35

Appendix A:
The Implemented Language pOberon

This Appendix lists the differences between pOberon and the standard Oberon [1] and
may serve as an overview for programmers that already know Oberon.

A.1 Differences Between Oberon and pOberon

The main difference lies in the fact that pOberon does not support record extensions
and open array parameters. Moreover there is no garbage collector to release the memory
used by objects that are not referenced any more; use a free list instead. On the other side,
uOberon introduces two new notations for numbers and characters:

» A binary number may be written as follows: 01001101B, i.e. the trailing letter B
identifies a binary number.

» A character may now be written as follows: 32C, i.e. the trailing letter C identifies
decimal notation of the ASCII value of the character.

The reason for introducing these two new notations was the unsatisfying situation
when writing values for special function registers in assembler sections. The binary
notation of a byte allows more transparent programming, i.e. it is more transparent which
special function bit is set or not.

Finally, interrupt service procedures and code procedures have a different notation in
pOberon, and the trap procedure is a new feature. Refer to the next sections for details.

A.2 Interrupt Service Procedures

In conventional Oberon implementations, procedures that are evoked by an interrupt
need to be marked by a plus sign:

PROCEDURE +Timer1Overflow;
BEGIN ...
END Timer1Overflow;

This causes the registers to be stored upon entry and to be restored upon exit, and leads
to an exit from the procedure with a return from interrupt instead of a return from
subroutine instruction. After that, they must be dynamically installed by the kernel, i.e.
the procedure’s address is assigned to the computer’s interrupt vector:

Kemnel.Install(Timer1 Overflow, 7)

where 7 in this example indicates the vector number.
In pOberon, interrupt service procedures are bound statically to interrupts during the
link process. This is done by

PROCEDURE (InterruptAddr) Mylnterrupt;
BEGIN ...
END Mylnterrupt;

36

Modeled on the notation of type bound procedures in Oberon-2, the constant
expression in parentheses after the PROCEDURE keyword binds the procedure to the
specific interrupt with that address. Note that only one procedure may be defined for a
particular interrupt. Otherwise the linker or even the compiler prompts with the
corresponding error message. The interrupt address must be an integer number greater
than zero, because address OH is the location where the microcontroller starts execution
after reset. Note also that interrupt service procedures must not have any parameters.

In case of an interrupt for which no service procedure is defined, the system ends up in
an unpredictable behaviour, because the controller branches to any instruction or even to
an operand that will be interpreted as an instruction.

A.3 Trap Procedure

Similar to interrupt service procedures, a trap procedure may be defined that is evoked
in case of a runtime trap. The trap procedure is written as an interrupt service procedure
with address OH:

PROCEDURE (0) MyTrap(n: SHORTINT);
BEGIN ...
END MyTrap;

Unlike interrupt service procedures, the trap procedure must have a single
SHORTINT parameter that will contain the number of the runtime trap. There is a list of
all possible runtime traps at the end of this chapter.

The trap procedure is called from different locations, e.g. in CASE statements without
ELSE branch or on NIL references. But there is not always an explicitly defined trap
procedure, so if trap calls are inserted and no trap procedure is defined, an empty
procedure, a single return statement is inserted automatically. The linker prompts that
with a warning, because correct program behaviour may not be guaranteed in that case.

A.4 The Inline Assembler

There are several notations for code procedures. The assembler of the Oberon system
on the Ceres workstation requires an interface module that only consists of procedure
headings to be compiled, and the separate assembler generates the code belonging to it.
Oberon System 3 allows code procedures:

PROCEDURE -Test
2EH, 04H;

Oberon/F expects [code] instead of the minus sign. In Oberon 4 the assembler is evoked as
follows:

(*$ Dinline.Assemble ... *)

The programmer has to code the mnemonics by himself. As long as the inline code
procedures aren’t too extensive this is a simple way without excessive extension of the
language.

Because pOberon is more hardware oriented than conventional Oberon Systems are,
there has to be an easier way, i.e. a built-in assembler. Like Turbo Pascal and several

37

Modula implementations, nOberon provides the ASM instruction. The syntax of
assembler sections in pOberon can be found in section EBNF of uOberon.

The inline assembler gets evoked at two different positions. Firstly, there is the notation
of an assembler section, enclosed by keywords ASM and END, that may occur wherever
an ordinary statement may be. The written code will dircctly be inlined at the current
position. Secondly, code procedures and module bodies may be written if there is an ASM
keyword instead of BEGIN:

PROCEDURE MyCode;
ASM

INC DPTR

MOVC A, @A+DPTR
END MyCode;

The following points must be taken into account when writing assembler sections:

» The inline assembler may only be evoked if the module SYSTEM is imported because
inlined code inherently is system dependent and not portable therefore.

» The semicolon as separation symbol between assembler instructions is optional.

» Comments are written as usual between (* and *).

» The procedure prologue and epilogue are generated automatically. Global as well as
local variables and parameters may be accessed as usual, with the restriction that the
index of an array must be a constant value. It is even possible to access constants and
record fields.

» To reduce the danger of opaque code, labels are only visible within the assembler
section they are defined in.

» The inline assembler will insert all 16 bit addresses that stem from labels into the fixup
list, so the linker may fix them up correctly. If an absolute 16 bit address is written, e.g.
LJMP 8000H, it will not be affected by the linker, so it is possible to call any monitor
procedures.

» Labels are not part of the symbol table but are stored in an internal list of the inline
assembler. So, it is possible that a label has the same name as a constant for instance, and
the mode of the operand determines whether the label or the constant is taken. But it is
recommended to avoid such ambiguous situations.

» ACALL and AJMP instructions are used to reduce the code size, i.e. only the lower
eleven bits of the new address may be specified, while the upper five bits originate from
the current program counter. So it is only possible to branch within the current 2 kB
segment. Since absolute addresses are only known after linking, the compiler may not
check if the target address lies within the same segment. In such a situation, the
assembler prompts with a warning. Moreover the target addresses of these instructions
are not fixed up by the linker. So it is not advisable to make use of them.

It is also possible to write interrupt service procedures or the trap procedure in
assembler language if the interrupt address or O respectively is between the
PROCEDURE keyword and the name of the procedure.

A.5 EBNF of uOberon

The Extended Backus-Naur Formalism (EBNF) is a notation to describe the syntax of a
language. Brackets [and] denote optionality of the enclosed terms. Braces { and } denote
its repetition, possibly zero times. Parentheses (and) group terms. A choice finally is

38

indicated by a vertical bar |. Terms written in italics differ from the standard Oberon

EBNF.

BinaryDigit
Digit
HexDigit
ScaleFactor
Integer

Real
Number
Ident
Character
String

IdentDef

Qualident
ConstantDeclaration
ConstExpression
TypeDeclaration

Type

ArrayType

Length

RecordType
FieldListSequence
FieldList

IdentList
PointerType
ProcedureType
VariableDeclaration

Designator
ExpressionList
Expression
Relation
SimpleExpression
AddOperator
Term
MulOperator
Factor

Set
Element
ActualParameters

Statement

Assignment

IIOH I ﬂ1ll.

BinaryDigit I I|2I‘I I "3“ I “4“ I "5“ l “6“ I I!7'l l II8II I II9'I.
Digit l '"All | llBll I ucﬂ l ﬂDN l IEI I lIFI..
("E" | "D") [*+" | "] Digit {Digit}.
BinaryDigit {BinaryDigit} "B" | Digit {Digit}
| Digit {HexDigit} "H".

Digit {Digit} "." {Digit} [ScaleFactor].
Integer | Real.

letter (letter | Digit}.

Digit {Digit} "C" | Digit {HexDigit} "X".
" {char} "™ | """ {char} ™" |Character.

Ident ["*"].

[Ident "."] Ident.

IdentDef "=" ConstExpression.
Expression.

IdentDef "=" Type.

Qualident | ArrayType | RecordType | PointerType
| ProcedureType.

ARRAY Length {"," Length} OF Type.
ConstExpression.

RECORD FieldListSequence END.
FieldList {";" FieldList}.

[IdentList ":" Type].

IdentDef {"," IdentDef}.

POINTER TO Type.

PROCEDURE [FormalParameters].
IdentList ":" Type.

Qualident {"." Ident | "[" ExpressionList "]" ["*" }.
Expression {"," Expression}.
SimpleExpression [Relation SimpleExpression].

n_n I u#” I ||<|l I ll<=ﬂ] ﬂ)ll I '>-" I IN.
["+*|""] Term {AddOperator Term}.
Il+l! I ll-.ll I OR.

Factor {MulOperator Factor}.

mpt/ | DIV | MOD | &

Number | Character | String | NIL | Set | Designator
[ActualParameters] | "(" Expression)" | *™" Factor.
"(" [Element {"," Element}] "}".

Expression [".." Expression].

"(" [ExpressionList] ")".

[Assignment | ProcedureCall | IfStatement | CaseStatement
| WhileStatement | RepeatStatement | ForStatement

| LoopStatement | EXIT | RETURN [Expression]

| ASM AsmSection END].

Designator ™:=" Expression.

ProcedureCall
StatementSequence
IfStatement

CaseStatement

Case
CaselabelList
CaselLabel
WhileStatement
RepeatStatement
ForStatement

LoopStatement

AsmSection
AsmCmd
Label
Instruction
Operand

Ri

Rn
Direct
Data
Bit
Addr
Rel

ProcedureDeclaration
ProcedureHeading

InterruptAddr
ProcedureBody

ForwardDeclaration
DeclarationSequence

FormalParameters
FPSection
FormalType
ImportList

Import

Module

I | I |

Designator {ActualParameters].

Statement {";" Statement}.

IF Expression THEN StatementSequence

{ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence] END.

CASE Expression OF Case {"|" Case}

[ELSE StatementSequence] END.

[CaseLabelList ";" StatementSequence].
Caselabel {"," CaseLabel}.

ConstExpression [".." ConstExpression].

WHILE Expression DO StatementSequence END.
REPEAT StatementSequence UNTIL Expression.
FOR Ident ":=" Expression TO Expression

[BY ConstExpression] DO StatementSequence END.
LOOP StatementSequence END.

[AsmCmd {[*;"] AsmCmd}].

[[Label ":"] Instruction [Operand {"," Operand}]].
Ident.

Ident.

Rn | "@" Ri | Direct | "#" Data | Bit | "/" Bit

] A| AB | DPTR | C | "@" DPTR |"@" A "+" DPTR
|"@" A"+ PC | Addr | Rel.

RO | R1.

Ri| R2| R3| R4 | R5] R6 | R7.

(Integer | Designator) ["+" | ™" Integer].

(Integer | Qualident) ["+" | " Integer].

(Integer | Qualident) ["+" | "* Integer].

Label | Integer.

Label | [™"] Integer.

ProcedureHeading *;" ProcedureBody Ident.
PROCEDURE ["(" InterruptAddr ")"] IdentDef
[FormalParameters].

ConstExpression.

DeclarationSequence

[BEGIN StatementSequence | ASM AsmSection] END.
PROCEDURE " IdentDef [FormalParameters).

= {CONST {ConstantDeclaration ;"

o nou won

| TYPE {TypeDeclaration ";"}

| VAR {VariableDeclaration ";"}}
{ProcedureDeclaration ;" | ForwardDeclaration ";"}.
"(* [FPSection {";" FPSection}] ")" [*:" Qualident].
[VAR] Ident {"," Ident} ™" FormalType.

Qualident | ProcedureType.

IMPORT Import {"," Import} *;".

[Ident ":="] Ident.

MODULE Ident ;" [ImportList] DeclarationSequence
[BEGIN StatementSequence | ASM AsmSection]
END Ident ".".

39

40

A.6 Predefined Procedures

v stands for a variable, x and n for expressions, and T for a type.

Basic Types
Type

BOOLEAN
CHAR

SET
SHORTINT
INTEGER
LONGINT
REAL
LONGREAL
POINTER

Size [bytes]

(48 T <~ SN A el

Function Procedures

Name

ABS(x)
ODD(x)
CAP(x)
ASH(x)
LEN(v,n)

LEN(v)
MAX(T)

MIT(T)

SIZE(T)

Type Conversion

Name
ORD(x)
CHR(x),
SHORT(x)

LONG(x)

ENTIER (x)

Argument type

numeric type
integer type
CHAR

X, I: integer type
v: array

n: integer type
array type

T = basic type
T =SET

T = basic type
T=8ET

T = any type

Procedures
Argument type

CHAR
integer type

LONGINT
INTEGER
LONGREAL
SHORTINT
INTEGER
REAL

real type

MIN(T)

-128
-32768
-2147483648 2147483647

MAX(T)

0 255
0 7
127

32767

0 65535

Result type

type of X
BOOLEAN
CHAR
LONGINT
LONGINT

LONGINT
T
INTEGER
T
INTEGER

integer type

Result type

INTEGER
CHAR

INTEGER
SHORTINT
REAL
INTEGER
LONGINT
LONGREAL
LONGINT

Function

absolute value
xMOD2=1
corresponding capital letter
x * 2" arithmetic shift

the length of vin
dimension n

LEN(v,0)

max. value of type T

max. element of sets

min. value of type T

0

number of bytes required by T

Function

ordinal number of x
character with ordinal
number x

identity; truncation possible

identity

largest integer not greater

than x

41

Proper Procedures

Name Argument type Function
INC(v) integer type vi=v+l
INC(v,x) integer type Vi=vV+HX
DEC(v) integer type vi=v-1
DEC(v,x) integer type ViIEveX
INCL(v,x) v: SET vi=v+{x]
X: integer type
EXCL(v,x) v: SET v:=v-{x}
X: Integer type
COPY(x,v) x: character array, vVi=X
string
v: character array
NEW(v) pointer type allocate v
HALT(x) integer constant terminate program execution
A.7 The Module SYSTEM

v stands for a variable, x, a and n for expressions, and T for a type. SYSTEM exports the
type BYTE which is compatible with CHAR and SHORTINT.

Function Procedures

Name Argument types Result type Function
ADR(v) any INTEGER address of variable v
BIT(a,n) a: LONGINT BOOLEAN bit n of Mem[a]

n: integer type
PSW(n) integer constant BOOLEAN Program Status Bitn
LSH(x,n) x: integer type or SET type of x logical shift

n:-1,1
ROT(x,n) x: integer type or SET type of x rotation

n:-1,1

VAL(T x) T, x: any type T x interpreted as of type T

42

Proper Procedures
Name Argument types
GET(a,v) a: LONGINT
v: any basic type
PUT(a,x) a: LONGINT

v: any basic type
IGET(a,v) a: LONGINT
v: any basic type
IPUT(a,x) a: LONGINT
v: any basic type
CGET(a,v) a: LONGINT
v: any basic type
MOVE(,d,n) s, d: LONGINT
n: integer type
NEW(v,n) v: any pointer type
n: integer type

A.8 Trap Numbers

Command terminated
External memory overflow
Division by zero

Stack overflow
Invalid index

Illegal address (NIL reference)

VoUW —

Programmed HALT

v

A.9 ASCI| Character Set

Invalid case in CASE statement

Function

v := ExternalMem][a]
ExternalMem|a] := x

v := InternalMem(a]
InternalMem{[a] := x

v := CodeMem|a]
Mem([d]..Mem[d+n-1] :=
Mem(s]..Mem[s+n-1)

allocate storage block of n bytes,
assign its address to v

Function procedure without RETURN statement

0 1 2

1O

NUL DLE
SOH DC1 |
STX DC2 "
ETX DC3

EOT DC4

ACK SYN
BEL ETB

BS CAN
HT EM
LF SUB
VT ESC +

#
$
ENQ NAK %
&
(
1

O RNOWL BIWN ~ OW

FF FS .
CR GS -
SO RS "
Sl UsS /

TmOOmPVURINATLILE(IWN O

NV Il A=

PPN X[ESC o O D,
et =l N X [£E € £ +|0n =0TV

OZZr|AR-—ITOmONm> O

05 3 —|&x— = T -~ Q|0 Tm

DEL

43

Appendix B:
Mcs51 Hardware Overview

This Appendix contains a detailed presentation of the target system. It may be used as a
reference when accessing the controller’s resources.

B.1 Mcs51 Microcontroller Family

Intel introduced the Mcs51 microcontroller family in 1981 as a successor of the Mcs48,
which included the first microcontroller of Intel; the 8048 of 1976. The Mcs51 family is
twice to five times faster than the microcontrollers of the Mcs48 family and they
supplementary provide Boolean calculations. The Mcs51 microcontrollers have become
the industry standard for embedded control. The main characteristics are

8 bit CPU optimized for steering and control applications
Powerful Boolean operations

Large instruction set

Internal oscillator, 12 MHz

32 bi-directional and individual addressable 1/O pins
Programmable full duplex serial port (UART)

5 interrupt sources with 2 priority levels

Max. 64 kB program store (ROM)

Max. 64 kB external data store (RAM)

128 byte internal RAM

Two 16 bit timer/counter

CMOS-version: Power-down and idle-mode
Compatible to the 8085/88 periphery

Yy VY vV Y YyYVYYYYYYY

According to [18], some of the major manufacturers that produce Mcs51 derivatives are
ADM, Atmel, Dallas, Intel, OKI, Philips and Siemens. This wide range makes the Mcs51
the world’s most popular microcontroller core. There were 126 million 8051s and variants
shipped in 1993. There exist various variants including microcontrollers with integrated
ROM or EPROM, 256 instead of 128 byte internal RAM, three 16 bit timers, 6
interrupt sources, analog-to-digital converter, pulse-width modulation, I’C interface,
watchdog timer, automatic multiprocessor communication and so on. The 80537 even
provides 16 by 16 bit multiplication or division instructions, but they are not supported by
pOberon. There are user programmable and erasable EPROM versions, but beside of
being quite expensive, the developer needs a special programming device in order to burn
his programs into the internal EPROM. Types with internal ROM may be used like
variants without ROM when connecting the external access (EA) pin to ground. The
internal ROM will be disabled then.

44

The main differences between the most popular, ROM-less versions 8031 and 8032 are
listed below.

8031 8032 80C535
internal RAM 128 bytes 256 bytes 256 bytes
timer/counter 2 3 4
interrupt sources 5 6 12

equal to 8051, equal to 8052, 8 channel

but has no but has no 8 bit ADC

internal ROM internal ROM

The following sections cover the two basic members of the Mcs51 microcontroller
family, the 8031 and 8032. All other types are based on them, so code written for an 8031
will also work on an 80C535. The 80C535 is only one example of a sophisticated
derivative in the Mcs51 family.

B.2 Architecture
xternal R
extern 1
€ 128 special
1nterrupts l byte tunction
| rRaM registers
" {8032 only)
interrupt e 128 / \ cosmierd cou
control K byze o
logic RAM counter 1 &‘

ZN

cpu <

bus __[\ :
. control 4 IO ports serial

oscillator . port
unit e /
h |
XTAL1 XTAL2 PSEN ALE | PO P2 | P11 P3
address f data

Figure 15 The architecture of Mcs51 microcontrollers.

45

Pin Configuration

T2 Port 10 1 V+
(80320nly) 19y pore 1.1 2 9 Port 0.0
Port 1.2 3 38 = Port 0.1
Port 1.3 4 37 > Portd).2 iddiesi
Port 1.4 5 36 > Porr 0.3 low byte /
Port 1.5 o6 35 &> Port U4 dati
Port 1.6 7 34 &> Pont 0.5
Port 1.7 8 33 &> Port 0.6
Reset 9 32 > Port 0.7
RXD Port3.0<- 10 31 k— EA
TXI1> Port3.1 11 30 —> ALE
INTO Port 3.2 12 29 —> PSEN
[NT1 Port 3.3 13 28 = Port2.77]
TO Port 3.4 14 27 > Port 2.6
T1 Port 3.5 i5 26 > Port2.5 addinii
WK Port3.6€3 16 25 > Port24 | b
Bl) Port 3.7 17 24 > Port 2.3
XTALZ 18 23 —> Port2.2
XTAL1 19 22 —> Porc 2.1
GND 20 21 = Port 2.0

Figure 16 Pin configuration of Mcs51 microcontrollers.

RXD and TXD are used for the serial interface, INTO and INT1 are the pins that may
be used to cause an interruption of the main program, TO, T1 and T2 are used to count
external events or to measure pulse width.

RD and WR provide the read and write signal for an external RAM and are connected
to output enable (OE) and write enable (WE) respectively. As mentioned above, the
Mcs51 separates code and data memory. Usually the code memory is an EPROM, and a
static RAM is used for the data memory. In this configuration the PSEN pin enables the
EPROM, and port pins 3.6 and 3.7, WR and RD, are used for RAM accesses. If no
external RAM is present, these port pins may be used for other I/O functions.

XTAL1 and XTAL2 are connected to the external quartz crystal. ALE is the address
latch enable signal. Since the address low byte and the data are multiplexed in order to
reduce the pin count which is an essential criteria of production costs, the address low byte
has to be stored in the latch like a 74’373 or ‘573 during the access.

Port 0 {2

Micro-
controller

ALE

PSEN
Port 2 i

Figure 17 Basic external hardware in Mcs51 systems.

46

PSEN is the program store enable signal that enables the program store while reading an
instruction. Because of this pin Mcs51 microcontrollers differ from the von Neumann, or
Princeton architecture since the code and the data memory space are separated. It is to
mention that the main advantage of Harvard architectures concerning pipelining, i.e.
simultaneous operand and next instruction fetch, can certainly not be used; this would
require separate address and data busses. This is not the idea of a simple 8 bit
microcontroller.

In order to map the external code and data address space together, e.g. to enable a
monitor program to download code from a host system, the external hardware showed in
figure 18 is necessary.

Micro- ROM
controller
PSEN OE
RAM
KD }—————){ OF
WR] WE

Figure 18 External hardware to unite the external memory space.

Since the PSEN and RD signals both are negative logic, the output of the RAM will be
active if one of PSEN and RD is active.

When there is no external RAM and no need for serial communication neither for
external interrupts nor for counter events, the pins of ports 1 and 3 may be used either as
input or as output without the need of a data direction register. An input pin must be
written to logic high prior to the readout because otherwise a short circuit could result
when the internal flip flop is in low state and the external source tries to pull up the voltage
level.

Moreover the port structure is to be considered. Some instructions read the content of
the flip flop, others read the port pin state. If a port pin shall act as an input, a logical 1 has
to be in the port latch. Instructions that read the flip flop and not directly the pin are
instructions that may read-modify-write the pin’s state. These are ANL, ORL, XRL,
JBC, CPL, INC, DEC, DJNZ, MOV Px.y,C, CLR Px.y, SETB Px.y, as long as they deal
with port addresses. It is not obvious that the last three instructions do this as well. Ifa port
bit has to be set or reset, the CPU will not do this separately. The CPU reads the whole
eight bits, modifies only the addressed one and writes back the result as a byte. This is
done to eliminate misinterpretations of the voltage level, e.g. if a port bit drives a
transistor. In this case the base voltage could sink so that the CPU may read a logical 0
instead of a logical 1.

The following instructions release the port pin latch: MOV A,Px; MOV Rn,Px; MOV
Px,direct; PUSH Px; XCH A,Px; ADD A,Px; ADDC A,Px; SUBB A,Px; CJNE
A,Pxrel;]B Px.y,rel; JNB Px.y,rel.

B.3 Code Memory

After a reset, all port bits are set so they may work as inputs, the stack pointer is
initialized to 07H, and all special function registers are initialized by the values shown in
the table in the next section. The internal RAM as well as the serial buffer (SBUF) special
function register will remain unchanged. The program counter PC points to the memory
location 0000H and the CPU reads and executes the first instruction. Usually this 1s a

47

jump instruction to the main program because the following addresses in the code
memory are used for special purposes. If interrupts are not used, the main program may
start at address OO00H.

002BH Timer 2 overflow / External interrupt 2 TF2+EXF2 8032 only
0023H Serial port interrupt (receive/transmit) RI+TI

001BH Overflow counter/amer 1 TF1
0013H External interrupt 1 (INT1) 1E1
000BH Overflow counter/timer 0 TFO
0003H External interrupt O (INTO) 1EO

0000H Reset

Since most interrupt routines are longer than eight bytes, the code memory locations
used by interrupts usually contain a call or, more conveniently, a jump instruction to the
corresponding routine, though a jump is better since the limited stack is saved this way.
An interrupt routine must be finished by a RETI instruction; this enables further
interrupts by clearing the interrupt busy flag. Note that Mcs51 microcontrollers do not
save any registers automatically, so the programmer has to save the used registers, like the
program status word.

More sophisticated members of the Mcs51 family provide more interrupt sources, so
more code addresses are reserved. The 80C535 for instance uses code memory addresses
up to 006BH for interrupts.

B.4 Data Memory

The address organization of the RAM is more complex because there is a distinction
between the internal and an optional external RAM.

BRI T T T T T T T T
|
I
E 128 bytes (free) 128 bytes
: only 8032 special function registers
I
: see below
80H !
7FH
80 bytes (free)
30H
2FH [~ 16 bytes | 128 flags (free)
18} 8 bytes RO..R7, register bank 3
10H] 8 bytes RO..R7, register bank 2
08H | 8 bytes RO..R7, register bank 1
00H | 8 bytes RO..R7, register bank 0

Figure 19 Organization of the internal memory.

The 128 bytes from 00H to 7FH may be addressed directly or indirectly using the
pointer register RO or R1. Addresses 00H to 1FH contain four versions of the register
bank. The current register bank is selected by bits 3 and 4 of the program status word.
This provides a fast context switch; the registers used in an interrupt service routine don’t
have to be pushed onto the stack. Using only one register bank, the unused register bank
areas may be used for other purposes. Addresses 20H to 2FH contain 16 bytes that are bit

48

addressable each. These bits are numbered from 0 to 127. For example, bit number 0 is
the least significant bit of the byte at address 20H.

On the 8032, the upper half of the internal RAM is divided into two parallel parts.
While the left side, the extra 128 bytes RAM which is only available on a 8032, only may
be accessed using indirect addressing, the special function registers at the right side are
solely directly addressable.

B.5 Special Function Registers

This section gives a general idea of some special function registers. It is not intended to
be used as a complete reference but rather as an introduction to the use of registers in
order to operate with on-chip hardware like timers, interfaces and so on.

In order to access this hardware, one has to write to or read from the so-called special
function registers. So there is no need for special instructions reflecting this hardware, and
later extended versions of microcontrollers providing even more on-chip hardware are still
object code compatible with the 8031; the extra hardware is made accessible by adding
further special function registers.

bit addressable Initial value Types
after reset
OFOH B register B v 0000’0000B
0EOH Accumulator ACC v 0000’0000B
ODOH Program status word PSW v 0000’0000B
OCDH Timer 2 high byte TH2 0000’0000B 8032 only
OCCH Timer 2 low byte TL2 0000’0000B 8032 only
OCBH Capture reg high byte RCAP2H 0000’0000B 8032 only
OCAH Capture reglow byte RCAP2L 0000’°0000B 8032 only
OC8H Timer 2 control T2CON v 0000°0000B 8032 only
OB8H Interrupt priorities IP v xxx0’0000B 8031
xx00’0000B 8032
OBOH Port 3 P3 v 1111’1111B
0A8H Interrupt enables IE v 0xx0’0000B 8031
0x00’0000B 8032
0OAOH Port 2 P2 v 1111’1111B
099H Serial buffer SBUF xxxx"xxxxB
098H Serial control SCON v 0000’0000B
090H Port 1 P1 v 1111°1111B
08DH Timer 1 high byte TH1 0000’0000B
08CH Timer 0 high byte THO 0000’0000B
08BH Timer 1 low byte TL1 0000’0000B
08AH Timer O low byte TLO 0000’0000B
089H Timer modes TMOD 0000’0000B
088H Timer control TCON v 0000’0000B
087H Processor control PCON Oxxx'xxxxB NMOS
Oxxx’0000B CMOS
083H Data pointer high byte DPH 0000°0000B
082H Data pointer low byte DPL 0000’0000B
081H Stack pointer SP 0000°0111B
080H Port 0 PO ¥ 1111’1111B

49

The table shows that special function registers are bit addressable if the three least
significant bits of their addresses are cleared. The bit number is calculated as the sum of the
register address plus the bit number. So, bit number 087H is the most significant bit of
port 0.

Program Status Word PSW

7 6 5 4 3 2 1 0
Carry | OV from| User RegBank| RegBank| OV from | free Parity
ODOH bitd |fag select 1 [select0 |bic6 evenjodd
CY AC FO RS RS0 ov P
Reset: 0 0 0 0 0 0 0 ¢

Bitnumber: OD7H 0D6H ODSH 0D4H OD3H 0D2H ODIH ODOH

The carry bit CY is the accumulator for Boolean operations. The Carry may also be
regarded as an overflow from bit 7 when dealing with unsigned numbers. - The carry is
cleared after a division by zero.

Overflow from bit 4, the auxiliary carry (AC), may be used for BCD additions. The
user flag FO is for free general use. RS1 and RSO select the current register bank, i.e.
whether the registers RO to R7 should be located at 00H to 07H, 08H to OFH, 10H to
17H or at 18H to 1FH. This allows a fast context switch. - pOberon always uses bank 0
and does not switch the register bank. OV indicates an overflow from bit 6 when
calculating with signed numbers. OV will also be set if the result of a multiplication is
longer than one byte, or after a division by zero. Bit 1 is free for general use, and the parity
bit P indicates whether there is an even (P reset) or an odd (P set) number of set bits in the
accumulator, and is set/reset after each instruction.

The following instructions may influence the content of the program status word
(x: may be influenced; 1: will be set; O: will be reset):

CY OV AC
X
X
X

ADD
ADDC
SUBB
MUL

DIV

DA

RRC

RLC

SETB C
CLR C
CPLC
ANL C,bit
ANL C,/bit
ORL C,bit
ORL C,/bit
MOV C,bit
CJNE

-

HHHHHHE KR O=H AR OOH KA

plus each instruction writing to address ODOH. Also instructions that change the value of
the accumulator may change the parity bit in the program status word. Note that INC and
DEC instructions do not affect the CY, OV and AC bits, so it may be necessary to use
ADD #1 or CLR C SUBB #1 instead. Note that it is important to clear the carry prior to
the subtraction; refer to the instruction set summary.

50

In common microprocessors there is a zero bit in the program status word or a
condition code register that indicates whether the accumulator is equal to zero or not.
Mcs51-microcontrollers allow this testing by using JZ and JNZ instructions.

Stack Pointer SP

The call of a subroutine causes the return address to be pushed onto the stack, so the
processor knows where to go back after having processed the subroutine. First the stack
pointer is incremented by one, and the least significant byte of the return address, the
address of the next instruction byte in the code memory, is written into the memory cell
where SP points to. After that, SP is incremented once again and the most significant byte
is written to the new location.

So SP always points to the last used memory location and will be preincremented. Vice
versa SP is postdecremented after POP. The initial value of SP is 07H, so the first byte
pushed on the stack will be situated immediately after register bank 0, at RO of register
bank 1. On a 8031, the stack pointer goes back to O0H after exceeding 7FH. On a 8032
on the other hand, the stack grows further towards OFFH, and then goes back to 00H.
Note that in this case, the upper 128 bytes are not the special functions registers, but a
space of internal memory that is only accessible indirectly.

Processor Control PCON

7 6 5 4 3 2 1 0
Ser. port General | General | Power |ldle
087H mode Flag 1 Flag0 {down mode
SMOD GF1 GFO PD IDL
Reset : 0 X X x 0 0 0 0
AN v _/
Not bit addressable (CMOS only)

CMOS versions of the microcontrollers consume less current than NMOS versions.
Moreover they provide two modes called idle and power-down. Note that the lower four bits
of PCON are not available on NMOS types.

In idle mode, the CPU clock is switched off, instruction execution is stopped, the port
pins hold their actual values, only the RAM and the other peripheral functions like timers
and the serial port are still working. The other registers hold their current values. Power
consumption is reduced to 20%. Only an interrupt or a hardware reset may wake up the
microcontroller by clearing the IDL bit. In the case of an interrupt, the IDL bit will be
automatically reset prior to the entry of the interrupt routine. If the microcontroller was
waked up by a reset, it may happen that two or three instructions following the instruction
that evoked the idle mode are executed. The internal RAM access is prohibited in this
time, but port pin changes are possible. So it is wise to write three NOP instructions
thereafter. - ALE and PSEN pins are both high in idle mode.

The power-down mode turns off all chip activities by stopping the oscillator. Only the
content of the internal RAM is conserved, and the port pins hold their current level. In
this mode the power consumption is less than 10 pA. Only a reset restarts the
microcontroller. During power-down mode, the voltage supply may be reduced from 5V
down to 2 V without losing the internal RAM content. - ALE and PSEN pins are both
low in power-down mode.

This modes are evoked by setting the corresponding bits IDL and PD, for example by
the instruction OR PCON,#1 or #2 respectively. If both bits are set simultaneously, the
power-down mode is evoked.

SMOD is used to define the baud rate for the serial port, see below. SMOD=1 doubles
the baud rate. GFO and GF1 are flags for general purpose and don’t have special functions.

51

They may be used to indicate to an interrupt routine whether the interrupt occurred
during normal execution or in idle mode.

Interrupt Enable Register IE

7 6 5 4 3 2 1 0
General Timer 2 | Serial Timer 1 |INT1 |Timer0 |INTO
O0A8H |enable enable |enable |enable |enable Jenable |enable
EA ET2 ES ET1 EX1 ETO EX0
Reset : 0 x 0 0 0 0 0 0
Bit number: O0AFH O0AEH (0ADH (0ACH OABH OAAH 0AYH 0OASH
(8032 only)

There are several interrupt sources. An external interrupt is achieved by connecting one
of the low active INT pins to ground. Prior to that the programmer can choose if an
external interrupt is falling edge or negative level triggered; see TCON register. Moreover
interrupts can be triggered by an overflow of one of the internal timers or by the serial
interface. The latter one can be cither a receiver or a transmitter interrupt. The serial
interrupt routine is at the same address and has to be distinguished using the RI or TI bits
in SCON. In order to enable interrupts IE.7 has to be set. Only then the individual
enabling of interrupt sources has an effect.

Interrupt Priority Register IP

7 6 5 4 3 2 1 0
Timer 2 | Serial Int| Timer 1 |INT 1 | Tiner 0 |INTO
0B8H priority | priority | priority | priority | priority | priority
PT2 ps PT1 pPX1 PTO PX0
Reset : X x 0 0 0 0 0 0
Bitpumber: OBFH OBEH OBDH 0BCH OBBH OBAH 0BSH O0BSH
(8032 only)

There are two priority levels. Only an interrupt of a higher level, with priority bit set,
may interrupt another interrupt presently being processed. The internal processing of
interrupts makes an inherent priority sequence. That sequence is in use whenever two
interrupts of the same priority occur at the same time:

External interrupt O INTO highest priority
Overflow timer O TFOQ
External interrupt 1 INT1
Overflow timer 1 TF1
Serial interface RI/TI
Timer 2 [External interrupt 2 TF2/EXF2 8032 only lowest priority
Timer Mode Register TMOD
7 6 5 4 3 2 1 0
Counter/| Mode 1 | Mode 0 Counter/| Mode 1 | Mode 0
089H Timir Tim_c_r
GATE | T | M1 MO GATE | /T | Mt MO
Reset : 0 0 0 0 0 0 0 0
— v ol A — _.a
Not bit addressable Timer 1 Timer ¢

GATE has to be cleared in order to enable the timer. If GATE is set, the timer/counter
will run only if the INT pin is high. This can be used to measure pulse width: Each time

52

INT is low, use the JB instruction, read the timer registers. - The figure below illustrates
the function of the timer/counter mechanism.

C/T selects whether it should act as a timer (C/T=0) with the system clock divided by
12, so 1 MHz when using a 12 MHz quartz crystal, or as a counter of external events
(C/T=1). In counter mode, the timer registers are incremented after each falling edge at
the corresponding pin TO and T1. The maximal counting frequency is 500 kHz using a 12
MHz quartz crystal. The falling edge has to be shorter than one clock cycle.

OSsC 12
= Control
C/T=0
-\dc o y !._ncn;ment signal
Tc {'-f"i or tumer registers
T Pin

TR
GATE
INT Pin

Figure 20 Clock select for timers and counters.

M1 and MO finally select the operating mode. Each timer is equipped with two 8 bit
registers TH and TL.

M1 MO Mode
0 O 0 13 bit timer/counter mode
Timer low byte (TL) serves as a 5 bit prescaler
0 1 1 16 bit timer/counter mode
TH and TL are cascaded and there is no prescaler
1 0 2 8 bitauto reload timer/counter mode
TH holds a value which will be reloaded into TL after an overflow
1 1 3 Two 8 bit timer/counter mode
Timer O :

» TLO is an 8 bit timer/counter controlled by the timer O control bits
» THO is an 8 bit timer only controlled by the timer 1 control bits
Timer 1 is idle when set to this operating mode

In mode 3, timer 1 will be stopped as if TR1 is reset. Timer 1 may still be used in
another mode when timer 0 is in mode 3, but may not cause an interrupt. This mode has
therefore only effect to timer 0. So, mode 3 provides three 8 bit counters. To start or to
stop Timer 1 in this mode, it has to be set to mode 3 or to another mode respectively.

Mode O
e

5bits 8 bits .
Overflow
TL TH A TF |~ Interrupt

Increment signal s
for timer registers

53

Mode 1
16 bits - Bt
In t signal Overflow
for tinec cegiaers 7| TL | TH TF [~ Interrupt
Mode 2
8 bits
TH
Reload
J | ﬁzv:;:rﬂow
Increment signal
for timer reglg::gm A TL Overflow TF [~ Interrupt
8 bits
Mode 3
8 bits 4 e
Increment signal N Overflow
for timer regiters TLO TFO [~ Interrupt
Control 8 bits - fiygriow
verflow
osC 12—t°T—1—| THO TF1 [Interrupt
TR1
Timer Control Register TCON
7 6 5 4 3 2 1 0
Timer 1 | Timer1 | Timer 0 | Timer 0 |INT 1 INT 1 INTO |INTO
088H overflow | start overflow | start edge/level edge/level
TF1 TR1 TFO TRO IE1 IT1 [EO ITO
Reset: 0 1] 0 0 0 1] 0 4]
Bitnumber: 08FH O8EH O81DH 08CH 08BH 08AH 08YH 088H

Although this register is called timer control register it contains some bits concerning
interrupts as well.

The TF bits are set by the hardware in the case of an overflow of the corresponding
timer. After branching to the interrupt routine the hardware clears the bits again. The TR
bits are set and reset by the user in order to start and stop the timer. The IE bits are, similar
to the TF bits, set by the hardware when an external interrupt edge is detected and, if edge
triggered only, reset by hardware while jumping to the interrupt routine. If the external
interrupt is level sensitive, the IE bits have to be cleared by software. IT selects whether
the external interrupt is edge (IT=1) or level sensitive (IT=0). Note that in edge triggered
mode, the edge should not take more than 1 ps assuming a 12 MHz quartz crystal.

To finish an interrupt routine properly it is necessary to use the RETI instruction. This
will, in contrast to RET, reset the corresponding interrupt busy bits. Further interrupts are
served only after RETI. It is also possible to invoke all interrupts by software by setting the
corresponding bits.

54

Timer 2 Control Register T2CON
Note that this register only exists on a 8032 and is different on the 80C535.

7 6 5 4 3 2 1 0
Timer 2 | External | Receive | Transmit| Enable JTimerZ Counterf Capturei%

OCBH |overflow | flag clock clock T2EX pid start timer | reload f

TF2 EXF2 | RCLK| TCLK | EXENZ TR2 C[T2 |CP/RL2
Reset: 0 1] 0 0 0 0 0 0

Bitpumber: OCFH OCEH OCDH OCCH OCBH OCAH O0CYH 0C8H

Timer 2 is a 16 bit timer/counter, too. It may work in the following modes:

RCLK TCLK CP/RL2

0 0 0 16 bit auto reload
0 0 1 16 bit capture
1 1 X baud rate generator

If RCLK or TCLK is set, the TF2 bit won't be set at an overflow. TF2 has to be reset
by the software. On RCLK set, a timer 2 overflow will clock the receiver in mode 1 and
3. If RCLK is reset, this clock is taken from timer 1 overflow events. TCLK is the same
for the transmitter clock. On EXEN?2 set, a capture or reload of counter 2 is allowed at a
negative edge at T2EX pin, assumed timer 2 does not clock the serial port. The TR2 and
C/T2 bits are similar to those of timers 0 and 1.

CP/RL2 selects capture (CP/RL2=1) or reload (CP/RL2=1) mode. In capture mode
with EXEN2 reset, timer 2 is a 16 bit timer/counter that sets the TF2 bit at an overflow,
which may cause an interrupt. On EXEN2 set, the counter has a further feature: If there is
a 1-to-0 transition on T2EX pin, the actual content of timer 2, high and low byte, is
written to RCAP2H and RCAP2L. At the same time the EXF2 bit is set, which may also
cause an interrupt. EXF2 has to be reset by the software. - So the interrupt routine may
see in T2CON which type of interrupt it was, since timer 2 overflow and external
interrupt 2 share the same interrupt address 002BH.

In auto reload mode, EXEN2 also selects two options. If EXEN2=0, a timer 2 overflow
not only causes the set of TF2, but a reload of the counter with the values stored at
RCAP2H and RCAP2L. On EXEN2 set, TF2 is set and the counter is reloaded at an
overflow, and a negative edge on the T2EX pin will also reload the counter, and the EXF2
bit will be set.

Serial Control Register SCON

7 6 5 4 3 2 1 0
Serial Serial Serial Receptiop9th bit | 9thbit | Transmit] Receive
098H mode 0 |mode 1 |mode2 |enable |transmit |receive |interrupt | interrupt
SMO SM1 SM2 REN | TB8 RBS T RI

Reset: 0 0 0 0 0 0 0 0
Bit numiber: 09FH OYEH 09H 09CH U9BH U9AH 099H 0usH

This register serves for setting and controlling the serial interface.

55

Timer 1 Timer 1
overflow overflow

Bus
TXD
| SBUF .
(Pin 11)
0 1 TX Ctrl

TCLKS

[} T

Serial Port
5 c;—— Interrupt
RCLK

I| +16 Il Clk RI

RX Citrl
RXD
| SBUF K (Pin 10)

<t

Bus

Figure 21 Serial interface architecture.

SMOD is bit 7 in register PCON and selects a prescaler. So if SMOD is set, the baud
rate is overflow rate divided by 16, otherwise divided by 32. It is not possible to generate
exactly 4800 baud when using a 12 MHz quartz crystal; for this purpose it is necessary to
take an 11.0592 MHz quartz crystal. But the resulting 4807.69 bits per second will also
work in most cases. The 80C535 is capable to generate exactly 4800 and 9600 baud with a
12 MHz quartz crystal. Bits SM0 and SM1 specify the serial port mode:

SMO SM1 Mode Baud rate
0 0 0 shift register fosc/12
0 1 1 8bit UART variable full duplex
1 0 2 9bitUART fo /64 orfo/32 full duplex
1 0 3 9bitUART variable full duplex

Bit REN enables serial reception and has to be set and reset by the software. TB8 is the
9" data bit that will be transmitted in modes 2 and 3 and may be set or reset by software.
RBS is the received 9 data bit in modes 2 and 3. In mode 1 with cleared SM2, RB8 is
the received stop bit. In mode 0, RB8 is not used. TI is the transmit interrupt flag that will
be set by the hardware at the end of the 8% bit time in mode 0, or at the beginning of the
stop bit in the other modes. This bit has to be cleared by software. In order not to generate
a transmit interrupt too early this bit has to be cleared prior to the first transmit.

The 9% data bit may be used for multiprocessor communication. A set 9™ bit identifies
the transmitted byte as an address, a reset 9% bit identifies a data byte for the previous
addressed coprocessor. This way it is theoretically possible to communicate with 256
COProcessors.

RI is the receive interrupt flag that will be set by the hardware at the end of the 8 bit
time in mode 0, or halfway through the stop bit time in the other modes. Exceptions: see
description of the SM2 bit. This bit has to be cleared by software in order to indicate that
the received byte is fetched, i.e. the receive buffer is read.

56

TI and RI are, assuming that IE.4 (ES) of the interrupt enable register is set, evoking
the same interrupt, so the serial interrupt handler has to find out itself whether it was a
transmit or receive interrupt. In order to send or receive data from the serial port the
microcontroller has an internal shift register called SBUF at address 099H. In fact there are
two of them, the receive and the transmit buffer, the corresponding one is selected by the
kind of the instruction that accesses the register, a read or a write instruction respectively.
This allows full duplex operation. The receiver is buffered; it is possible to receive the next
byte while the previous one is still in SBUF. But this byte will be lost if it is not yet
fetched after having received the next one. Note that the receiving byte is not shifted in
the SBUF register; it will be written into SBUF only after receiving it as a whole. Bytes to
transmit aren’t shifted in SBUF.

Writing to SBUF starts the transmission. The baud rate is taken either from timer 1 or
2 (only 8032). The 8032 has even the possibility to use different transmit and receive
speeds. A bit to be received is headed by a start bit, and the internal 1-to-0 transition
detector synchronizes the receiver clock. So a falling edge starts receiving.

Mode O

This is the only synchronous mode. The RXD pin is used to receive and transmit the
data, while TXD clocks the external shift register with f,/12 in each case. Eight bits are
received or transmitted respectively, the least significant bit first.

The transmission is started by writing a value into SBUF. A transmit interrupt, TI flag
is set, indicates that the transmission has finished. Using an external serial-in, parallel-out
shift register, for instance a 74’595, this provides a further output port.

In order to receive data, RI has to be reset and REN set. This clocks eight data bits into
SBUF. So there is a further input port. In this mode, SM2 should be cleared.

Mode 1

Each time, ten bits are received or transmitted respectively. This mode works full
duplex using RXD and TXD pins. Since in idle position, both pins are supposed to be
high level, a transmission starts with a low start bit, the stop bit is high level.

start bit n
stop bit n-1 start bit n+1

\ stop bitn
1 R

o LJ | nEnE
LsB MSB
{1]o]oJofoJo]1]0]
F——— databits—

Figure 22 Data for the serial interface.

The baud rate in this mode is calculated by

23MOL (gverflowrate)
32

Receiving is started when REN is set and a falling edge is detected at the RXD pin.
After having received a byte, the received stop bit is copied into RB8 and the RI flag is set,
but only if RI was reset, so the previous interrupt was processed, and SM2 is reset or the

57

stop bit was high level. Otherwise the received byte is ignored. If SM2 is set in this mode,
RI will not be activated if not a valid stop bit was received.

Modes 2and 3

Each time, eleven bltS are received or transmitted respecnvely A start bit (0), eight data
b1ts a programmablc 9" bit and a stop bit (1). The received 9% bit is written to RB8, the
9% bit to transmit is taken from TB8. The rest is analogous to mode 1.

Bit SM2 enables the multiprocessor communication feature in these modes. A set SM2
will cause RI not to be activated if the received 9" data bit (RBS8) is cleared. In
multiprocessor communication mode, a set 9™ data bit indicates that the just received byte
is an address byte that addresses a particular coprocessor. On SM2 reset, there will be an
interrupt request after each receive.

This two modes are mainly used for multiprocessor communication. Each processor has
set SM2 and REN bits. In order to address a particular processor, the address is written to
SBUF after having set TB8. The following transmission will cause an interrupt in each
connected microcontroller. The interrupt service routine checks if it is the own address,
and the addrcssed processor clears SM2 and RI, so that the following data bytes, with
cleared 9" bit, are received.

58

Appendix C:
Mcs51 Instruction Set Summary

This Appendix lists the entire Mcs51 instruction set and explains the possible
addressing modes. pOberon allows code inlining, so this list may be useful for low-level
programming.

C.1 Addressing Modes

Opcode Destination €T~ Source

Figure 23 Instruction format of Mcs51 microcontrollers.

The Mcs51 family offers five different addressing modes. The general format is showed
in figure 23. The only exception is the MOV direct,direct instruction, where the source
address is between the opcode byte and the destination address. But this will not affect the
programmer because the inline assembler swaps the operands here.

Register Addressing MOV ..Rn..

Rn may be one of the general purpose registers RO to R7 of the current register bank,
as selected in the program status word. Bits O to 2 of the opcode specify the number of the
desired register.

Direct Addressing MOV ..direct..

The direct address represents the location of the operand in the internal RAM. This is
the only way to access the special function registers. An address lower than 080H will
cause an access to the lower 128 bytes of internal memory, where the register banks and
the 128 user flags are located, and addresses from 080H to OFFH are used to access the
special function registers.

Register-Indirect Addressing MOV ..@Ri..

Register RO or R1, one of the two pointer registers, contains the address 00H to FFH
of the desired operand. Either the internal or the external RAM is accessed, depending on
the instruction mnemonic. Register-indirect addressing is characterized by the @ symbol.
So, the instruction MOV A,@RO loads the content of the memory location pointed to by
RO of the current register bank into the accumulator.

Register-indirect addressing is the only way to access the upper 128 bytes of the
internal RAM of 8032 derivatives. This addressing does not access the special function
registers that share the same memory locations from addresses 080H to OFFH therefore.

The PUSH and POP instruction also make use of this way of addressing, i.e. the stack
won'’t overwrite the special function registers if it grows into the upper half of the internal
RAM. A register-indirect access to the upper 128 bytes on an 8031, which only provides
128 bytes internal RAM, will return undefined values.

To access the whole 64 kB of external data or code memory space the 16 bit data
pointer DPTR is being used.

59

Immediate Addressing MOV ..,#10

The operand is specified as a constant value.,

Indirect-Offset Addressing MOVC A,@A+DPTR or @A+PC

This addressing mode is useful when processing tables. The address of the desired byte
is the sum of the content of a 16 bit base register plus the content of the accumulator. The
base register may either be the data pointer DPTR or the program counter PC.

Bit Addressing SETBC

Operands for the Boolean processor are bits. There are 256 different bits numbered
from O to 255, some of them with special functions like the carry bit, the accumulator of
the Boolean processor, bits of bit addressable special function registers, or flags for general
use.

Bit numbers from 0 to 127 are flags for general use located in the internal RAM at
addresses 020H to 02FH, numbers from 128 upwards are bits of bit addressable special
function registers.

Relative Addressing SJMP rel

This addressing mode is for conditional branches or short jumps (SJMP). The
instructions branch relative to the current content of the program counter PC. Note that
the PC always points to the next instruction to be executed; the PC is incremented
immediately after each instruction fetch. So, the effective address is relative to the address
of the instruction following the jump instruction.

C.2 Instruction Set

The list shows each instruction with all possible addressing modes. Not every mode is
applicable to each instruction; the instruction set is rather non-orthogonal.

The mnemonics and the operands are listed in the first column. The second column
describes the operation executed by the instruction. Brackets [and] denote the content of
the operand named by the designator, so [Rn] is the content of register Rn, and [[Ri]] is
the content of the memory cell pointed to by register Ri.

The last two columns finally show the number of code bytes and the number of CPU
clock cycles, which are 1/12 of the quartz crystal frequency, e.g. one microsecond using a
12 MHz quartz crystal, used by the instruction.

Notation

Rn may be one of the eight registers RO .. R7

Ri may be either RO or R1; pointer registers

direct may be any of the lower 128 internal RAM locations or one of the
special function registers

B.ACC is the 16 bit register consisting of register B, representing the high byte,
and the accumulator, the low byte

XRAM[] is a location in the external data space

CODE[] denotes the external code memory

60

data
datal6
bit

[bit
addrl1

addr16
rel

[116
L[]
H[]

INT
MOD
AND, OR,

XOR, NOT
ROTATE

ROTATE CY

is an 8 bit constant

is a 16 bit constant

is either one of the 128 software flags from O to 127, located in the
internal RAM at addresses 020H to 02FH, or one of the bits of a bit
addressable special function register, numbered from 128 to 255

denotes the complement of a bit

is an 11 bit address; the upper 5 bits remain unchanged so the program
counter will remain in the same 2 kB memory segment

denotes 2 16 bit address

is an address from -128 to +127 relative to the first code byte of the next
instruction

denotes a 16 bit value
denotes the less significant nibble (4 bits) of a byte, and
the higher nibble (4 bits).

is the integer value, and
the modulo or remainder of a division
are the basic Boolean operations

rotates the accumulator in the desired direction

bllll!llld

ACC

rotates the accumulator through the carry

E)FHIIHII—D%]

ACC CY

The encoding of the instructions can be found in [12]. It also provides timing diagrams
of memory accesses.

Data Transfer

instruction

MOV C,bit

MOV bit,C

MOV DPTR, #datal6
MOV A, #data
MOV A,direct
MOV A,Rn
MOV A ,@Ri
MOV Rn,#data
MOV Rn,direct
MOV Rn,A
MOV direct,#data
MOV direct,direct
MOV direct,Rn
MOV direct,A
MOV direct,@Ri
MOV @Rj, #data
MOV @Ri,A
MOV @Ri,direct
MOVC A,@A+DPTR
MOVC A,@A+PC
MOVX A,@Ri

MOVX A,@DPTR
MOVX @Ri,A

MOVX @DPTR A
PUSH direct

POP direct

XCH A, direct
XCH A,Rn

XCH A,@Rui
XCHD A,@Ri

operation

[CY] = [bit]
[bit] := [CY]
[DPTR]16 := data
[ACC] :=data
[ACC] := [direct]
[ACC] := [Rn]
[ACC] := [[Ri]]
[Rn] :=data

[Rn] := [direct]
[Rn] := [ACC]
[direct] := data
[direct] := [direct]
[direct] := [Rn]
[direct] := [ACC]
[direct] == [[Ri]]
[[Ri]] := data
[[Ri]] := [ACC]
[[Ri]] := [direct]

[ACC] := CODE[[A] + [DPTR]]
[ACC] := CODE[[A] + [PC]]

[ACC] = XRAM[[R1]]

(address high byte from P2 SFR)
[ACC] = XRAM[[DPTR]]

XRAM[[Ri]] := [ACC]

(address high byte from P2 SFR)
XRAM[[DPTR]] := [ACC]

[STACK] := [direct]
[direct] := [STACK]

[ACC] := [direct]; [direct] := [ACC]
[ACC] := [Rn]; [Rn] := [ACC]
[ACC] := [[Ri}; [[Ri]] := [ACC]
L[ACC] := L[[Ri]]; L[[Ri]] := L[ACC]

bytes

o et B BB RO B W L = D B = e B W

—— e N B

cycles

[T L I S T S RUSTEEN TPSTE N T W W J SR N S S O s S

[\ S

—_— e B NN

61

62

Arithmetic Operations

instruction

ADD A, #data
ADD A direct
ADD A,Rn
ADD A,@Ri
ADDC A, #data
ADDC A, direct
ADDC A ,Rn
ADDC A,@Ri
SUBB A, #data
SUBB A ,direct
SUBB A,Rn
SUBB A,@Ri
INC DPTR
INC A

INC direct
INC Rn

INC @Ri
DEC A

DEC direct
DEC Rn

DEC @Ri
MUL AB

DIV AB

DA A

operation

[ACC] :=[ACC] + data

[ACC] := [ACC] + [direct]
[ACC] := [ACC] + [Rn]

[ACC] :=[ACC] +[[Ri]]

[ACC] :=[ACC] + [CY] + data
[ACC] := [ACC] + [CY] + [direct]
[ACC] :=[ACC] + [CY] + [Rn]
[ACC] = [ACC] + [CY] * [[Ri]]
[ACC] = [ACC] - [CY] - data
[ACC] = [ACC] - [CY] - [direct]
[ACC] :=[ACC] - [CY] - [Rn]
[ACC] :=[ACC] - [CY] - [[Ri]]
[DPTR]16 := [DPTR]16 + 1
[ACC] :={ACC] +1

[direct] := [direct] + 1

[Rn] := [Rn] + 1

[[Ri]] := [[R]] + 1
[ACC]:=[ACC] -1

[direct] := [direct] - 1

[Rn] = [Rn] -1

[[Ri]] = [[Ri]] - 1

[B.ACC] := [ACC] * [B]

[ACC] :=INT([ACC]/ [B]);

[B] :== [ACC] MOD [B]

[ACC] decimal adjusted

bytes

p— gt e ek) e e e B e e = = PO B = = B B = = DN

o

cycles

B e e R e O o B e T e e e

[y

Logical Operations

instruction

ANL C bit
ANL C,/bit
ANL A, #data
ANL A,direct
ANL A,Rn
ANL A,@Ri
ANL direct,A
ANL direct,#data
ORL C,bit
ORL C, /bit
ORL A,#data
ORL A,direct
ORL A,Rn
ORL A,@Ri
ORL direct,A
ORL direct,#data
XRL A,#data
XRL A, direct
XRL A,Rn
XRL A,@Ri
XRL direct, A
XRL direct,#data
CLR.C

CLR bit
CLR A
SETBC
SETB bit
CPLC

CPL bit
CPLA

RLA

RR A

RLC A
RRCA
SWAP A

operation

[CY] :=[CY] AND [bit]

[CY] :=[CY] AND NOT [bit]
[ACC] :=[ACC] AND data
[ACC] := [ACC] AND [direct]
[ACC] = [ACC] AND [Rn]
[ACC] :=[ACC] AND [[Ri]]
[direct] := [direct] AND [ACC]
[direct] := [direct] AND data
[CY]:=[CY]OR [bit]
[CY]:=[CY] OR NOT [bit]
[ACC] := [ACC] OR data
[ACC] := [ACC] OR [direct]
[ACC] := [ACC] OR [Rn]
[ACC] := [ACC] OR [[Ri]]
[direct] := [direct] OR [ACC]
[direct] := [direct] OR data
[ACC] := [ACC] XOR data
[ACC] := [ACC] XOR [direct]
[ACC] = [ACC] XOR [Rn]
[ACC] = [ACC] XOR [[Ri]]
[direct] := [direct] XOR [ACC]
[direct] := [direct] XOR data
[CY]:=0

[bit] :=0

[ACC] := 00H

[CY] =1

[bit] := 1

[CY]:=NOT [CY]

[bit] := NOT [bit]

[ACC] := NOT [ACC]

[ACC] := ROTATE LEFT [ACC]
[ACC] := ROTATE RIGHT [ACC]
[ACC] := ROTATE LEFT CY [ACC]
[ACC] := ROTATE RIGHT CY [ACC]
L[ACC] := H[ACC]; H[ACC] := L[ACC]

bytes

— ek ek ek ek b DY R B = e N = DN, R, O NOONEE, RN~ =N

63

cycles

P e e el B S S N e Tl S B R e O T 6 T\ B e S S Y (6]

64

Program Branching

instruction

ACALL addr11
LCALL addr16
RET

RETI

AJMP addr11
LJMP addr16
SJMP rel

JMP @A+DPTR
JZ rel

JNZ rel

JC rel

JNC rel

JB bit,rel

JINB bit,rel

JBC bit,rel

CJNE A, #data,rel
CJNE A direct,rel
CJNE Run,#data,rel
CJNE @Ri,#data,rel
DJNZ direct,rel

DJNZ Ran,rel

NOP
res

operation

subroutine call in 2 kB segment
subroutine call in 64 kB area
return from subroutine

return from interrupt

absolute jump in 2 kB segment
absolute jump in 64 kB area
jump relative to PC

absolute jump to [ACC] + [DPTR]
relative jump if [ACC] = 00H
relative jump if [ACC] <> 00H
relative jump if [CY] = 1

relative jump if [CY] =0

relative jump if [bit] = 1

relative jump if [bit] = 0

relative jump if [bit] = 1; [bit] := 0
relative jump if [ACC] <> data
relative jump if [ACC] <> [direct]
relative jump if [Rn] <> data
relative jump if [[Ri]] <> data
[direct] := [direct] - 1;

relative jump if [direct] <> 00H
[Rn] :=[Ra] - 1;

relative jump if [Rn] <> 00H

no operation

illegal opcode (A5h)

bytes
2

LLLLLWLWWLBLERDPDNPDD =N OGN —-W

o

cycles

MNP DN

b

i

65

Appendix D:
File Formats

This Appendix describes the file formats of uOberon, namely the object and the symbol
file produced by the compiler, and the Intel-Hex format that is used by the linker and
interpreted by the decoder if the corresponding option is set. Alternatively, the linker
produces a sequential binary file. Finally the structure of the options file is Listed.

D.1 pOberon Object File Format

The object file with extension obj is generated by the compiler and contains the object
code, i.e. the code bytes, the keys of the module and of the imported modules, and some
fixup information for the linker. Note that the code block in this file will change
considerably during the linking process, so it is not possible to use parts of it without
linking. Object files may be decoded using the integrated pOberon decoder.

ObjectFile = HeaderBlock ImportBlock EntryBlock CommandBlock
TrapProcedure InterruptBlock ConstantsBlock CodeBlock
ImportAccesses GlobalVarAccesses LocalVarAccesses
AddressAccesses TrapCalls.

HeaderBlock = OF1X nofimports:2 nofEntries:2 nofCommands:2
constantsSize:2 globalData:2 maxLocalData:2 codeSize:2
key:4 moduleName OptionsBlock.

OptionsBlock = localDataWindow:2 intRAM:2 extRAMbeg:2 extRAMend:2.
ImportBlock { name key:4 }.

EntryBlock { entryAdr:2 }.

CommandBlock { name entryAdr:2 }.

TrapProcedure [0:2 entryAdr:2].

InterruptBlock { intAdr:2 entryAdr:2 } MarkTag:2.

I | N T | Y | A

ConstantsBlock { byte }.

CodeBlock { byte }.

ImportAccesses = [ImportedProcCalls ImportedVarAccesses }.
ImportedProcCalls = { entryNo:2 anchor:2 } MarkTag:2.
ImportedVarAccesses = { pc:2 } MarkTag:2.

GlobalVarAccesses = { pc:2 } MarkTag:2.

LocalVarAccesses = { pc:2 } MarkTag:2.

AddressAccesses = { pc:2 } MarkTag:2.

TrapCalls = { pc:2 } MarkTag:2.

MarkTag = OFFFFH.

» Names are character sequences terminated by 0X. All other identifiers written with
small letters stand for numbers.

» If a number is represented by more than one byte, the number of bytes is trailing the
identifier after a colon.

66

D.2 uOberon Symbol File Format

The compiler also produces the symbol file with extension sym. The symbol file
contains interface information that is used by clients importing that module. To decode a
symbol file, use the integrated pOberon browser.

The constants written in capital letters may be found in the definition of the symbol
table module XOT.

SymbolFile = OF3X MOD key:4 name {Element}.
Element = MOD key:4 name
| CONST Constant

| (TYPE | HIDDENTYPE) ref modno name

| (VAR | RDONLYVAR) ref varno name

| (FLD | RDONLYFLD) ref offset:4 name

| (VALPAR | VARPAR) ref name

| PARLIST {Element} PROC ref procno name

| PTR baseRef modno

| PARLIST {Element} PROCTYPE resultRef modno
| ARRAY elemRef modno size:4

| FLDLIST {Element} REC baseRef modno size:4 descno:2
| (HIDDENPTR | HIDDENPROC) offset:4

| FIXUP ptrRef baseRef.

Constant = (BYTE | CHAR | SINT) value name
| BOOL (FALSE | TRUE) name
| INT value:2 name
| (REAL | LINT | SET) value:4 name
| LREAL value:8 name
| STRING string name
| NIL name.

D.3 Intel-Hex File Format

The Intel-Hex format is a plain ASCII file with extension hex that contains the same
information as the simple binary form plus some additional features like a checksum and
the possibility to use different addresses not necessarily neighbouring. It only consists of
the ASCII characters 0..9, A..F, the colon (), as well as a carriage return (CR) and line
feed (LF) at the end of each line. There are no blanks in the file.

The whole code is divided into blocks, and each line represents a block consisting of a
defined number of code bytes. Consider the following short program:

address code mnemonic

0000 74 07 MOV A #07
0002 2402 ADD A, #02

The corresponding Intel-Hex file would look as follows:

:04000000740724025B
:00000001FF

67

Each line consists of the following numbers, all written in plain ASCII hexadecimal
format:

first character (colon)
number of data bytes (usually 10H)
16 bit address for the first data byte

line identification
00H for a data line,
01H for the last line

data bytes

of a line must be xx00H)

_I: check sum (the sum of all bytes

04 0000 00 74072402 5B
It is possible to decode an Intel-Hex file as well as a binary file using the pOberon core
decoder, depending on the setting in the options panel.

D.4 uOberon Options File Format

In the Rsre subdirectory there is a file called Options that contains the configuration data
for the pOberon development system. This file has the following format:

OptionsFile = NewSymFile LinkParam StackCheck
IndexCheck NilCheck ReturnCheck
LocalDataWindow:2 IntelHex:1 LptPort
IntRam:2 ExtRAMbeg:4 ExtRAMend:4.

» LinkParam and LptPort are character sequences terminated by 0X.
» Boolean values are written as a single byte of value 1 if TRUE or 0 respectively.

68

Appendix E:
Data Structures and Module Interfaces

Refer to the diagram of the module hierarchy in chapter Project uOberon, section Module
Ovemwiew for details.

E.1 Data Structures

Items

Items are entities that reflect factors, terms, variables and so on, that is, constituents of
expressions and statements, and are generated while parsing ([1], [10]). Their type as well
as the constants for the fields are defined in module XOT.

mode a0 al a2 description

Undef

Var address variable

Regl Oorl register indirect

Ind address pointer indirect

ExtVar address variable in ext. RAM

Coc relation false jump true jump condition code

Stk stack

Const value (value) constant values
address length strings

Reg Oto7 register

Fid offset record field

Typ type

Proc address fixup chain internal procedure

ImpProc address fixup chain imported procedure

StdProc function nr. standard procedure

IntProc address fixup chain interrupt procedure

TrapProc address fixup chain trap procedure

Mod module nr. module key module

Head level of scope

E.2 Module Interfaces

The following module interfaces are simplified.

Host Interface XOH

DEFINITION Mes51XOH;

CONST
ObjFileTag = F1X;
ObjectFileExtension = "obj;
SymFileTag = F3X;
SymbolFile Extension = "sym”;
BinaryFileExtension = "bin®;
IntelHexFile Extension = “hex";

MarkTag = 65535,
MaxCodeSize = 65536;
MaxldLen = 32;
MaxNoflmports = 32;
MaxStrLen = 256;

TYPE
InputFile = POINTER TO RECORD

name-: Files.Name;
PROCEDURE (in: InputFile) Close;
PROCEDURE (in: InputFile) Eof (): BOOLEAN;
PROCEDURE (in: InputFile) Pos (): LONGINT;
PROCEDURE (in: InputFile) Read (VAR ch: CHAR);
PROCEDURE (in: InputFile) ReadBool (VAR b: BOOLEANY);

PROCEDURE (in: InputFile) ReadBytes (VAR bytes: ARRAY OF CHAR; noflytes: LONGINT);

PROCEDURE (in: [nputFile) ReadHex8 (VAR i: LONGINT);
PROCEDURE (in: [nputFile) Readint (VAR i: INTEGER);
PROCEDURE (in: [nputFile) ReadLInt (VAR 1: LONGINT);
PROCEDURE (in: [nputFile} ReadSInt (VAR s: SHORTINT);
PROCEDURE (in: InputFile} ReadString (VAR str: ARRAY OF CHAR);
PROCEDURE (in: InputFile) ReadWord (VAR |: LONGINT);
PROCEDURE (in: InputFile) SetPos (pos: LONGINT)

END;

OutputFile = POINTER TO RECORD
name-: Files.Name;
PROCEDURE (out: QutputFile) Close;
PROCEDURE {out: OutputFile} Pos (): LONGINT,
PROCEDURE {out: QutputFile) Register;
PROCEDURE (out: OutputFile) SetPos (pos: LONGINT);
PROCEDURE (out: QutputFile) Write (ch: CHAR);
PROCEDURE (out: QutputFile) Write Bool {(b: BOOLEANY);

PROCEDURE (out: QutputFile) Write Bytes (VAR bytes: ARRAY OF CHAR,; nofBytes: LONGINT);

PROCEDURE (out: OQutputFile} WriteHex8 (i: LONGINTY);
PROCEDURE (out: QutputFile) Writelnt (i: INTEGER);
PROCEDURE (out: QutputFile) WriteLInt (I: LONGINT);
PROCEDURE (out: QutputFile) WriteSInt (s: SHORTINT);
PROCEDURE (out: QutputFile) WriteString (str: ARRAY OF CHAR);
PROCEDURE (out: QutputFile) WriteWard (I: LONGINT)

ENIY;

Window = POINTER TO RECORD
PROCEDURE (win: Window) Open (tide: ARRAY OF CHAR);
PROCEDURE (win: Window) SetRuler (tabs: ARRAY OF LONGINT);
PROCEDURE (win: Window) Write (ch: CHAR);
PROCEDURE (win: Window) WriteHex 16 (I: LONGINT);
PROCEDURE (win: Window) WriteHex32 (I: LONGINT);
PROCEDURE (win: Window) WriteHex8 (i: LONGINT);
PROCEDURE (win: Window) Writelnt (i: LONGINT);
PROCEDURE {win: Window) WriteLn;
PROCEDURE (win: Window) WriteString (str:t ARRAY OF CHAR);
PROCEDURE (win: Window) WriteTab

END;

[d = ARRAY 32 OF CHAR;
Sa=ARRAY 256 OF CHAR;

VAR
path: ARRAY 32 OF CHAR;

PROCEDURE Closel)ialog;

PROCEDURE GerClock (VAR time, date: LONGINTY,

PROCEDURE |code] [nitLPT (port: INTEGER): BOOLEAN;

PROCEDURE InputFileFrom (out: QutputFile): InputFile;

PROCEDURE InsertError (ur: INTEGER);

PROCEDURE LogWrite (ch: CHAR),

PROCEDURE LogWriteHex16 (I: LONGINT);

PROCEDURE LogWriteHex32 (I: LONGINT);

PROCEDURE LogWriteHex8 (i: LONGINT);

PROCEDURE LogWritelnt (it LONGINT);

PROCEDURE LogWriteLn;

PROCEDURE LogWriteString (s: ARRAY OF CHARY);

PROCEDURE NewlnputFile (path, name, type: ARRAY OF CHAR): InputFile;
PROCEDURE NewOutputFile (path, name, type: ARRAY OF CHAR): OutputFile;
PROCEDURE NewWindow (): Window;

PROCEDURE QpenToollYialog (fileName, dialogTide: ARRAY OF CHAR);
PROCEDURE |code] OutLPT (port: INTEGER; ch: CHAR),

69

70

PROCEDURE SelectinputFile (path, defaultType: ARRAY OF CHAR): InputFile;
PROCEDURE ShowFirstError;

PROCEDURE SourceEot (}: BOOLEAN,

PROCEDURE SourceOpen (): BOOLEAN;

PROCEDURE SourcePos (): LONGINT;

PROCEDURE SourceRead (VAR ch: CHAR);

END Mcs51X0H.

Scanner X0S

DEFINITION Mcs51X05;

VAR
id-: Mcs51XOH.1d;
str-: Mcs51XOH S
numiTyp-: SHORTINT,;
intVal-: LONGINT;
realVal-: REAL;
IrealVal-: LONGREAL,;
scanErr-: LONGINT;

PROCEDURE Get (VAR sym: SHORTINT);
PROCEDURE I[nit;
PROCEDURE Mark (nr: INTEGER);

ENL Mcs51XOS,

Symbol Table XOT

DEFINITION Mes51XOT;

TYPE
Object = POINTER TO ObjDesc;
Objlesc = RECORD
mode: SHORTINT;
typ: Suuce;
al, al, a2: LONGINT,;
name: McsS1XOH.Id;
marked: BOOLEAN;
dsc, next: Object
ENLY,

Struct = POINTER TO Seullesc;
StrDese = RECORD

form: SHORTINT;

extLev, mno: INTEGER;

ref SHORTINT,

size, adr: LONGINT;

Base Typ: Strucr;

link, structObj: Object
END;

ltem = RECORD
mode: SHORTINT;
typ: Struct;
a0, al, a2: LONGINT;
lev: INTEGER,
obj: Object

ENILY;

VAR
topScope: Object;
nofEntries-! INTEGER;
entry-: ARRAY 96 OF INTEGER;
importedModule-: ARRAY 32 OF Object;
noflntports-: INTEGER,
system[mported-: BOOLEAN,;

PROCEDURE Close;

PROCEDURE CloseScope;

PROCEDURE Export (VAR moduleName: Mcs51XOH.[d; VAR newSymFile: BOOLEAN; VAR key: LONGINTY;
PROCEDURE Find (VAR result: Object; VAR level: INTEGER);

PROCEDURE FindField (typ: Struct; VAR resule: Object);

PROCEDURE FindImport (mod: Object; VAR result: Object),

PROCEDURE [mport (VAR importiName, importAlias, self: Mcs51XOH.Id);

PROCEDURE Init;
PROCEDURE Insert (name: Mcs51XOH.[d; VAR result: Object);
PROCEDURE OpenScope (level: INTEGER);

END MesS1XOT.

Code Generator XOC

DEFINITION Mcs31X0C;

VAR

intRAM: INTEGER;
extRAMbeg: LONGINT;
extRAMend: LONGINT;
locall>ataWindow: INTEGER
stackCheck: BOOLEAN;

indexCheck:

BOOLEAN,;

nilCheck: BOOLEAN;
returnCheck: BOOLEAN;
level: INTEGER,;

pe-: LONGINT;

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

AddressAccess (at: LONGINTY);

AllocString (VAR x: McsS1XOT. [tem);

Blump (location: LONGINTY);

CBJump (VAR x: Mcs51XOT.[teny; cond: BOOLEAN,; location: LONGINT);
CFJumpl6 (VAR x: Mcs51XOT.[eem; cond: BOOLEAN; VAR location: LONGINTY;
Call (VAR x: McsS1XOT. Iteny; paramSize: LONGINT);
ContpareParLists (x, y: Mcs31XOT.Object);

Enter (mode: SHORTINT; paraniSize, dataSize: LONGINT);
FJump16 (VAR location: LONGINT),

Flump8 (VAR location: LONGINT);

Fix16 (at, with: LONGINTY);

Fix8 (at, with: LONGINT);

FixupChain16 (location: LONGINTY);

FixupChain8 (location: LONGINT);

Freeltem (VAR x: McsS1XOT. [tem);

GetPuoReg (VAR x: Mcs51XOT.Item);

GetReg (VAR x: MesS1XOT. [tem);

GetlesReg (VAR x: MesS1XOT. ltem);

GlobalVarAccess (at: LONGINTY);

ImportedVarAccess (at, moduleNr: LONGINT);

[nit;

InsertBranch8 (VAR x: McsS51XOT.[tem; cond: BOOLEANY),
Inverted (relation: LONGINT): SHORTINT;

PROCEDURE Leave (mode: SHORTINT; dataSize: LONGINT; fetProc: BOOLEANY),

PROCEDURE

LoadA (x: McsS1XOT.Item; byteNr: LONGINTY);

PROCEDURE LoadAdrA (VAR x: Mcs51XOT.Item);
PROCEDURE LoadAdrB (VAR x: Mcs31XOT.Item);

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

LoadAdri (mn: LONGINT; x: McsS1XOT.Item);

LoadB (x: Mcs51XOT.[teny; byteNr: LONGINT);

LoadCase Expression (x: Mcs51XOT. Item);

LoadR (rn: LONGINT; x: Mcs51XOT.lteny;, byteNr: LONGINT);
LocalVarAccess (at: LONGINT);

MergedLinks8 (L0, L1: LONGINT): LONGINT;

MoveBlock (VAR x, y: Mcs51XOT.Iteny; nofBytes: LONGINT),
OutCode (VAR moduleName: Mcs51XOH.[d; key, globalData, maxLocall>ata: LONGINT});
ParameterList (VAR x: Mcs51XOT.Item): MesS1XOT. Object;

Pop (VAR x: Mcs51XOT. [tem);

PopRegisters {toRestore: SET);

Push (VAR x: Mes51XOT.ltem);

PushAdr (VAR x: Mcs51XOT.Item);

PushUsedRegisters (VAR savedRegs: SET);

PutByte (byte: LONGINTY);

PutF1 {instr: LONGINT);

PutF2 (instr, op: LONGINTY);

PutF3 (instr, opl, op2: LONGINT);

PROCEDURE SetCC (VAR x: Mcs51XOT.Iteny; relation: SHORTINT);
PROCEDURE SetlmtType (VAR x: Mcs531XOT. ltem);

PROCEDURE Store (VAR x, y: Mcs51XOT Ieem);

PROCEDURE StoreA (VAR x: Mcs31XOT.Item; byteNr: LONGINT);

PROCEDURE
PROCEDURE
PROCEDURE

END Mes51X0C,

StoreB (VAR x: Mcs51XOT. Itenmy; byteNr: LONGINT);
Trap (n: LONGINTY;
VarAccess {at: LONGINT; level: INTEGER);

72

Arithmetic Engine XOA
DEFINITION Mcs51XOA;

PROCEDURE Abs (VAR x: McsS1XOT.Item);

PROCEDURE Compare (op: SHORTINT; VAR x, y: McsS1XOT. ltem);
PROCEDURE Dec (VAR x: Mcs51XOT.Item);

PROCEDURE Div (VAR x, y: Mcs51XOT.ltem);

PROCEDURE Entier (VAR x: Mcs51XOT ftem);

PROCEDURE Inc (VAR x: Mcs51XOT. Item);

PROCEDURE Long (VAR x: Mcs51XOT.Iteny; typ: Mes51XOT . Struct);
PROCEDURE Minus (VAR x, y: Mcs51XOT.ltem);

PROCEDURE Mod (VAR x, y: Mcs51XOT.[tem);

PROCEDURE Negate (VAR x: Mcs51XOT. [tem);

PROCEDURE Plus (VAR x, y: Mcs51XOT.ltem);

PROCEDURE Short (VAR x: McsS1XOT.Item; typ: Mes51XOT . Struct);
PROCEDURE Slash (VAR x, y: Mcs51XOT.[tem);

PROCEDURE Times (VAR x, y: Mcs51XOT.[tem);

END Mcs51X0A.

Expression Handler XOE

DEFINITION Mcs51XOE;

CONST
MaxLoopNesting = 16;
MaxNofCases = 128;

PROCEDURE Assign (VAR x, y: Mcs51XOT. Item);

PROCEDURE CaseCmipRange (eform: SHORTINT; from, to: LONGINTY;
PROCEDURE CaseCmpValue (eform: SHORTINT; val: LONGINT),
PROCEDURE DeReference (VAR x: Mcs51XOT.ltem);

PROCEDURE Field (VAR rec: Mcs51XOT . Item; fld: Mcs51XOT.Object);
PROCEDURE [n (VAR x, y: Mcs51XOT . [tem);

PROCEDURE [ndex (VAR x, y: Mcs51XOT.[tem);

PROCEDURE Opl (op: INTEGER; VAR x: McsS1XOT . lem);

PROCEDURE Op2 (op: SHORTINT; VAR x, y: Mcs51XOT. [tem);

PROCEDURE PushParameter (VAR par: McsS1XOT. ltemy; type: Mes31XOT. Object);
PROCEDURE Result (VAR x: Mcs51XOT. Item; typ: Mes51XOT . Seruct);
PROCEDURE Setl) (VAR x, y: Mcs51XOT. Item);

PROCEDURE Setl (VAR x, ¥, 22 Mcs51XOT.Item);

PROCEDURE StdProcedure (fctMNo, nofPar: SHORTINT; VAR x, y, 2: Mes51XOT. [tens);

ENILY Mcs51XOE.

Inline Assembler XOl

DEFINITION Mes51XO0I;
PROCEDURE Assembler (VAR parserSym: SHORTINTY);

ENID Mcs51X Ol

Parser XOP

DEFINITION Mes51X0P,;

VAR
newSymFile: BOOLEAN;

PROCEDURE Compile;
END Mcs51XO0P.

Linker and Loader XOL

DEFINITION Mes51XO0L;

VAR
param: Mcs51XOH. Str;
intelHex: BOOLEAN,
IptPort: INTEGER;

PROCEDURE Link;
PROCEDURE Load;

END Mcs51XO0L.

Browser XOB

DEFINITION Mes531XOB;
PROCEDURE Showlef;

ENID Mcs51XOB.

Decoder XOD
DEFINITION Mcs51X01);

VAR
intelHex: BOOLEAN;

PROCEDURE DecodeCore;
PROCEDURE ecodeObj;

END Mcs51X0D.

User Interface MicroOberon
DEFINITION Mcs51MicroQOberon;

VAR

options: RECORID
newSymFile: BOOLEAN;
linkParan1: Mcs51XOH.Str;
stackCheck, indexCheck, nilCheck, returnCheck: BOOLEAN;
localDaaWindow: INTEGER,
intelHex: SHORTINT;
IptPort: LptPort;
intRAM: INTEGER;
extRAMbeg, extRAMend: LONGINT

ENLY,;

PROCEDURE Browse;
PROCEDURE Cancel;
PROCEDURE Compile;
PROCEDURE DecodeLink;
PROCEDURE DecodeObj;
PROCEDURE Info;
PROCEDURE Link;
PROCEDURE Load;
PROCEDURE LoadOptions;
PROCEDURE Ok;
PROCEDURE OpenMainTool;
PROCEDURE OpenOptionsTool;
PROCEDURE SaveOptions;

END Mes51MicroOberon.

73

74

Appendix F:
Bibliography

About Oberon

[1]
2]
[3]
[4])
[5]
(6]
[7]
(8]

N. Wirth, J. Gutknecht, Project Oberon, The Design of an

Operating System and Compiler. Addison-Wesley, 1993.

M. Reiser, N. Wirth, Programming in Oberon, Steps beyond Pascal and Modula.
Addison-Wesley, 1992.

N. Wirth, The Programming Language Oberon.

Institute for Computer Systems, ETH Ziirich, 1990.

H. Méssenbock, N, Wirth, The Programming Language Oberon-2.
Institute for Computer Systems, ETH Ziirich, 1992.

M. Brandis, R. Crelier, M. Franz, J. Templ, The Oberon System Family.
Institute for Computer Systems, ETH Ziirich.

C. Pfister, B. Heeb, J. Templ, Oberon Technical Notes, Report 156.
Institute for Computer Systems, ETH Ziirich, 1991.

IN. Wirth, From Modula to Oberon.

Institute for Computer Systems, ETH Ziirich, 1990.

N. Wirth, Tasks versus Threads, An Alternative Multiprocessing Paradigm.
Software-Concepts and Tools, no. 17, 1996, pp. 6-12.

Compiler Construction

[9]
[10]

[11]

A.V. Aho, R. Sethi, J.D. Ullman, Compilers, Principles, Technigues and Tools.
Addison-Wesley, 1986.

N. Wirth, Grundlagen und Techniken des Compilerbaus.

Addison-Wesley, 1996.

G. Rivera, L. Salvetti, Oberon-Crosscompiler, Monitor und Kernel fiir 68HC11.
Diploma theses, Institute for Computer Systems, ETH Ziirich, 1996.

also see [1]

Microcontrollers

[12]
[13]
(14]
[15]
[16]
[17]
[18]

A. Roth, Das Mikrocontroller - Kochbuch.

IWT Verlag GmbH, 1990.

A. Roth, Das Mikrocontroller - Applikations - Kochbuch.

IWT Verlag GmbH, 1996.

M. Ohsmann, Mikrocontroller Handbuch.

Elektor-Verlag, 1993.

O’Niel V. Som, Pascal - Cross-Compiler fiir Mikrocontroller der 803 1-Familie.
Elektor-Verlag, 1995.

E. Esders, Singlechip-Prozessoren, On-Chip-Peripherie und
Kommunikationsmaglichkeiten modermer Mikrocontroller. Franzis-Verlag, 1987.
16-bit 80C51XA Microcontrollers (eXtended Architecture).

Data Handbook IC25, Philips Semiconductors, 1995.

8051 microcontroller frequently asked questions list.

comp.sys.intel, last modified Feb 26™ 1994,

Appendix G:
Index

1-to-1 translation 2
68000 33

8031 44

8032 44

8048 43

80537 43

80C320 33
80C51XA 33
80C535 44

A

abstraction 25

ACALL 32;37
accumulator 6; 11; 32
accumulator machines 11
additional checks 28
addressing modes 14; 58
aims 8

AJMP 32; 37
architecture 44
arithmetic engine 10;72
arithmetic operations 62
array index checks 28
ASCII 42; 67

ASM directive 8; 37
assembler 2; 8; 36
assembler sections 37

B

B register 6; 11
backend 10; 33

basic types 40
benchmark 30

binary number 35
binary output 25
browser 10; 26; 66; 73
built-in assembler 8

Cc

call 20
call-by-reference 19
call-by-value 20
calling conventions 20
carry bit 13; 49

CASE 15

character 35

CJNE 14; 15

CMOS 2

code generator 10; 71
code inlining 31

code memory 46

code module bodies 18
code procedures 18; 35
code size 26

command 24

compares 13

compiler 2; 26

compiler construction 74
compiler options 28
conputer 1

context switch 6

control panel 26

core image 8; 10; 23; 26; 27; 31
coroutines 31

cross compilers 9

cross development system 30

D

data memory 47

data transfer 7; 61
debugger 32

decoder 10; 26; 65; 73
delayed code generation 11
development system 2; 30
DJNZ 32

DOS interrupt 17H 25
download 26

dynamic item manager 11; 32
dynamic linking 8
dynamic memory 8; 17

E

EBNF 37

endless loop 24

enter 20

epilogue 22

EPROM 3

EPROM burner 28
EPR.OM emulator 3
expression handler 10; 72
external RAM 28

F

file formats 65

fix addresses 5

fixup chains 14

floating point arithmetic 30
free list 35

frontend 10

function procedure 22

G

garbage collector 30; 32; 35
general purpose registers 6
global data 26

global procedures 20
global variables 19
guideline 8; 15

75

76

H

heap 17

heap pointer 17; 19; 23
high-level languages 1; 2
host interface 10; 68
host system options 27

I

in-circuit emulators 3
indirect-offset addressing 18
information hiding 1

inline assembler 10; 18; 30; 36, 72
instruction set 59

intel-hex 25; 26; 28; 66

interface port 28

interfaces 68

intermediate variable accesses 28
internal memory 19

internal RAM 5; 28

interrupt service procedures 7; 21; 32; 35
interrupts 5; 23; 24; 51

inversion of the sign bit 14

items 68

J
jump table 16

L

labels 37

LCD 30

leave 22

lexical analysis 10

linker 10;19; 23; 26; 72
linker parameter 27

liquid crystal display 30
little endian 5

loader 10; 26; 72

local (nested) procedures 21
local data 26

local variables 18

local variables window 21; 23; 26
log window 26

logical Operations 63

M

Mcs151 33

Mcs251 33

Mcs48 43

Mecs51 5; 43

Mocs51 derivatives 43
memory management 30
memory spaces 5; 7
messages 26
microcontrollers 1; 2; 74
mnemonics 2; 10; 18; 59
modify-compile-load-execute cycle 3
module interfaces 68
monitor program 3; 37
multiprocessing 30

N

nested procedures 21; 29
NIL 17

NIL checks 28

notations for numbers 35
numbers 13

O

Oberon 74

Oberon/F 9; 25

Oberon-2 ¢

object file 65

object-oriented 30

one-pass compiler 10

opcode notation 8

open array parameters 22; 32; 35
operating systems 25
optimizations 31; 32

options file 29; 67

options inconsistency error 28
options panel 27

P

panel 26; 27

parameters 19; 20

parser 10; 72

peephole optimization 11
periodic interrupts 27
peripheral functions 2

pin configuration 45

post mortem debugger 32
power consumption 2
predefined procedures 40
procedure activation frames 18
procedure epilogue 22
procedure prologue 20; 21
procedure variables 7; 17
program branching 64
program status word 6; 49
prologue 20; 21

PSW 49

Q
quartz crystal 45

R

record extensions 22; 32; 35
register banks 6
register machines 11
register managing 11
registers 6

reset 23

RETURN checks 28
return value 22
runtime errors 8
runtime libraries 31
runtime system 8
runtime trap 36

s

scanner 10; 70

semantic gap 2;7

semantical analysis 10

sets 12

shortcut access 26

simulator 3

SP 50

special function registers 48; 58
stack 6

stack overflow checks 28

stack pointer 7; 23; 28; 50
static core image 8; 10

static link 21

static memory assignment 7; 18; 30
symbol file 10; 66

symbol table 10; 70

symbolic debugger 32
SYSTEM 37; 41

77

T

T diagrams 9

target system settings 28
tasks 27

termination 24

timer 51

translation 9

transparent programming 34
trap numbers 42

trap procedure 35; 36

type conversion 40

U

user interface 73
V

variable accesses 23
w

warning 36

X

XA 33

