc)
f Memory allocation (free)
s Print some statistics about the generated PDF document
u Don’t unlink (delete) PDF file on error

nodebug A string in which each character deactivates some debugging feature within PDF-
lib. See the debug table entry above for a list of supported characters.
46 Chapter 4: PDFlib API Reference

Sets and 8-Bit Encoding«). Note that in order to use arbitrary encodings, you will need a
metrics file for the font (see Section 3.4.3, »Font Outline and Metrics Files«). If the return
value is -1, the required files (metrics and possibly outline file) couldn’t be successfully
opened. In this case, the font cannot be used (at least not with the requested encoding
and embedding settings). Otherwise, the return value can be used as font argument to
other font-related functions.

PDF_findfont() can safely be called outside of page descriptions.

void PDF_setfont(PDF *p, int font, float fontsize)

Set the current font in the given fontsize. The font descriptor must have been retrieved
via PDF_findfont(). This function must only be called within a page description.

const char *PDF_get_fontname(PDF *p)

Return the name of the current font which must have been previously set with PDF_
setfont(). This function must only be called within a page description.

float PDF_get_fontsize(PDF *p)

Return the size of the current font which must have been previously set with PDF_
setfont(). This function must only be called within a page description.

int PDF_get_font(PDF *p)

Return the identifier of the current font which must have been previously set with PDF_
setfont(). This function must only be called within a page description.

4.2.2 Text Output Functions

void PDF_show(PDF *p, const char *text)

Print text in the current font and font size at the current text position. Both font (via
PDF_setfont()) and current point (via PDF_moveto())must have been set before.

void PDF_show_xy(PDF *p, const char *text, float x, float y)

Print text in the current font at position (x, y). The font must have been set before.

void PDF_continue_text(PDF *p, const char *text)

Move to the next line (as determined by the leading parameter, see PDF_set_leading())
and print text.

float PDF_stringwidth(PDF *p, const char *text, int font, float size)

Return the width of text in an arbitrary font and size which has been selected with PDF_
findfont().

void PDF_set_leading(PDF *p, float leading)

Set the leading, which is the distance between baselines of adjacent lines of text. The
leading parameter is set to the default value of 0 at the beginning of each page.

void PDF_set_text_rise(PDF *p, float rise)

Set the text rise parameter to a value of rise units. The text rise parameter specifies the
distance between the desired text position and the default baseline. Positive values of
4.2 Text Functions 47

text rise move the baseline up. This may be useful for superscripts and subscripts. The
text rise parameter is set to the default value of 0 at the beginning of each page.

void PDF_set_horiz_scaling(PDF *p, float scale)

Set the horizontal text scaling to a value of scale percent. Text scaling shrinks or ex-
pands the text by a given percentage. The text scaling parameter is set to the default
value of 100 at the beginning of each page.

void PDF_set_text_rendering(PDF *p, int mode)

Set the current text rendering mode to one of the values given in Table 4.2. The text ren-
dering parameter is set to the default value of 0 (= solid fill) at the beginning of each
page.

Note Invisible text doesn’t appear on the page, but can be searched and indexed. This may be useful
for attaching OCRed text to scanned pages in order to make the contents searchable.

void PDF_set_text_matrix(PDF *p, float a, float b, float c, float d, float e, float f)

Set the text matrix which describes a transformation to be applied to the current text
font, e.g. for skewing the text. The text matrix is set to the default identity matrix (1, 0, 0,
1, 0, 0) at the beginning of each page, and when certain PDFlib functions are called (see
Section 3.3, »Graphics and Text Handling«). The six floating point values make up the
matrix in the same way as in PostScript and PDF (see references).

void PDF_set_text_pos(PDF *p, float x, float y)

Set the current text position to (x, y). The text position is set to the default value of (0, 0)
at the beginning of each page, and when certain PDFlib functions are called (see Section
3.3, »Graphics and Text Handling«).

void PDF_set_char_spacing(PDF *p, float spacing)

Set the character spacing value, i.e., the horizontal shift of the current point after plac-
ing the individual characters in a string. The spacing value is given in text space units. It
is reset to the default of 0 at the beginning of a new page.

void PDF_set_word_spacing(PDF *p, float spacing)

Set the word spacing value, i.e., the horizontal shift of the current point after individual
words in a text line. In other words, the current point is moved by spacing units horizon-

Table 4.2. Values for the text rendering mode

Value Explanation
0 fill text
1 stroke text
2 fill and stroke text
3 invisible text
4 fill text and add it to the clipping path
5 stroke text and add it to the clipping path
6 fill and stroke text and add it to the clipping path
7 add text to the clipping path
48 Chapter 4: PDFlib API Reference

tally after each space character (0x20). The spacing value is given in text space units. It is
reset to the default value of 0 at the beginning of a new page.

4.3 Graphics Functions
4.3.1 General Graphics State Functions

Note Don’t use general graphics state functions within a path description (see Section 3.3, »Graphics
and Text Handling«).

void PDF_setdash(PDF *p, float b, float w)

Set the current dash pattern to b black and w white units. In order to produce a solid
line, choose b = w = 0. The dash parameter is set to solid at the beginning of each page.

void PDF_setpolydash(PDF *p, float *darray, int length)

Set a more complicated dash pattern. The array of the given length contains alternating
values for black and white dash lengths. In order to produce a solid line, choose length =
0 and darray = NULL. The dash parameter is set to a solid line at the beginning of each
page.

void PDF_setflat(PDF *p, float flatness)

Set the flatness to a value between 0 and 100 inclusive. The flatness parameter describes
the maximum distance (in device pixels) between the path and an approximation con-
structed from straight line segments. The flatness parameter is set to the default value
of 0 at the beginning of each page, which means that the device’s default flatness is
used.

void PDF_setlinejoin(PDF *p, int linejoin)

Set the linejoin parameter to a value between 0 and 2 inclusive. The linejoin parameter
specifies the shape at the corners of paths that are stroked, as shown in Table 4.3. The
linejoin parameter is set to the default value of 0 at the beginning of each page.

void PDF_setlinecap(PDF *p, int linecap)

Set the linecap parameter to a value between 0 and 2 inclusive. The linecap parameter
controls the shape at the ends of open paths with respect to stroking, as shown in Table
4.4. The linecap parameter is set to the default value of 0 at the beginning of each page.

void PDF_setmiterlimit(PDF *p, float miter)

Set the miter limit to a value greater than or equal to 1. The miterlimit parameter is set to
the default value of 10 at the beginning of each page.

Table 4.3. Values of the linejoin parameter

Value Meaning
0 miter joins
1 round joins
2 bevel joins
4.3 Graphics Functions 49

void PDF_setlinewidth(PDF *p, float width)

Set the current line width to width units in the user coordinate system. The linewidth
parameter is set to the default value of 1 at the beginning of each page.

void PDF_set_fillrule(PDF *p, const char* fillrule);

Set the current fill rule to winding or evenodd. The fill rule is used by PDF viewers to de-
termine the interior of shapes for the purpose of filling or clipping. Since both algo-
rithms yield the same result for simple shapes, most applications won’t need to change
the fill rule. The fill rule is reset to the default value of winding at the beginning of each
page.

4.3.2 Special Graphics State Functions
All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Section 4.2, »Text Functions«.

Note All special graphics state functions reset the text position and matrix.

void PDF_save(PDF *p)

Save the current graphics state. The graphics state contains parameters that control all
types of graphics objects. Saving the graphics state is not required by PDF; it is only nec-
essary if the application wishes to return to some graphics state later (e.g., a custom co-
ordinate system) without setting all relevant parameters explicitly again.

void PDF_restore(PDF *p)

Restore the most recently saved graphics state. The corresponding graphics state must
have been saved on the same page. Pairs of PDF_save() and PDF_restore() may be nested.

Note Although PDF doesn’t impose any limit on the nesting level of save/restore pairs, applications
are strongly advised to keep the nesting level below 12 in order to avoid printing problems
caused by restrictions in the PostScript output produced by PDF viewers.

void PDF_translate(PDF *p, float tx, float ty)

Translate the origin of the coordinate system to (tx, ty).

void PDF_scale(PDF *p, float sx, float sy)

Scale the coordinate system by sx and sy.

Note Due to limitations in the Acrobat viewers, PDFlib must output coordinates with absolute values
above 32.767 as integers. This may affect output accuracy in rare cases.

Table 4.4. Values of the linecap parameter

Value Meaning Example
0 butt end caps

1 round end caps

2 projecting square
end caps
50 Chapter 4: PDFlib API Reference

void PDF_rotate(PDF *p, float phi)

Rotate the user coordinate system by phi degrees.

4.3.3 Path Segment Functions
Note All path segment functions reset the text position and matrix.

void PDF_moveto(PDF *p, float x, float y)

Set the current point to (x, y). The current point is set to the default value of undefined
at the beginning of each page.

void PDF_lineto(PDF *p, float x, float y)

Draw a line from the current point to (x, y).

void PDF_curveto(PDF *p,
float x1, float y1, float x2, float y2, float x3, float y3)

Draw a Bézier curve from the current point to (x3, y3), using (x1, y1) and (x2, y2) as control
points.

void PDF_circle(PDF *p, float x, float y, float r)

Draw a circle with center (x, y) and radius r.

void PDF_arc(PDF *p, float x, float y, float r, float alpha1, float alpha2)

Draw a circular arc with center (x, y), radius r, extending from alpha1 to alpha2 degrees.

void PDF_rect(PDF *p, float x, float y, float width, float height)

Draw a rectangle with lower left corner (x, y) and the supplied width and height.

void PDF_closepath(PDF *p)

Close the current path, i.e. draw a line from the current point to the starting point of the
path.

4.3.4 Path Painting and Clipping Functions
Note All path painting and clipping functions reset the text position and matrix.

void PDF_stroke(PDF *p)

Stroke (draw) the current path with the current line width and the current stroke color.
This operation clears the path.

void PDF_closepath_stroke(PDF *p)

Close the current path and stroke it with the current line width and the current stroke
color. This operation clears the path.

void PDF_fill(PDF *p)

Fill the interior of the current path with the current fill color. The interior of the path is
determined by one of two algorithms (see PDF_setfillrule()). Open paths are implicitly
closed before being filled

void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color, respectively.
4.3 Graphics Functions 51

void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

void PDF_endpath(PDF *p)

End the current path.

void PDF_clip(PDF *p)

Use the current path as the clipping path. The clipping path is set to the default value of
the page size at the beginning of each page.

4.4 Color Functions
Note Don’t use color functions within a path description (see Section 3.3, »Graphics and Text Hand-

ling«).

void PDF_setgray_fill(PDF *p, float g)

Set the current fill color to a gray value with 0 <= g <= 1. The gray fill parameter is set to
the default value of 0 = black at the beginning of each page.

void PDF_setgray_stroke(PDF *p, float g)

Set the current stroke color to a gray value with 0 <= g <= 1. The gray stroke parameter is
set to the default value of 0 = black at the beginning of each page.

void PDF_setgray(PDF *p, float g)

Set the current fill and stroke color to a gray value with 0 <= g <= 1. The gray parameter is
set to the default value of 0 = black at the beginning of each page.

void PDF_setrgbcolor_fill(PDF *p, float red, float green, float blue)

Set the current fill color to the supplied RGB values. The rgbcolor fill parameter is set to
the default value of (0, 0, 0) = black at the beginning of each page.

void PDF_setrgbcolor_stroke(PDF *p, float red, float green, float blue)

Set the current stroke color to the supplied RGB values. The rgbcolor stroke parameter is
set to the default value of (0, 0, 0) = black at the beginning of each page.

void PDF_setrgbcolor(PDF *p, float red, float green, float blue)

Set the current fill and stroke color to the supplied RGB values. The rgbcolor parameter
is set to the default value of (0, 0, 0) = black at the beginning of each page.

4.5 Image Functions
Note Not all file formats may be supported by a particular PDFlib implementation.

The PDF_open_*() functions for images described below can be called within or outside
page descriptions. Opening images outside a PDF_begin_page() / PDF_end_page() con-
text actually offers slight output size advantages.
52 Chapter 4: PDFlib API Reference

int PDF_open_JPEG(PDF *p, const char *filename)
int PDF_open_TIFF(PDF *p, const char *filename)
int PDF_open_GIF(PDF *p, const char *filename)

Open and analyze a raster graphics file in one of the supported file formats. The re-
turned image handle, if not -1, may be used in subsequent image-related calls.

PDFlib will open the image file with the given name, process the contents, and close
it before returning from this call. Although images can be placed multiply within a doc-
ument (see PDF_place_image()), the actual image file is not kept open after this call.

int PDF_open_CCITT(PDF *p,
const char *filename, int width, int height, int BitReverse, int K, int BlackIs1)

Open a CCITT G3 or G4 compressed bitmap file. The returned image handle, if not -1,
may be used in subsequent image-related calls. However, since PDFlib is unable to ana-
lyze CCITT images, all relevant parameters have to be passed to PDF_open_CCITT() by the
client. The parameters have the following meaning (apart from filename, width, and
height, which are obvious):

BitReverse: If 1, do a bitwise reversal of all bytes in the compressed data.

K: CCITT compression parameter for encoding scheme selection. It has to be set as fol-
lows: -1 indicates G4 encoding, 0 indicates one-dimensional G3 encoding (G3-1D), 1 indi-
cates mixed one- and two-dimensional encoding (G3, 2-D) as supported by PDF (the lat-
ter is untested yet).

BlackIs1: If this parameter has the value 1, 1-bits are interpreted as black and 0-bits as
white. Most CCITT images don't use such a black-and-white reversal, i.e., most images
use BlackIs1 = 0.

int PDF_open_image(PDF *p,
const char *type, const char *source, const char *data, long length,
int width, int height, int components, int bpc, const char *params);

This versatile interface can be used to work with image data in several formats and from
several data sources. The returned image handle, if not -1, may be used in subsequent
image-related calls.

The type parameter denotes the kind of image data or compression. It can attain the
values jpeg, ccitt, or raw (see Section 3.5.1, »Image File Formats«); the source parameter de-
notes where the image data comes from, and can attain the values fileref, url, or memory
(see Section 3.5.4, »Memory Images and External Image References«). The relationship
among the source, data, and length parameters is explained in Table 4.5.

Table 4.5. Values of the source, data, and length parameters of PDF_open_image()

source data length
fileref string with a platform-independent image

file name (see [1])
unused, should be 0

url string with an image URL conforming to
RFC 1738

unused, should be 0

memory pointer to (or string containing) image
data; the image data is compressed
according to the type parameter

length of (compressed) image data in
memory. If type is raw, length must be
equal to width x height x components
4.5 Image Functions 53

The width and height parameters describe the dimensions of the image. The number of
color components must be 1, 3, or 4. The number of bits per component bpc must be 1, 2, 4,
or 8. width, height, components, and bpc must always be supplied.

params is only used if type has the value ccitt, and must be NULL or empty otherwise.
For CCITT images two parameters as described for PDF_open_CCITT() can be supplied in
the params string as follows:

/K -1 /BlackIs1 true

Supported values for /K are -1, 0, or 1, the default value is 0. Supported values for /BlackIs1
are true and false; the default value is false. The default values will be used if a NULL or
empty params string is supplied. BitReverse cannot be supplied in this string. Instead, a
special notion is used: if length is negative, the image data will be reversed.

The client is responsible for the memory pointed to by the data argument. The mem-
ory may be freed by the client immediately after this call.

int PDF_get_image_width(PDF *p, int image)

Return the width of an image in pixels.

int PDF_get_image_height(PDF *p, int image)

Return the height of an image in pixels.

void PDF_close_image(PDF *p, int image)

Close the image. This only affects PDFlib’s associated internal image structure. The actu-
al image file is not affected by this call since it has already been closed at the end of the
corresponding PDF_open_*() call. An image handle cannot be used any more after hav-
ing been closed with this function, since it cuts PDFlib’s internal association with the
image.

void PDF_place_image(PDF *p, int image, float x, float y, float scale)

Place the supplied image (which must have been retrieved with one of the PDF_open_*()
functions) on the current page. The lower left corner of the image is placed at (x, y) on
the current page, and the image is scaled by the supplied scaling factor. Non-uniform
scaling may be achieved with PDF_scale(), optionally bracketing the sequence with PDF_
save() and PDF_restore().

This function can be called an arbitrary number of times on arbitrary pages, as long
as the image handle has not been closed with PDF_close_image(). PDF_place_image()
must only be used on page descriptions, i.e. between PDF_begin_page() and PDF_end_
page().

Note This function resets the text position and matrix.

4.6 Hypertext Functions
In this section, the term »hypertext« is used to denote features which do not directly af-
fect the printed layout, such as bookmarks, note annotations, links, and page transi-
tions.
54 Chapter 4: PDFlib API Reference

4.6.1 Bookmarks

int PDF_add_bookmark(PDF *p, const char *text, int parent, int open)

Add a PDF bookmark with the supplied text that points to the current page. The text
may be encoded with PDFDocEncoding or Unicode. This function must not be called be-
fore starting the first page of the document with PDF_begin_page().

The function returns an identifier for the bookmark just generated. This identifier
may be used as the parent parameter in subsequent calls. In this case, a new bookmark
will be generated which is a subordinate of the given parent. In this way, arbitrarily
nested bookmarks can be generated. If parent = 0 a new top-level bookmark will be gen-
erated. If the open parameter has a value of 0, child bookmarks will not be visible. If open
= 1, all children will be folded out.

4.6.2 Document Information Fields

void PDF_set_info(PDF *p, const char *key, const char *value)

Fill document information field key with value. The value can be encoded with PDF-
DocEncoding or Unicode, while the key must be encoded with PDFDocEncoding. key may
be any of the four standard information field names, or up to one custom field name
(see Table 4.6). If a custom field name is used, it must consist of printable ASCII charac-
ters except any of the following: blank ’ ’, %, (,), <, >, [,], {, }, /, and #.

4.6.3 Page Transitions
PDF files may specify a page transition in order to achieve special effects which may be
useful for presentations or »slide shows«. In Acrobat, these effects cannot be set docu-
ment-specific or on a page-by-page basis, but only for the full screen mode of a particu-
lar Acrobat installation. PDFlib, however, allows setting the page transition mode and
duration for each page separately.

void PDF_set_transition(PDF *p, const char *type)

Set a transition effect for the current page. Set the page transition effect for the current
and any subsequent pages until another call to PDF_set_transition(). The transition type
strings given in Table 4.7 are supported. type may also be NULL to reset the transition ef-
fect. The default transition is replace, i.e., no special transition effect.

void PDF_set_duration(PDF *p, float t)

Set the page display duration in seconds for the current page. The default duration is
one second.

Table 4.6. Values for the document information field key

Key Explanation
Subject Subject of the document
Title Title of the document
Creator Creator of the document
Author Author of the document
(any custom name) User-defined field name. PDFlib supports one additional document information

field which may be arbitrarily named.
4.6 Hypertext Functions 55

4.6.4 File Attachments

void PDF_attach_file(PDF *p,
float llx, float lly, float urx, float ury, const char *filename,
const char *description, const char *author, const char *mimetype, const char *icon)

Add a file attachment annotation at the rectangle specified by its lower left and upper
right corners in default user space coordinates. description and author may be encoded
in PDFDocEncoding or Unicode. mimetype is the MIME type of the file and will be used
by Acrobat for launching the appropriate program when the file attachment annota-
tion is activated. The icon parameter controls the display of the unopened file attach-
ment in Acrobat, as shown in Table 4.8.

Note PDF file attachments are only supported in Acrobat 4. Moreover, Acrobat Reader is unable to
deal with file attachments and will display a question mark instead. File attachments only
work in the full Acrobat software.

4.6.5 Note Annotations

void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury,
const char *contents, const char *title, const char *icon, int open)

Add a note annotation at the rectangle specified by its lower left and upper right cor-
ners in default user space coordinates. contents and title may be encoded with PDF-
DocEncoding or Unicode. The icon parameter controls the display of the unopened note
attachment in Acrobat, as shown in Table 4.9. The annotation will be opened if open = 1,
and closed if open = 0.

Note Different note icons are only available in Acrobat 4. Acrobat 3 viewers (and apparently Unix
versions of Acrobat 4) will display the »note« type icon regardless of the supplied icon para-
meter.

Table 4.7. Values for the transition type

Key Explanation
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page (default)

Table 4.8. Values for the icon name for file attachments

Key attachment icon Key attachment icon

graph

pushpin

paperclip tag
56 Chapter 4: PDFlib API Reference

Note Line breaks in note annotations are not reliably displayed in all PDF viewers (most notably
Acrobat 4.0 for Windows NT).

4.6.6 Links

void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury,
const char *filename, int page, const char *dest)

Add a file link annotation to the PDF file filename at the rectangle specified by its lower
left and upper right corners in default user space coordinates. page is the physical page
number of the target page. dest specifies the destination zoom. It can attain one of the
values specified in Table 4.10.

void PDF_add_locallink(PDF *p,
float llx, float lly, float urx, float ury, int page, const char *dest)

Add a link annotation with a target page in the current file at the rectangle specified by
its lower left and upper right corners in default user space coordinates. page is the phys-
ical page number of the target page and may be a previously generated page, or a future
page which does not yet exist. However, the application must make sure that the target
page will actually be generated; PDFlib will issue a warning message otherwise. dest
specifies the destination zoom. It can attain one of the values specified in Table 4.10.

void PDF_add_launchlink(PDF *p,
float llx, float lly, float urx, float ury, const char *filename)

Add a launch annotation (arbitrary file type) at the rectangle specified by its lower left
and upper right corners in default user space coordinates. filename is the name of the
file which will be launched upon clicking the link.

Table 4.9. Values for the icon name for note annotations

Key note annotation icon Key note annotation icon

comment newparagraph

insert key

note help

paragraph

Table 4.10. Values for the dest parameter of PDF_add_pdflink() and PDF_add_locallink()

dest Explanation
retain Retain the zoom factor which was in effect when the link was activated.
fitpage Fit the complete page to the window.
fitwidth Fit the page width to the window.
fitheight Fit the page height to the window.
fitbbox Fit the page’s bounding box (the smallest rectangle enclosing all objects) to the window.
4.6 Hypertext Functions 57

void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url)

Add a weblink annotation at the rectangle specified by its lower left and upper right cor-
ners in default user space coordinates. url is a Uniform Resource Identifier encoded in 7-
bit ASCII specifying the link target. It can point to an arbitrary (Web or local) resource.

void PDF_set_border_style(PDF *p, const char *style, float width)

Set the border style for all kinds of annotations. These settings are used for all annota-
tions until a new style is set. At the beginning of a document the annotation border
style is set to a default of a solid line with a width of 1. Possible values of the style param-
eter are solid and dashed.

void PDF_set_border_color(PDF *p, float red, float green, float blue)

Set the border color for all kinds of annotations. At the beginning of a document the an-
notation border color is set to (0, 0, 0).

void PDF_set_border_dash(PDF *p, float d1, float d2)

Set the border dash style for all kinds of annotations (see PDF_setdash()). At the begin-
ning of a document the annotation border dash style is set to a default of (3, 3). However,
this default will only be used when the border style is explicitly set to dashed.

4.7 Convenience Stuff
<format>_width, <format>_height, where format is one of
a0, a1, a2, a3, a4, a5, a6, b5, letter, legal, ledger, p11x17;

These macro definitions provide page width and height values for the most common
page formats which may be used in calls to PDF_begin_page().

Note These values are only supplied for the C and C++ bindings. Other language clients may use the
values provided in Table 3.2.
58 Chapter 4: PDFlib API Reference

5 The PDFlib License
PDFlib is subject to the »Aladdin Free Public License«.1 The complete text of the license
agreement can be found in the file license.pdf. In short and non-legal terms:
> You may use and distribute PDFlib non-commercially.
> You may develop free software with PDFlib.
> You may develop software for your own use with PDFlib.
> You may not sell any software based on PDFlib without obtaining a commercial li-

cense.

Note that this is only a 10-second-description which is not legally binding. Only the text
in the license.pdf file is considered to completely describe the licensing conditions.

A commercial PDFlib license is required for all uses of the software which are not ex-
plicitly covered by the Aladdin Free Public License. Commercial licensees will benefit
from the following advantages:
> A license agreement detailing the terms of use
> Technical support
> Prioritized handling of change and feature requests

Please contact the author for details on obtaining a commercial PDFlib license:

Thomas Merz
Consulting & Publishing
Tal 40
80331 München, Germany
http://www.ifconnection.de/~tm
tm@muc.de
fax +49/89/29 16 46 86

1. The license text was devised by L. Peter Deutsch of Aladdin Enterprises (Menlo Park, CA). Thanks Peter for making available
the text!
4.7 Convenience Stuff 59

http://www.ifconnection.de/~tm
mailto:tm@muc.de

6 References
Although this manual is intended to be self-contained with respect to PDFlib program-
ming, it is highly recommended to obtain a copy of the PDF specification for a deeper
understanding and more detailed information:

[1] Adobe Systems Inc.: Portable Document Format Reference Manual, Version 1.3.
Available from http://partners.adobe.com/asn/developer/PDFS/TN/PDFSPEC.PDF

[2] Adobe Systems Inc.: PostScript Language Reference Manual, third edition.
Published by Addison-Wesley, ISBN 0-201-37922-8, also available from
http://partners.adobe.com/asn/developer/PDFS/TN/PLRM.pdf

[3] The following book by the author of PDFlib is available in English, German, and Japa-
nese editions. It describes all aspects of integrating Acrobat in the WWW:

English edition: Thomas Merz, Web Publishing with Acrobat/PDF.
With CD-ROM. Springer-Verlag Heidelberg Berlin New York 1998
ISBN 3-540-63762-1, orders@springer.de

German edition: Thomas Merz, Mit Acrobat ins World Wide Web.
Effiziente Erstellung von PDF-Dateien und ihre Einbindung ins Web.
Mit CD-ROM. ISBN 3-9804943-1-4, Thomas Merz Verlag 1998
80331 München, Tal 40, Fax +49/89/29 16 46 86
http://www.ifconnection.de/~tm

Japanese edition: Tokyo Denki Daigaku 1999, ISBN 4-501-53020-0
http://plaza4.mbn.or.jp/~unit
60 Chapter 6: References

http://partners.adobe.com/asn/developer/PDFS/TN/PDFSPEC.PDF
mailto:orders@springer.de
http://plaza4.mbn.or.jp/~unit
http://www.ifconnection.de/~tm
http://partners.adobe.com/asn/developer/PDFS/TN/PLRM.pdf

Index
0-9
16-bit encoding 39
8-bit encodings 33

A
Acrobat 4 compatibility 10
Adobe Font Metrics (AFM) 35
AdobeStandardEncoding 35
AFM (Adobe Font Metrics) 35
Aladdin free public license 59
annotations 39, 56
API (Application Programming Interface)

reference 44
attachments 39, 56
availability of PDFlib 12

B
baseline compression 40
Beazley, Dave 12
binary mode 45
bindings 11
BitReverse 53
BlackIs1 53
BOM (Byte Order Mark) 39
bookmarks 39, 55
builtin encoding 33
Byte Order Mark 39

C
C binding

error handling 16
general 15
memory management 16
version control 17

C++ binding
error handling 19
general 17
memory management 19
version control 19

categories of resources 38
CCITT 41, 53
character sets 33
clip 32
color 32
color functions 52
commercial license 59
compatibility

Acrobat 4 10

Acrobat Reader 9
configuration parameters 46
convenience stuff 58
coordinate system 31, 50
coordinate systems 31
core fonts 33
current point 32

D
debug parameter 46
default coordinate system 31
default encoding 33
descriptor 35
document information fields 39, 55

E
embedding fonts 35
encoding 33
error handling 42

API 45
error names 42
general 13
in C 16
in C++ 19
in Java 21
in Perl 23
in Python 25
in Tcl 28
in Visual Basic 30

Euro character 34
external image references 41

F
features of PDFlib 8
file attachments 39, 56
fill 32
fonts

descriptor 35
embedding 35
general 33
legal aspects of embedding 36
metrics files 35
outline files 35
PDF core set 33
pfm2afm 36
PostScript 35
resource configuration 36
TrueType 36
type 1 35
Index 61

6

type 1 utilities 35
Unicode support 39

FontSpecific encoding 35

G
general graphics state 49
GIF 40, 53
graphics functions 49
graphics state 49, 50

H
hello world example

general 13
in C 15
in C++ 18
in Java 20
in Perl 23
in Python 25
in Tcl 27
in Visual Basic 29

hypertext functions 54

I
icons

for file attachments 56
for notes 57

image data, re-using 41
image file formats 40
image functions 52
image references 41
ISO 8859-1 34

J
Java binding

error handling 21
general 19
memory management 21
version control 21

JPEG 40, 53

K
K parameter for CCITT images 53

L
language bindings: see bindings
Latin 1 encoding 34
leading 47
licensing conditions 59
links 57
longjump 43

M
macroman encoding 33

makepsres utility 37
memory images 41
memory management

API 45
general 14
in C 16
in C++ 19
in Java 21
in Perl 24
in Python 25
in Tcl 28
in Visual Basic 30

N
nodebug parameter 46
note annotations 39, 56

O
ordering constraints 32

P
page size definitions 32
page size formats 58
page size limitations in Acrobat 31
page transitions 55
parameters 46
path 32
path painting and clipping 51
path segment functions 51
PDF 1.3 9, 34
PDF_add_bookmark() 55
PDF_add_launchlink() 57
PDF_add_locallink() 57
PDF_add_note() 56
PDF_add_pdflink() 57
PDF_add_weblink() 58
PDF_arc() 51
PDF_attach_file() 56
PDF_begin_page() 46
PDF_boot() 44
PDF_circle() 51
PDF_clip() 52
PDF_close() 46
PDF_close_image() 54
PDF_closepath() 51
PDF_closepath_fill_stroke() 52
PDF_closepath_stroke() 51
PDF_continue_text() 47
PDF_curveto() 51
PDF_delete() 45
PDF_end_page() 46
PDF_endpath() 52
PDF_fill() 51
PDF_fill_stroke() 51
PDF_findfont() 46
PDF_get_font() 47
2 Index

PDF_get_fontname() 47
PDF_get_fontsize() 47
PDF_get_image_height() 54
PDF_get_image_width() 54
PDF_get_majorversion() 44
PDF_get_minorversion() 44
PDF_get_opaque() 45
PDF_lineto() 51
PDF_moveto() 51
PDF_new() 44
PDF_new2() 45
PDF_open_CCITT() 53
PDF_open_file() 45
PDF_open_fp() 45
PDF_open_GIF() 53
PDF_open_image() 42, 53
PDF_open_JPEG 53
PDF_open_TIFF() 53
PDF_place_image() 54
PDF_rect() 51
PDF_restore() 50
PDF_rotate() 51
PDF_save() 50
PDF_scale() 50
PDF_set_border_color() 58
PDF_set_border_dash() 58
PDF_set_border_style() 58
PDF_set_char_spacing() 48
PDF_set_duration() 55
PDF_set_fillrule() 50
PDF_set_horiz_scaling() 48
PDF_set_info() 55
PDF_set_leading() 47
PDF_set_parameter() 39
PDF_set_parameter() 46
PDF_set_text_matrix() 48
PDF_set_text_pos() 48
PDF_set_text_rendering() 48
PDF_set_text_rise() 47
PDF_set_transition() 55
PDF_set_word_spacing() 48
PDF_setdash() 49
PDF_setflat() 49
PDF_setfont() 47
PDF_setgray() 52
PDF_setgray_fill() 52
PDF_setgray_stroke() 52
PDF_setlinecap() 49
PDF_setlinejoin() 49
PDF_setlinewidth() 50
PDF_setmiterlimit() 49
PDF_setpolydash() 49
PDF_setrgbcolor() 52
PDF_setrgbcolor_fill() 52
PDF_setrgbcolor_stroke() 52
PDF_show() 47
PDF_show_xy() 47
PDF_shutdown() 44

PDF_stringwidth() 47
PDF_stroke() 51
PDF_translate() 50
pdfdoc encoding 33
PDFDocEncoding 34
PDFlib

features 8
features not implemented 10
program structure 31
thread-safety 9, 15

pdflib.upr 38
PDFLIBRESOURCE variable 38
Perl binding

error handling 23
general 22
memory management 24
version control 24

PFA (Printer Font ASCII) 35
PFB (Printer Font Binary) 35
pfm2afm 36
PHP3 7
platforms 12
Portable Document Format Reference Manual 60
PostScript fonts 35
PostScript Language Reference Manual 60
Printer Font ASCII (PFA) 35
Printer Font Binary (PFB) 35
program structure 31
Purify 9
Python binding

error handling 25
general 24
memory management 25
version control 26

R
raster images

functions 52
general 40

raw image data 41
raw images 53
references 60
resource category 38, 46
resource parameter 38
resourcefile parameter 46
restrictions of PDFlib 10
RGB color 32

S
scripting API 12
setjump 43
special graphics state 50
standard page sizes 32
stroke 32
structure of PDFlib programs 31
subscript 48
superscript 48
Index 63

6

SWIG (Simplified Wrapper and Interface Genera-
tor) 12

T
t1utils 35
Tcl binding

error handling 28
general 26
memory management 28
version control 28

text functions 46
text rendering modes 48
thread-safety 9, 15
TIFF 40, 53
TIFFlib 40
TrueType fonts 36
type 1 fonts 35
type 1 utilities 35
type library 28

U
Unicode 39
UPR (Unix PostScript Resource) 36

dynamic update 46
file format 37
file searching 38

URL 42, 58
user space 31

V
version control

general 14
in C 17
in C++ 19
in Java 21
in Perl 24
in Python 26
in Tcl 28
in Visual Basic 30

Visual Basic binding
error handling 30
general 28
memory management 30
type library 28
version control 30

W
weblink 58
winansi encoding 33
4 Index

	1 Introduction
	1.1 PDFlib Programming
	1.2 PDFlib Features
	1.3 Features not implemented in PDFlib

	2 PDFlib Language Bindings
	2.1 Overview of the PDFlib Language Bindings
	2.1.1 What’s all the Fuss about Language Bindings?
	2.1.2 Availability and Special Considerations
	2.1.3 The »Hello world« Example
	2.1.4 Error Handling
	2.1.5 Memory Management
	2.1.6 Version Control
	2.1.7 Summary of the Language Bindings

	2.2 C Binding
	2.2.1 How does the C Binding work?
	2.2.2 Availability and Special Considerations for C
	2.2.3 The »Hello world« Example in C
	2.2.4 Error Handling in C
	2.2.5 Memory Management in C
	2.2.6 Version Control in C

	2.3 C++ Binding
	2.3.1 How does the C++ Binding work?
	2.3.2 Availability and Special Considerations for C++
	2.3.3 The »Hello world« Example in C++
	2.3.4 Error Handling in C++
	2.3.5 Memory Management in C++
	2.3.6 Version Control in C++

	2.4 Java Binding
	2.4.1 How does the Java Binding work?
	2.4.2 Availability and Special Considerations for Java
	2.4.3 The »Hello world« Example in Java
	2.4.4 Error Handling in Java
	2.4.5 Memory Management in Java
	2.4.6 Version Control in Java

	2.5 Perl Binding
	2.5.1 How does the Perl Binding work?
	2.5.2 Availability and Special Considerations for Perl
	2.5.3 The »Hello world« Example in Perl
	2.5.4 Error Handling in Perl
	2.5.5 Memory Management in Perl
	2.5.6 Version Control in Perl

	2.6 Python Binding
	2.6.1 How does the Python Binding work?
	2.6.2 Availability and Special Considerations for Python
	2.6.3 The »Hello world« Example in Python
	2.6.4 Error Handling in Python
	2.6.5 Memory Management in Python
	2.6.6 Version Control in Python

	2.7 Tcl Binding
	2.7.1 How does the Tcl Binding work?
	2.7.2 Availability and Special Considerations for Tcl
	2.7.3 The »Hello world« Example in Tcl
	2.7.4 Error Handling in Tcl
	2.7.5 Memory Management in Tcl
	2.7.6 Version Control in Tcl

	2.8 Visual Basic Binding
	2.8.1 How does the Visual Basic Binding work?
	2.8.2 Availability and Special Considerations for Visual Basic
	2.8.3 The »Hello world« Example in Visual Basic
	2.8.4 Error Handling in Visual Basic
	2.8.5 Memory Management in Visual Basic
	2.8.6 Version Control in Visual Basic

	3 Programming Concepts
	3.1 General Programming Issues
	3.2 Coordinate Systems
	3.3 Graphics and Text Hand�ling
	3.4 Font Handling
	3.4.1 The PDF Core Fonts
	3.4.2 Character Sets and 8-Bit Encoding
	3.4.3 Font Outline and Metrics Files
	3.4.4 Resource Configuration and the UPR Resource File
	3.4.5 Unicode Support

	3.5 Image Handling
	3.5.1 Image File Formats
	3.5.2 Embedding Images in PDF
	3.5.3 Re-using Image Data
	3.5.4 Memory Images and External Image References

	3.6 Error Handling

	4 PDFlib API Reference
	4.1 General Functions
	4.2 Text Functions
	4.2.1 Font Handling Functions
	4.2.2 Text Output Functions

	4.3 Graphics Functions
	4.3.1 General Graphics State Functions
	4.3.2 Special Graphics State Functions
	4.3.3 Path Segment Functions
	4.3.4 Path Painting and Clipping Functions

	4.4 Color Functions
	4.5 Image Functions
	4.6 Hypertext Functions
	4.6.1 Bookmarks
	4.6.2 Document Information Fields
	4.6.3 Page Transitions
	4.6.4 File Attachments
	4.6.5 Note Annotations
	4.6.6 Links

	4.7 Convenience Stuff

	5 The PDFlib License
	6 References
	Index

