What will we do?

Why do we have programming
languages?

Is programming language a
computer language”?

What compilers do you know?

Compilers, interpreters.

Keep a translator nearby to
translate a paper each time.

Why compiling, why interpreting?

Pros and cons

https://jaxenter.com/energy-efficie
nt-programming-languages-13726
4.html

https://jaxenter.com/energy-efficient-programming-languages-137264.html
https://jaxenter.com/energy-efficient-programming-languages-137264.html
https://jaxenter.com/energy-efficient-programming-languages-137264.html

Total

Energy Time Mb
(c) C 1.00 (c) C 1.00 (c) Pascal 1.00
(c) Rust 1.03 (c) Rust 1.04 (c) Go 1.05
(c) C++ 1.34 (c) C++ 1.56 (c) C 1.17
(c) Ada 1.70 (c) Ada 1.85 (¢) Fortran 1.24
(v) Java 1.98 (v) Java 1.89 (c) C++ 1.34
(c) Pascal 2.14 (c) Chapel 2.14 (c) Ada 1.47
(c) Chapel 2.18 (¢) Go 2.83 (¢) Rust 1.54
(v) Lisp 2.27 (c¢) Pascal 3.02 (v) Lisp 1.92
(¢) Ocaml 2.40 (¢) Ocaml 3.09 (c¢) Haskell 2.45
(¢) Fortran 2.52 (v) C# 3.14 iy PHP 2.57
(c) Swift 2.79 (v) Lisp 3.40 (c) Swift 2.71
(c) Haskell 3.10 (c) Haskell 3.55 (i) Python 2.80
(v) C# 3.14 () Swift 4.20 (¢) Ocaml 2.82
(c) Go 3.23 (c) Fortran 4.20 (v) C# 2.85
(i) Dart 3.83 (v) F# 6.30 (i) Hack 3.34
(v) F# 4.13 (i) JavaScript 6.52 (v) Racket 3.52
(i) JavaScript 4.45 (i) Dart 6.67 (i) Ruby 3.97
(v) Racket 7.91 (v) Racket 11.27 (c) Chapel 4.00
(i) TypeScript 21.50 (i) Hack 26.99 (v) F# 4.25
(i) Hack 24.02 (i) PHP 27.64 (i) JavaScript 4.59
(i) PHP 29.30 (v) Erlang 36.71 (i) TypeScript | 4.69
(v) Erlang 42.23 (i) Jruby 43.44 (v) Java 6.01
(i) Lua 45.98 (i) TypeScript | 46.20 (i) Perl 6.62
(i) Jruby 46.54 (i) Ruby 59.34 (i) Lua 6.72
(i) Ruby 69.91 (i) Perl 65.79 (v) Erlang 7.20
(i) Python 75.88 (i) Python 71.90 (i) Dart 8.64
(i) Perl 79.58 (i) Lua 82.91 (i) Jruby 19.84

Table 5. Pareto optimal sets for different combination of objectives.

Time & Memory Energy & Time Energy & Memory Energy & Time & Memory
C « Pascal « Go C C « Pascal C « Pascal « Go
Rust « C++ « Fortran Rust Rust « C++ « Fortran « Go Rust « C++ « Fortran
Ada C++ Ada Ada
Java « Chapel » Lisp » Ocaml Ada Java « Chapel » Lisp Java « Chapel « Lisp « Ocaml
Haskell « C# Java OCaml « Swift « Haskell Swift « Haskell « C#
Swift « PHP Pascal « Chapel C# « PHP Dart « F# « Racket « Hack « PHP
F# « Racket « Hack « Python Lisp « Ocaml « Go Dart « F# « Racket « Hack « Python JavaScript « Ruby « Python
JavaScript « Ruby Fortran « Haskell « C# JavaScript « Ruby TypeScript « Erlang
Dart « TypeScript « Erlang Swift TypeScript Lua « JRuby « Perl
JRuby « Perl Dart « F# Erlang « Lua « Perl
Lua JavaScript JRuby
Racket
TypeScript « Hack
PHP
Erlang
Lua « JRuby

Ruby

What is assembler?

//1°15;
sechuy L 11001010 1071 00N
- >110010101011 0on
J:25, 1100 1010 1071 00M
ek 1100 1010 1011 00T1
| —7| moo1o1010m oot
/1 1100 1010 1011 00™1

LDR R2,[RT, #-8]
LDRR3,[RM, #-12]
ADD R3, R2, R3
STRR3,[RN, #-8]

ASSEMBLY LANGUAGE A MACHINE CODE

ASSEMBLER
AN

AssemblyLanguagetuts.com

What do we deal with in asm?
What do we deal with in PL?

Asm:
e registers

Asm:;
e Regqisters
e Addresses

Asm:

e Regqisters

e Addresses

e CPU instructions (mov, add)

Asm:

e Regqisters

e Addresses

e CPU instructions (mov, add)

HL Programming languages
e Functions

HL Programming languages
e Functions
e Methods

HL Programming languages
e Functions

e Methods
e \Variables
o

HL Programming languages
e Functions

e Methods

e \ariables

e Data structures

HL Programming languages
e Functions

Methods

Variables

Data structures

loops

HL Programming languages
Functions

Methods

Variables

Data structures

Loops

modules

Why don’t we write in asm?
(or what do we write in asm?)

Std question:

Why learn other language if we
can do everything in c++7

Are there languages, that cannot
be compiled?

Who knows eval() function?

Cross compilers

JIT

Binary compilers
(binary to binary translation)

X86 -> MIPS
6502 -> x386
638000 -> SPARC

Bratman's T diagrams

Src lang Target lang

Instrumental lang

pascal

IBM PC

IBM PC

Oberon Ceres

CH

C++

C++

Ober}n

BASIC

IBM PC

OTN —3 UNCOL OTN — UNCOL

R1
G G
UNCOU UNCOL —= 704 | 704
iR
704

Fig. 2

How first compilers were created?

What is bootstrapping?

Compilation process

lexical
analysis

syntax
analysis

code
generation

Pascal Modula Oberon

l l l

Syntax tree

l l l

MIPS RISC ARM

Syntax voIlume (IN Or IeXems)

3500

3000

2500

2000

1500

1000

500

3 Ada 95 f

[~ Ada ISO C++

C Java-2

- Delphi-7

B Pascal Delphi-1

- ANSI C Component|Pascal

_Algol-60 Modula-2 oF (BlackBox; ISPCF’-NET)

B eron & °

= 8?;?;" 2 Oberon-07

(Astrobe)

Lot o b b b b b Lo

1960 1970 1980 1990 2000

Metalanguages

Our spoken language is
metalanguage.

Our spoken language is
metalanguage.

Language and syntax

sentence = subject predicate.

sentence = subject predicate.

subject = "John" | "Mary".
predicate = "eats" | "talks".

sentence = subject predicate.

subject = "John" | "Mary".
predicate = "eats" | "talks".

John eats Mary eats
John talks Mary talks

AB.

L = {ac, ad, bc, bd}

o >
1
o

L = {ac, ad, bc, bd}

Language contains four sentences.
Typically, language contains infinitely many sentences.

Infinite set may be defined with finite number of equations.
@ - emply sequence.

S =A.

Infinite set may be defined with finite number of equations.
@ - emply sequence.

S =A.

A=“a,,A|@

Infinite set may be defined with finite number of equations.
@ - emply sequence.

S =A.

A=“a,,A|@

L ={9 a, aa, aaa, aaaa...}

Nested sequences.

S

A.

Nested sequences.

S =A.

A — “a” A “C” | “b”.

Nested sequences.

S =A.

A — “ 7 A (1Pl | “b”.

L = {b, abc, aabcc, aaabccec, ...

Structure of expressions
E: expression; T: term; F: factor: V: variable;

TIA“"T.
=F|T“" F.

V| “(“E “Y.
=“a” | “b” | “¢” | “d”".

Syntax tree

a*b+c

(a+b)*(c+d)

A

(A)

/[\

(A)

/[\

Language is defined by:

Language is defined by:

e Set of terminal symbols.

Language is defined by:

e Set of terminal symbols.
e Set of nonterminal symbols.

Language is defined by:

e Set of terminal symbols.
e Set of nonterminal symbols.
e Set of syntactic equations (productions)

Language is defined by:

Set of terminal symbols.

Set of nonterminal symbols.

Set of syntactic equations (productions)
Start symbol

Backus Naur form, BNF, 1960.

Syntax = production syntax | .

production = identifier "=" expression "." .
expression = term | expression "|" term.
Term = factor | term factor.

Factor = identifier | string.

|dentifier = letter | identifier letter | identifier

digit.

string = stringhead """

stringhead = """ | stringhead character.
Letter = "A" | ... | "Z".

Digit = "0" | ... | "9".

Extended Backus Naur form, EBNF, 1977. By N. Wirth.

syntax = {production}.

production = identifier "=" expression
expression = term {"|" term}.

term = factor {factor}.

Factor = identifier | string | "(" expression ")
""" expression "|" | "{" expression "}".
|dentifier = letter {letter | digit}.

String = """ {character}
Letter = "A" | ... | "Z".

Digit ="0" | ... | "9".

{x} is equivalent to an arbitrarily long sequence of x, therefore

{x} is equivalent to an arbitrarily long sequence of x, therefore

A=AB|@

{x} is equivalent to an arbitrarily long sequence of x, therefore

A=AB|@

Can be formulated as

A = {B).

A factor of the form [x] is equivalent to “x or nothing”.

A factor of the form [x] is equivalent to “x or nothing”.

Need for the special symbol @ vanishes.

US postal address in BNF

<postal-address> ::= <name-part> <street-address> <zip-part>

<name-part> ::= <personal-part> <last-name> <opt-suffix-part> <EOL>
| <personal-part> <name-part>

<personal-part> ::= <initial> "." | <first-name>
<street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>
<zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-suffix-part> ::= "Sr." | "Jr." | <roman-numeral> |
<Opt-apt-num> = <apt_num> | "

digit eXCIUding ZerO = ll1ll | "2" | "3" | ll4" I "5" | "6" | "7" | ll8|l | |l9" ;
digit ="0" | digit excluding zero ;

Context free languages are languages that are describable
by a context free grammar. So the question reduces to :
What is a context free grammar?

A language is a set of strings, where each string is built up
from a base set of allowable symbols, the alphabet (2). Each
such string is called a sentence of the language. This
includes the empty sentence of no symbols at all.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the

language.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the
language.

It is important here to realize that, while a specific grammar,
uniquely determines a language, the converse is not true in
general. A given language, might have many different
grammars that describe it.

For most languages, not just any sequences of symbols form
a sentence, but there are certain structural rules that define
the allowable sentences. These structural rules, taken
together, form what is known as the grammar of the
language.

It is important here to realize that, while a specific grammar,
uniquely determines a language, the converse is not true in
general. A given language, might have many different
grammars that describe it.

Note also, that nowhere in the above have | mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

Note also, that nowhere in the above have | mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

For example, on this view, "The invisible, pink unicorn ate
wrathful balls, after sleeping diligently" is a valid English
sentence, although perhaps meaningless, because it
respects the grammar of the English language.

Note also, that nowhere in the above have | mentioned any
concept of meaning for the sentences of the language.
Formal language theory does not address meaning, only
structure.

For example, on this view, "The invisible, pink unicorn ate
wrathful balls, after sleeping diligently" is a valid English
sentence, although perhaps meaningless, because it
respects the grammar of the English language.

<statement> = <subject> <action verb> <indirect object>
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob

<verb> = throws | gives | takes

<indirect object> = Ann | Bob | him | her

<object> = the ball | the sock

<linking verb> =is

<adjective> = female | male | tired | sleepy

<statement> = <subject> <action verb> <indirect object>
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob

<verb> = throws | gives | takes

<indirect object> = Ann | Bob | him | her

<object> = the ball | the sock

<linking verb> =is

<adjective> = female | male | tired | sleepy

This looks like a possible road to representing language, but it has a problem,
which is expressed by the term “context-free”. That is, you can’t build a finite
context-free language which can hold certain types of relations between
things. We can’t build a language where, say, saying “Ann is female.” would
imply that in order to speak of Ann as an indirect object later on, we have to
use “her”.

CFG - context free grammar

a set of production rules that describe all
possible strings in a given formal language.
Production rules are simple replacements.

Recoursive descent parser

e Before the parsing starts, first symbol of
the entity we parse is the current

Recoursive descent parser

e Before the parsing starts, first symbol of
the entity we parse is the current

e Function reads all symbols of the current
non-terminal, or emits error

Recoursive descent parser

e Before the parsing starts, first symbol of
the entity we parse is the current

e Function reads all symbols of the current
non-terminal, or emits error

e If rules for this non-terminal contain other
non-terminals in right side of equation,
then function calls functions to call those
non-terminals

Recoursive descent parser

e Before the parsing starts, first symbol of
the entity we parse is the current

e Function reads all symbols of the current
non-terminal, or emits error

e If rules for this non-terminal contain other
non-terminals in right side of equation,
then function calls functions to call those
non-terminals

e Then first symbol of the next construct is
current.

Current symbol at the start and the end of the parsing function of non-terminal A.

therefore

NextCh(); - read the first symbol
in to variliable ch.

therefore

NextCh(); - read the first symbol
in to variliable ch.

S(); - function of parsing a
beginning of non-terminal;

therefore

NextCh(); - read the first symbol in to
variable ch.

S(); - function of parsing a beglinning
of non-terminal;

If ch # eot then begin error () end;

Regular languages

Regular languages

Syntactic equations of the form defined in EBNF generate context-free
languages.

Regular languages

Syntactic equations of the form defined in EBNF generate context-free
languages.

Substitution of the symbol left of = by a sequence derived from the expression
to the right of = is always permitted, regardless of the context in which the
symbol is embedded within the sentence.

e Machine language
e Assembly language
e High level language

9

10

11 Al

12 A2

13 M

14 AUXMOVE
15

34609
$3C
$3€
$42
$C311

“ 0000000000 CPCPOCPOIOIOOIOIOIOOOIOOOOOS
17 o SETUP - move data for VTOC
18 « and catalog to auxmem ot
19 - BO99-B3FF (pseudo trk 11

20 « §-3)

2] ccccccccccccceccccccccccce

22 SETUP
23
24
2%
26
27
20
29
k|
3
32
33
38
38
k

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
SEC
np

#<VT0C
Al
#>VT0C
Aleld
#<END
A2
>END
A2¢1
4868
B8
5888
Aol

https://www.masswerk.at/6502/6502 instruction set.html

https://www.masswerk.at/6502/6502_instruction_set.html

Copyright® The McGraw-Hill Companies, Inc. Permission requiredforreproduction ordisplay.

Machine Language vs. Assembly Language

Objective: Multiply the value stored in R4 by 12

Machine Language Assembly Language
0011 0000 0000 0000 .ORIG x3000
0101 000 000 1 00000 AND RO, RO, #0
0101 111 111 1 00000 AND R7, R7, #0
0001 000 000 1 01100 ADD RO, RO, #12
0000 110 000000011 TEST BRnz DONE
0001 111 111 000 100 ADD R7, R7, R4
0001 000 000 1 11111 ADD RO, RO, #-1
0000 111 111111100 BRnzp TEST
1111 0000 0010 0101 DONE HALT

.END

Von Neumann architecture

Von Neumann architecture

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

Processor (CPU)

—Store data and program

Execute program —

Do arithmetic/logic operations _|
requested by program

Communicate with
"outside world", e.g.
» Screen

» Keyboard

» Storage devices

SHARED

compiled code (a.ouf)

MEMORY

STACK

Memory Layout (Virtual address space of a C process)

Systemn

ey
gy
4AR<

auto variables for
mainf)

auto varables for

available for
stack growth

High memory

Stack illusteated after the call

func(72,73) called from mainf),
assuming func defined by:
funchintx,int 3) {

inta;
int b[3],

mfp — frame pointer (for main)

% no other auto vadables %

Assumes int = long = char ¥ of
stack pointer size 4 and assumes stack at high

(gowrs dovrnvracd if func()
calls another function)

address and descending dowrn.

Expanded view of the stack

Offset from current
frame pointer (for
func)
rmalloc.o (lib*.50) libracy functions if 412
- - " dy ically linked 48
panto (lib* o) {usual case) “
avaiiable for fm'mq;:: - ;
points here —+
heap growth _8
bek poimt -1z
-16
Heap stack pointer —=
{malloc arena) ftop of stack)
points here

global vadiables

mallec.o (lib*a)

pantf.o (lib*.a)

file.o

e fonc(72,73)

crt0.0 (stattup routine)

umnitialized data (tes)
initialized data

statically linked

I libracy functions if
(not usval caxse)

-

Stack

maini)
ato
vanables

73

72

Qa

mtp

garbage

garbage

garbage

garbage

Contents

¥
x

retum address
caller’s fame pointer
a
b(7]
b1]
b[0]

All auto vadables and pammeters

frame pointer.

are eferenced via offsets from the

The frame pointer and stack pointer

are in registers (for fast access).

When funct cetums, the retom value
is stored in a egister. The stack pointer

is move to the y location, the code

ra (return add ress)

is jumped to the return address (ca),

and the frame pointer is set to mfp
(the stored value of the caller’s frame

Low memory

pointer). The caller moves the return
valoe to the dght place.

HIGHER ADDRESS

UNMAPPED e

STACK

LOWER ADDRESS

Commandline argument
& environment variables

Stack Frames

Dynamic Memory

Data Segment

Executable Code

Heap

arguments and environ-
Stack ental varialbes,temp va-

BSS

ninitialized data
|

DATA

initialized data
e 2 S e T

stored on disk

Text code

Von Neumann architecture

e |n case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

Von Neumann architecture

e |n case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

e This means that a CPU cannot simultaneously read an
instruction and read or write data from or to the memory.

Von Neumann architecture

e |n case of von Neumann architecture, instructions and data
are stored in the same memory, so instructions are fetched
over the same data path used to fetch data.

e This means that a CPU cannot simultaneously read an
instruction and read or write data from or to the memory.

Harvard architecture

e |In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

Harvard architecture

e |In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

e A Harvard architecture computer can thus be faster for a
given circuit complexity because instruction fetches and
data access do not contend for a single memory pathway.

Harvard architecture

e |In a computer using the Harvard architecture, the CPU can
both read an instruction and perform a data memory access
at the same time, even without a cache.

e A Harvard architecture computer can thus be faster for a
given circuit complexity because instruction fetches and
data access do not contend for a single memory pathway.

e has distinct code and data address spaces: instruction
address zero is not the same as data address zero.
Instruction address zero might identify a twenty-four bit
value, while data address zero might indicate an eight-bit
byte

Instruction
memory

Data
memory

[e)

Von Neumann architecture

Two main parts

o CPU

Von Neumann architecture

Two main parts

e CPU
e Memory

Von Neumann architecture

Two main parts

e CPU
e Memory

€ v

e 23 G D 20 A
e & D

b B B m‘us we 2

& G e®

- - v ’
ve X "o S8
098P N Q=

& T 2Rp

26

<

& €@
SO
o=
eéeo
AR 4
® oo

= ¢ &

eSS

HeS
®e?

S

WP 5 e

4
&

i"téiéé;

%

[
"
»

L___ ,..f -
Cleldelé(é/
ALATAYATAY!

\

INPUT -2

Central Processing Unit

ALU
(Arithmetic Logic Unit)

STORAGE

OUTPUT -2

nstruction et rchitecture.

% An agreement between hardware
and human for making interaction.

% Example : ADD R1, R2, R3

® Can be represented as :

00101111100001111001010101010101
10111010100011110101001011011010

ISA Classification

® Two major schools of ISA

8 . CISC

omplex nstruction et omputer

3 RISC

educed nstruction et omputer

CISC Philosophy

® Reduce amount of storage used and
accessed - reduce load/store.

% Give support for compatibility.

¥ Make compiler’s job easier.

S Support complex assembly level
programming.

RISC Philosophy

® Execute one instruction per
clock.

% Keep all instructions of same
size.

% Allow only load / store
instruction to access the memory.

® Give support for high level
languages (like C, C++, Java).

EAX

EBX

ECX

EDX

General purposa Reqisters

ESI

EDI

ESP
(stack pomnter)

EBP
{base pomter)

16 bits =—————

8 bits

AX AH AL
BX EH BL

CX

DX

DH

32 bits

16-bit EAX
registers EBX

Accumulator
Base Index

T |
. . EDX Data
8-bit 16-bit _

names ESP Stack Pointer

b EBP Base Pointer
32-bit .
extensions EDI Destination Index

ESI Source Index

FIP Instruction Pointer

EFLAGS | Flags

Code
Data

Extra
Stack

80386-Pentium IIT only ./

®

MC68000FN12
4CIIE

QQVZ9431

CPU

e Program counter

CPU

e Program counter
e Instruction decoder

CPU

e Program counter
e |nstruction decoder
e Data bus

CPU

Program counter
Instruction decoder

Data bus

General purpose registers

CPU

Program counter
Instruction decoder

Data bus

General purpose registers
Arithmetic and logic unit

A pictorial representation of some of the registers in a 32-bit processor. Note that each register
is composed of 32 chambers containing either zero or one. Since there are only two possible
values a chamber can have and since there are 32 chambers in a register, a single register can
have (2 raised to the power 32) different combinations of 0s and 1s (i.e. =2432 different

values) .

Endianness
0x12345678

Big Endian Little Endian
Address Value Address Value
X+0 12 X+0 78
X+1 34 X+1 56
X+2 56 X+2 34
X+3 78 X+3 12

v

0x100 Ox101 0x102 0x103

| TN | |

Big Endian

0x100 Ox101 Ox102 0Ox103

Little Endian

bitcount:
ADD
ADD

loop:
ADD |
SHLL
AND
BEQZ
ADDI

noadd:
ADDI
SUBI
BNEZ
RET

MIPS vs. Intel

r2,r0, r0
r3, ro, r0

r4, r0, #1
rd, r4, r2
r4, r4, r1
noadd

r2, ro, #1

r2, r0, #1
ro, r2, #32
loop

bitcount: # EAX->EBX
XOR EBX, EBX
XOR CL,CL
loop:
MOVEDX, #1
SHL EDX, CL
AND EDX, EAX
BEQ noadd
INC EBX
noadd:
INC CL
CMP CL, #32
BNE loop
{1

Marcel Waldvogel, IBM Zurich Research Laboratory, Universitat Konstanz, 15.10.2001, 10

CISC (it is a retronym)

CISC

e Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

CISC

e Complex instruction-decoding logic, driven by the need for a single instruction

to support multiple addressing modes.
e Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general

purpose registers.

CISC

Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general
purpose registers.

Several special purpose registers. Many CISC designs set aside special
reqgisters for the stack pointer, interrupt handling, and so on. This can simplify
the hardware design somewhat, at the expense of making the instruction set
more complex.

CISC

Complex instruction-decoding logic, driven by the need for a single instruction
to support multiple addressing modes.

Small number of general purpose registers. Instructions which operate directly
on memory, and only the limited amount of chip space is dedicated for general
purpose registers.

Several special purpose registers. Many CISC designs set aside special
reqgisters for the stack pointer, interrupt handling, and so on. This can simplify
the hardware design somewhat, at the expense of making the instruction set
more complex.

'‘Condition code" register. This register reflects whether the result of the last
operation is less than, equal to, or greater than zero and records if certain error
conditions occur.

RISC

e One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.

RISC

e One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.
e Pipelining: A technique that allows simultaneous

execution of parts, or stages, of instructions to more
efficiently process instructions.

RISC

One Cycle Execution Time: RISC processors have a CPI
(clock per instruction) of one cycle.
Pipelining: A technique that allows simultaneous

execution of parts, or stages, of instructions to more
efficiently process instructions.

Large Number of Registers. The RISC design philosophy
generally incorporates a larger number of registers to
prevent large amounts of interactions with memory.

Architectural
Characterstics

Complex Instruction Set Computer(CISC)

Reduced Instruction Set
Computer(RISC)

Instruction size and

Large set of instructions with variable formats

Small set of instructions with

format (16-64 bits per instruction). fixed format (32 bit).
Data transfer Memory to memory. Register to register.
Most micro coded using control memory (ROM) Mostly hardwired without
CPU control

but modern CISC use hardwired control.

control memory.

Instruction type

Not register based instructions.

Register based instructions.

Memory access

More memory access.

Less memory access.

Clocks

Includes multi-clocks.

Includes single clock.

Instruction nature

Instructions are complex.

Instructions are reduced and
simple.

CISC

RISC

The original microprocessor ISA

Redesigned ISA that emerged in
the early 1980s

Instructions can take several
clock cycles

Single-cycle instructions

Hardware-centric design

—the ISA does as much as
possible using hardware

circuitry

Software-centric design

— High-level compilers take on
most of the burden of coding
many software steps from the
programmer

More efficient use of RAM than
RISC

Heavy use of RAM (can cause
bottlenecks if RAM is limited)

Complex and variable length
instructions

Simple, standardized
instructions

May support microcode (micro-
programming where
instructions are treated like
small programs)

Only one layer of instructions

Large number of instructions

Small number of fixed-length
instructions

Compound addressing modes

Limited addressing modes

RISC vs. CISC

Parameter RISC CISC
r— . e —
\~Tnstruction types (Simple j anley
—Number of instructions Redu Extended (100-200)
v pn"ation of an instruction @)ne cygle More cycles (4-120)
~ Instruction format Fixed Variable
Instruction execution In parallel (pipeline) Sequential
Addressing modes Simple Complex

Instructions accessing the
memory

Two: Load and Store

Almost all from the set

Register set

multiple

unique

Complexity

In compiler

In CPU (micro-program)

Comparison of Instruction Sets

CISC
o |

RISC

load [N N
Load ([, N
Prod [N,

Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Direct addressing mode:
movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS .

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Direct addressing mode:
movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Direct addressing mode:
movl ADDRESS, %eax
This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
movl (%eax), %ebx

Eax helds an address, and we move the value at that address to ebx.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Direct addressing mode:
movl ADDRESS, %eax
This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
movl (%eax), %ebx

%eax helds an address, and we move the value at that address to %ebx.
Base pointer addressing mode:
movl 4(%eax), %ebx

As indirect, but adds a constant value to the address in the register. Useful for
record fields.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Immediate addressing mode:

movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would
be used.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Immediate addressing mode:

movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would
be used.

Register addressing mode:

simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

https://en.wikipedia.org/wiki/Addressing_mode

Addresing modes

https://en.wikipedia.org/wiki/Addressing _mode

Immediate addressing mode:

movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would

be used.
Register addressing mode:
simply moves data in or out of a register. In all of our examples, register

addressing mode was used for the other operand.

Every mode except immediate mode can be used as either the source or
destination operand.
Immediate mode can only be a source operand.

https://en.wikipedia.org/wiki/Addressing_mode

%eax

Joah | Yoal

%ax

Layout of the %eax register

How functions work.

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.

local variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.
local variables

static variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.
local variables
static variables

global variables

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.
local variables

static variables
global variables

return address

How functions work.

function name - represents the address where the function’s code starts. (in
asm - label)

function parameters.
local variables

static variables
global variables
return address

return value

Calling conventions.

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; / 11000111

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; / 11000111

byte byte3 = byte1 + byte2;

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; / 11000111

byte byte3 = byte1 + byte2;
byte3 = 94

overflows

byte byte1 = 150; // 10010110
byte byte2 = 199; / 11000111

byte byte3 = byte1 + byte2;
byte3 = 94

150+199=349, binary 1 0101 1101,
the upper 1 bit is dropped and the byte becomes
0101 1101;

Why computers use ‘two’s complement’ to represent signed numbers?

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

. f— Salnm!
‘N1 +2hours = §:00
I ; -- Salnl
. f— Suln
‘A" - 10 hours = §:00

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

Sulm
LWL

Suln!
JLILE

Suln
LIS

+ 2 hours =

+ 14 hours =

— 10 hours =

Sulm
LIS

Sulm
LI

Iuln!
LILS

In the “clock arithmetic”, 2, 14 and —10 are just three
different ways to write down the same number.

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

‘N1 +2hours =9:00

L Sresty In the “clock arithmetic”, 2, 14 and —10 are just three
=l different ways to write down the same number.

‘00 +14 hours = §:00

‘N1 - 10 hours = §:00

They are interchangeable in multiplications too:

(2.00 +(3* 2)hours= {IO0
(2.00 +(3* 14)hours = {00
(2:00 *(3*-10) hours = {00

Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

‘N1 +2hours =9:00

L Aaes In the “clock arithmetic”, 2, 14 and —10 are just three
=l different ways to write down the same number.

‘00 +14 hours = §:00

‘N1 - 10 hours = §:00

They are interchangeable in multiplications too:

+(3 * 2) hours = .BB formal term for “clock arithmetic” is “modular

arithmetic”. In modular arithmetic, two numbers are

+(3 * 14) hours = /!0 equivalent if they leave the same non-negative
remainder when divided by a particular number.

+(3 *-10) hours = /{:0O0

u FG mu
£3 £33 £3
O O

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
‘modular arithmetic” answer:

1+2-—>3

4+5->1

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
‘modular arithmetic” answer:

1+2-—>3

4+5->1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
‘modular arithmetic” answer:

1+2-—>3

4+5->1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

e The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
‘modular arithmetic” answer:

1+2-—>3

4+5->1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

e The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

e The answer we got represents the lowest 3 bits of the correct
answer
For 4+5, we got 001, while the correct answer is 1001.

Why computers use ‘two’s complement’ to represent signed numbers?

consider 3-bit integers, which can represent integers from 0 to 7.
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the
‘modular arithmetic” answer:

1+2-—>3

4+5->1

The calculations wrap around, because any answer larger than 7 cannot be
represented with 3 bits. The wrapped-around answer is still meaningful:

e The answer we got is congruent (i.e., equivalent) to the real
answer, modulo 8.
This is the modular arithmetic! The real answer was 9, but we got 1.
And, both 9 and 1 leave remainder 1 when divided by 8.

e The answer we got represents the lowest 3 bits of the correct
answer
For 4+5, we got 001, while the correct answer is 1001.

Why computers use ‘two’s complement’ to represent signed numbers?

Imagine infinite number line:

R D T

Why computers use ‘two’s complement’ to represent signed numbers?

Imagine infinite number line:

R D T

Then curl the number line into a circle so that 1000 overlaps the 000:

Why computers use ‘two’s complement’ to represent signed numbers?

the adder for unsigned integers can be used for signed integers too, exactly

as it is!
Binary |Unsigned |Signed You can interpret those eight values as signed or unsigned.
value value

000 0 0

001 1 1

010 2 2

011 3 3

100 4 -4
101 |5 -3
110 |6 -2
111 |7 -1

Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it
from 2N,

For example, to get the representation of —2 in 3-bit arithmetic, you can
compute 8 — 2 = 6, and so -2 is represented in two’s complement as 6 in
binary: 110.

Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it
from 2N,

For example, to get the representation of —2 in 3-bit arithmetic, you can
compute 8 — 2 = 6, and so -2 is represented in two’s complement as 6 in
binary: 110.

another way to compute two’s complement, which is easier to imagine
implemented in hardware:

1. Start with a binary representation of the number you need to negate
2. Flip all bits
3. Addone

test.pas (/tmp) - VIM
var i, j: integer;
begin

= .
r

i
] ;
Briteln (i * j)

end.

test.pas [pascal,utf-8,unix]

[F3]: PasteMode off 8,3
test.pas" 10L, 73C

test.s (/tmp) - VIM
leaq -16(%rsp) ,%rsp
mov(q %rbx, -8 (%rbp)
call FPC_INITIALIZEUNITS
movw $-3,U _$PSPROGRAM $$ I
movw $5,U_$PSPROGRAM $$ J
call fpc_get output
movq %rax,%rbx
movswg U_SPSPROGRAM_S$S_I,%rax
movswgq U $PSPROGRAM_ $$ J,%rdx
mov(%rbx,%rsi
movl $0,%ed1
call fpc_write text sint
call FPC_IOCHECK
movq %rbx,%rdi
call fpc_writeln_end
call FPC_IOCHECK
call FPC_DO_EXIT
movq -8(%rbp) ,%rbx
leave
ret
LC2:
test.s [asm,utf-8,unix] : PasteMode off 18,2-5
set nolist

t.c (/tmp) - VIM
#include

int main()

{

fnsigned int a, b;

printf ("%d\n", a * b);

t.c [c,utf-8,unix] [F3]: PasteMode off 6,3
‘t.c" 13L, 106C

t.s (ftmp) - VIM

Mushq %rbp
.cfi def cfa offset
.cfi offset 6, -
movq %rsp, %rbp
.cfi def cfa register
subq $16, %rsp
movl $-3, -4(%rbp)
mov1l $5, -8(%rbp)
movl -4(%rbp), %eax

(%rbp) , %eax
movl %eax, %esi
movl $.LCO, %edi
movl $0, %eax
call printf
movl $0, %eax
leave
.cfl def cfa 7,
ret
.cfi endproc

LFEO:
.51ze main, .-main
.ident "GCC: (Funtoo 6.3.0) 6.3.0"
t.s [asm,utf-8,unix] [F3]: PasteMode off 11,2-5
set nolist

Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine()); 0000004f call 79084EA0
int b = int.Parse(Console.ReadLine()); 00000054 mov ecx,eax
Console.WriteLine(a * b); 00000056 imul esi,edi

00000059 mov edx,esi

0000005b mov eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine()): 0000004t call ~ 79084EAQ

uint b = uint.Parse(Console.ReadLine()); 00000054 mov ecx,eax
Console.WriteLine(a * b); 00000056 imul esi,edi

00000059 mov edx,esi

0000005b mov eax,dword ptr [ecx]

The IMUL instruction does not know whether its arguments are signed or
unsigned, and it can still multiply them correctly!

Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine()); 0000004f call 79084EA0
int b = int.Parse(Console.ReadLine()); 00000054 mov ecx,eax
Console.WriteLine(a * b); 00000056 imul esi,edi

00000059 mov edx,esi

0000005b mov eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine()): 0000004t call ~ 79084EAQ

uint b = uint.Parse(Console.ReadLine()); 00000054 mov ecx,eax
Console.WriteLine(a * b); 00000056 imul esi,edi

00000059 mov edx,esi

0000005b mov eax,dword ptr [ecx]

IMUL is for signed multiplications. MUL is for unsigned. IMUL checks for
overflows and sets the overflow processor flag.

Why computers use ‘two’s complement’ to represent signed numbers?

127 0111 1111 0111 1111 0111 1111
1 0000 0001 0000 0001 0000 0001

0 0000 0000 0000 0000 0000 0000

-0 1000 0000 1111 1111 ==

i | 1000 0001 1111 1110 1111 1111
»2 1000 0010 1111 1101 1111 1110
-3 1000 0011 1111 1100 1111 1101
-4 1000 0100 1111 1011 1111 1100
-5 1000 0101 1111 1010 1111 1011
-6 1000 0110 1111 1001 1111 1010
= 1000 0111 1111 1000 1111 1001
-8 1000 1000 1111 0111 1111 1000
-9 1000 1001 1111 0110 1111 0111
-10 1000 1010 1111 0101 1111 0110
~11 1000 1011 1111 0100 1111 0101
-127 1111 1111 1000 0000 1000 0001
-128 == s 1000 0000

Why computers use ‘two’s complement’ to represent signed numbers?

13 0013
12 0012
1 0011
10 0010
9 0009
8 0008
2 0002
1 0001
0 0000
=1 9999
-2 9998
-3 9997
-4 9996
-9 9991
-10 9990
-11 9989

-12 9988

Why computers use ‘two’s complement’ to represent signed numbers?

Pascal:

if (a < 0) then
a:=((nota)or128) + 1;

C:

int convert(int a) {

if (@< 0)
a=~(-a)+1;

return a;

}

Why computers use ‘two’s complement’ to represent signed numbers?

Pros:
e Same cpu instructions for addition, substruction, multiplication (check

overflow flags)
e No-0

Cons:

e Unusual for humans representation
e if you try to negate the lowest representable value, you get an overflow

Why computers use ‘two’s complement’ to represent signed numbers?

Sign extention

10 00 1010 0000 OO OO 1010
-15 1111 0001 1111 1713171 11171 el

Why computers use ‘two’s complement’ to represent signed numbers?

