
What will we do?

Why do we have programming
languages?

Is programming language a
computer language?

What compilers do you know?

Compilers, interpreters.

Keep a translator nearby to
translate a paper each time.

Why compiling, why interpreting?

Pros and cons

https://jaxenter.com/energy-efficie
nt-programming-languages-13726
4.html

https://jaxenter.com/energy-efficient-programming-languages-137264.html
https://jaxenter.com/energy-efficient-programming-languages-137264.html
https://jaxenter.com/energy-efficient-programming-languages-137264.html

What is assembler?

What do we deal with in asm?
What do we deal with in PL?

Asm:
● registers

Asm:
● Registers
● Addresses

Asm:
● Registers
● Addresses
● CPU instructions (mov, add)

Asm:
● Registers
● Addresses
● CPU instructions (mov, add)

HL Programming languages
● Functions

HL Programming languages
● Functions
● Methods
●

HL Programming languages
● Functions
● Methods
● Variables
●

HL Programming languages
● Functions
● Methods
● Variables
● Data structures

HL Programming languages
● Functions
● Methods
● Variables
● Data structures
● loops

HL Programming languages
● Functions
● Methods
● Variables
● Data structures
● Loops
● modules

Why don’t we write in asm?
(or what do we write in asm?)

Why learn other language if we
can do everything in c++?

Std question:

Are there languages, that cannot
be compiled?

Who knows eval() function?

Cross compilers

JIT

Binary compilers
(binary to binary translation)

X86 -> MIPS
6502 -> x86
68000 -> SPARC

Bratman’s T diagrams

Src lang Target lang

 Instrumental lang

How first compilers were created?

What is bootstrapping?

Compilation process

Metalanguages

Our spoken language is
metalanguage.

Our spoken language is
metalanguage.

Language and syntax

sentence = subject predicate.

sentence = subject predicate.

subject = "John" | "Mary".
predicate = "eats" | "talks".

sentence = subject predicate.

subject = "John" | "Mary".
predicate = "eats" | "talks".

John eats Mary eats
John talks Mary talks

S = AB.

S = AB.

A = “a” | “b”.
B = “c” | “d”.

S = AB.

A = “a” | “b”.
B = “c” | “d”.

L = {ac, ad, bc, bd}

S = AB.

A = “a” | “b”.
B = “c” | “d”.

L = {ac, ad, bc, bd}
Language contains four sentences.
Typically, language contains infinitely many sentences.

S = A.

Infinite set may be defined with finite number of equations.
∅ - empty sequence.

S = A.

Infinite set may be defined with finite number of equations.
∅ - empty sequence.

A = “a” A | ∅

S = A.

Infinite set may be defined with finite number of equations.
∅ - empty sequence.

A = “a” A | ∅

L = {∅, a, aa, aaa, aaaa...}

S = A.

Nested sequences.

S = A.

Nested sequences.

A = “a” A “c” | “b”.

S = A.

Nested sequences.

A = “a” A “c” | “b”.

L = {b, abc, aabcc, aaabccc, … }

Structure of expressions
E: expression; T: term; F: factor: V: variable;

E = T | A “+” T.
T = F | T “*” F.
F = V | “(“ E “)”.
V = “a” | “b” | “c” | “d”.

Syntax tree

Language is defined by:

Language is defined by:

● Set of terminal symbols.

Language is defined by:

● Set of terminal symbols.
● Set of nonterminal symbols.

Language is defined by:

● Set of terminal symbols.
● Set of nonterminal symbols.
● Set of syntactic equations (productions)

Language is defined by:

● Set of terminal symbols.
● Set of nonterminal symbols.
● Set of syntactic equations (productions)
● Start symbol

Syntax = production syntax | ∅.
production = identifier "=" expression "." .
expression = term | expression "|" term.
Term = factor | term factor.
Factor = identifier | string.
Identifier = letter | identifier letter | identifier
digit.
string = stringhead """.
stringhead = """ | stringhead character.
Letter = "A" | ... | "Z".
Digit = "0" | ... | "9".

Backus Naur form, BNF, 1960.

syntax = {production}.
production = identifier "=" expression "." .
expression = term {"|" term}.
term = factor {factor}.
Factor = identifier | string | "(" expression ")
" | "[" expression "]" | "{" expression "}".
Identifier = letter {letter | digit}.
String = """ {character} """.
Letter = "A" | ... | "Z".
Digit = "0" | ... | "9".

Extended Backus Naur form, EBNF, 1977. By N. Wirth.

{x} is equivalent to an arbitrarily long sequence of x, therefore

{x} is equivalent to an arbitrarily long sequence of x, therefore

A = A B | ∅

{x} is equivalent to an arbitrarily long sequence of x, therefore

A = A B | ∅

Can be formulated as

A = {B}.

A factor of the form [x] is equivalent to “x or nothing”.

A factor of the form [x] is equivalent to “x or nothing”.

Need for the special symbol ∅ vanishes.

<postal-address> ::= <name-part> <street-address> <zip-part>

 <name-part> ::= <personal-part> <last-name> <opt-suffix-part> <EOL>
 | <personal-part> <name-part>

 <personal-part> ::= <initial> "." | <first-name>

 <street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>

 <zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-suffix-part> ::= "Sr." | "Jr." | <roman-numeral> | ""
 <opt-apt-num> ::= <apt-num> | ""

US postal address in BNF

digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
digit = "0" | digit excluding zero ;

Context free languages are languages that are describable
by a context free grammar. So the question reduces to :
What is a context free grammar?

A language is a set of strings, where each string is built up
from a base set of allowable symbols, the alphabet (Σ). Each
such string is called a sentence of the language. This
includes the empty sentence of no symbols at all.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the
language.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the
language.

It is important here to realize that, while a specific grammar,
uniquely determines a language, the converse is not true in
general. A given language, might have many different
grammars that describe it.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the
language.

It is important here to realize that, while a specific grammar,
uniquely determines a language, the converse is not true in
general. A given language, might have many different
grammars that describe it.

Note also, that nowhere in the above have I mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

Note also, that nowhere in the above have I mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

For example, on this view, "The invisible, pink unicorn ate
wrathful balls, after sleeping diligently" is a valid English
sentence, although perhaps meaningless, because it
respects the grammar of the English language.

Note also, that nowhere in the above have I mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

For example, on this view, "The invisible, pink unicorn ate
wrathful balls, after sleeping diligently" is a valid English
sentence, although perhaps meaningless, because it
respects the grammar of the English language.

<statement> = <subject> <action verb> <indirect object>
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob
<verb> = throws | gives | takes
<indirect object> = Ann | Bob | him | her
<object> = the ball | the sock
<linking verb> = is
<adjective> = female | male | tired | sleepy

<statement> = <subject> <action verb> <indirect object>
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob
<verb> = throws | gives | takes
<indirect object> = Ann | Bob | him | her
<object> = the ball | the sock
<linking verb> = is
<adjective> = female | male | tired | sleepy

This looks like a possible road to representing language, but it has a problem,
which is expressed by the term “context-free”. That is, you can’t build a finite
context-free language which can hold certain types of relations between
things. We can’t build a language where, say, saying “Ann is female.” would
imply that in order to speak of Ann as an indirect object later on, we have to
use “her”.

CFG - context free grammar

a set of production rules that describe all
possible strings in a given formal language.
Production rules are simple replacements.

Recoursive descent parser

● Before the parsing starts, first symbol of
the entity we parse is the current

Recoursive descent parser

● Before the parsing starts, first symbol of
the entity we parse is the current

● Function reads all symbols of the current
non-terminal, or emits error

Recoursive descent parser

● Before the parsing starts, first symbol of
the entity we parse is the current

● Function reads all symbols of the current
non-terminal, or emits error

● If rules for this non-terminal contain other
non-terminals in right side of equation,
then function calls functions to call those
non-terminals

Recoursive descent parser

● Before the parsing starts, first symbol of
the entity we parse is the current

● Function reads all symbols of the current
non-terminal, or emits error

● If rules for this non-terminal contain other
non-terminals in right side of equation,
then function calls functions to call those
non-terminals

● Then first symbol of the next construct is
current.

Current symbol at the start and the end of the parsing function of non-terminal A.

therefore

NextCh(); - read the first symbol
in to variable ch.

therefore

NextCh(); - read the first symbol
in to variable ch.

S(); - function of parsing a
beginning of non-terminal;

therefore

NextCh(); - read the first symbol in to
variable ch.

S(); - function of parsing a beginning
of non-terminal;

If ch # eot then begin error() end;

Regular languages

Regular languages

Syntactic equations of the form defined in EBNF generate context-free
languages.

Regular languages

Syntactic equations of the form defined in EBNF generate context-free
languages.

Substitution of the symbol left of = by a sequence derived from the expression
to the right of = is always permitted, regardless of the context in which the
symbol is embedded within the sentence.

● Machine language
● Assembly language
● High level language

https://www.masswerk.at/6502/6502_instruction_set.html

https://www.masswerk.at/6502/6502_instruction_set.html

Von Neumann architecture

Von Neumann architecture

Von Neumann architecture

● In case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

Von Neumann architecture

● In case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

● This means that a CPU cannot simultaneously read an
instruction and read or write data from or to the memory.

Von Neumann architecture

● In case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

● This means that a CPU cannot simultaneously read an
instruction and read or write data from or to the memory.

Harvard architecture

● In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

Harvard architecture

● In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

● A Harvard architecture computer can thus be faster for a
given circuit complexity because instruction fetches and
data access do not contend for a single memory pathway.

Harvard architecture

● In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

● A Harvard architecture computer can thus be faster for a
given circuit complexity because instruction fetches and
data access do not contend for a single memory pathway.

● has distinct code and data address spaces: instruction
address zero is not the same as data address zero.
Instruction address zero might identify a twenty-four bit
value, while data address zero might indicate an eight-bit
byte

Von Neumann architecture

Two main parts

● CPU

Von Neumann architecture

Two main parts

● CPU
● Memory

Von Neumann architecture

Two main parts

● CPU
● Memory

CPU

● Program counter

CPU

● Program counter
● Instruction decoder

CPU

● Program counter
● Instruction decoder
● Data bus

CPU

● Program counter
● Instruction decoder
● Data bus
● General purpose registers

CPU

● Program counter
● Instruction decoder
● Data bus
● General purpose registers
● Arithmetic and logic unit

CISC (it is a retronym)

● Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

CISC

● Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

● Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general
purpose registers.

CISC

● Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

● Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general
purpose registers.

● Several special purpose registers. Many CISC designs set aside special
registers for the stack pointer, interrupt handling, and so on. This can simplify
the hardware design somewhat, at the expense of making the instruction set
more complex.

CISC

● Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

● Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general
purpose registers.

● Several special purpose registers. Many CISC designs set aside special
registers for the stack pointer, interrupt handling, and so on. This can simplify
the hardware design somewhat, at the expense of making the instruction set
more complex.

● 'Condition code" register. This register reflects whether the result of the last
operation is less than, equal to, or greater than zero and records if certain error
conditions occur.

CISC

● One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.

RISC

● One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.

● Pipelining: A technique that allows simultaneous
execution of parts, or stages, of instructions to more
efficiently process instructions.

RISC

● One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.

● Pipelining: A technique that allows simultaneous
execution of parts, or stages, of instructions to more
efficiently process instructions.

● Large Number of Registers. The RISC design philosophy
generally incorporates a larger number of registers to
prevent large amounts of interactions with memory.

RISC

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Direct addressing mode:

 movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS .

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Direct addressing mode:

 movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Direct addressing mode:

 movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
 movl (%eax), %ebx

 Eax helds an address, and we move the value at that address to ebx.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Direct addressing mode:

 movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
 movl (%eax), %ebx

 %eax helds an address, and we move the value at that address to %ebx.

Base pointer addressing mode:

 movl 4(%eax), %ebx

As indirect, but adds a constant value to the address in the register. Useful for
record fields.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Immediate addressing mode:

 movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would
be used.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Immediate addressing mode:

 movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would
be used.

Register addressing mode:

simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Immediate addressing mode:

 movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would
be used.

Register addressing mode:

simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

Every mode except immediate mode can be used as either the source or
destination operand.
Immediate mode can only be a source operand.

https://en.wikipedia.org/wiki/Addressing_mode

How functions work.

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

static variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

static variables

global variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

static variables

global variables

return address

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

static variables

global variables

return address

return value

Calling conventions.

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; // 11000111

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; // 11000111

byte byte3 = byte1 + byte2;

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; // 11000111

byte byte3 = byte1 + byte2;
byte3 = 94

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; // 11000111

byte byte3 = byte1 + byte2;
byte3 = 94

150+199=349, binary 1 0101 1101,
the upper 1 bit is dropped and the byte becomes
 0101 1101;

Why computers use ‘two’s complement’ to represent signed numbers?

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

In the “clock arithmetic”, 2, 14 and –10 are just three
different ways to write down the same number.

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

In the “clock arithmetic”, 2, 14 and –10 are just three
different ways to write down the same number.

They are interchangeable in multiplications too:

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

In the “clock arithmetic”, 2, 14 and –10 are just three
different ways to write down the same number.

They are interchangeable in multiplications too:

formal term for “clock arithmetic” is “modular
arithmetic”. In modular arithmetic, two numbers are
equivalent if they leave the same non-negative
remainder when divided by a particular number.

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
“modular arithmetic” answer:
 1 + 2 –> 3
 4 + 5 -> 1

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
“modular arithmetic” answer:
 1 + 2 –> 3
 4 + 5 -> 1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
“modular arithmetic” answer:
 1 + 2 –> 3
 4 + 5 -> 1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

● The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
“modular arithmetic” answer:
 1 + 2 –> 3
 4 + 5 -> 1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

● The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

● The answer we got represents the lowest 3 bits of the correct
answer
For 4+5, we got 001, while the correct answer is 1001.

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
“modular arithmetic” answer:
 1 + 2 –> 3
 4 + 5 -> 1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

● The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

● The answer we got represents the lowest 3 bits of the correct
answer
For 4+5, we got 001, while the correct answer is 1001.

Why computers use ‘two’s complement’ to represent signed numbers?

Imagine infinite number line:

Why computers use ‘two’s complement’ to represent signed numbers?

Imagine infinite number line:

Then curl the number line into a circle so that 1000 overlaps the 000:

Why computers use ‘two’s complement’ to represent signed numbers?

the adder for unsigned integers can be used for signed integers too, exactly
as it is!

You can interpret those eight values as signed or unsigned.

Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it
from 2N.

For example, to get the representation of –2 in 3-bit arithmetic, you can
compute 8 – 2 = 6, and so –2 is represented in two’s complement as 6 in
binary: 110.

Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it
from 2N.

For example, to get the representation of –2 in 3-bit arithmetic, you can
compute 8 – 2 = 6, and so –2 is represented in two’s complement as 6 in
binary: 110.

another way to compute two’s complement, which is easier to imagine
implemented in hardware:

1. Start with a binary representation of the number you need to negate
2. Flip all bits
3. Add one

Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine());
int b = int.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f call 79084EA0
00000054 mov ecx,eax
00000056 imul esi,edi
00000059 mov edx,esi
0000005b mov eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine());
uint b = uint.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f call 79084EA0
00000054 mov ecx,eax
00000056 imul esi,edi
00000059 mov edx,esi
0000005b mov eax,dword ptr [ecx]

The IMUL instruction does not know whether its arguments are signed or
unsigned, and it can still multiply them correctly!

Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine());
int b = int.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f call 79084EA0
00000054 mov ecx,eax
00000056 imul esi,edi
00000059 mov edx,esi
0000005b mov eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine());
uint b = uint.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f call 79084EA0
00000054 mov ecx,eax
00000056 imul esi,edi
00000059 mov edx,esi
0000005b mov eax,dword ptr [ecx]

IMUL is for signed multiplications. MUL is for unsigned. IMUL checks for
overflows and sets the overflow processor flag.

Why computers use ‘two’s complement’ to represent signed numbers?

Why computers use ‘two’s complement’ to represent signed numbers?

Why computers use ‘two’s complement’ to represent signed numbers?

Pascal:

if (a < 0) then
 a := ((not a) or 128) + 1;

C:

int convert(int a) {

 if (a < 0)

 a = ~(-a) + 1;

 return a;

}

Why computers use ‘two’s complement’ to represent signed numbers?

Pros:

● Same cpu instructions for addition, substruction, multiplication (check
overflow flags)

● No -0

Cons:

● Unusual for humans representation
● if you try to negate the lowest representable value, you get an overflow

Why computers use ‘two’s complement’ to represent signed numbers?

Sign extention

Why computers use ‘two’s complement’ to represent signed numbers?

