
What will we do?



Why do we have programming 
languages?



Is programming language a 
computer language?



What compilers do you know?



Compilers, interpreters.



Keep a translator nearby to 
translate a paper each time.



Why compiling, why interpreting?



Pros and cons



https://jaxenter.com/energy-efficie
nt-programming-languages-13726
4.html
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https://jaxenter.com/energy-efficient-programming-languages-137264.html
https://jaxenter.com/energy-efficient-programming-languages-137264.html






What is assembler?





What do we deal with in asm?
What do we deal with in PL?
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HL Programming languages
● Functions
● Methods
● Variables
● Data structures
● Loops
● modules



Why don’t we write in asm?
(or what do we write in asm?)



Why learn other language if we 
can do everything in c++?

Std question:



Are there languages, that cannot 
be compiled?



Who knows eval() function?



Cross compilers



JIT



Binary compilers
(binary to binary translation)



X86 -> MIPS
6502 -> x86
68000 -> SPARC



Bratman’s T diagrams



Src lang        Target lang

      Instrumental lang







How first compilers were created?



What is bootstrapping?



Compilation process









Metalanguages



Our spoken language is
metalanguage.



Our spoken language is
metalanguage.



Language and syntax
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John talks       Mary talks
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S = AB.

A = “a” | “b”.
B = “c” | “d”.

L = {ac, ad, bc, bd}
Language contains four sentences.
Typically, language contains infinitely many sentences.
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S = A.

Infinite set may be defined with finite number of equations.
∅ - empty sequence.

A = “a” A | ∅ 

L = {∅, a, aa, aaa, aaaa...}



S = A.

Nested sequences.



S = A.

Nested sequences.

A = “a” A “c” | “b”.



S = A.

Nested sequences.

A = “a” A “c” | “b”.

L = {b, abc, aabcc, aaabccc, … }



Structure of expressions
E: expression; T: term; F: factor: V: variable;

E = T | A “+” T.
T = F | T “*”  F.
F = V | “(“ E “)”.
V = “a” | “b” | “c” | “d”.



Syntax tree
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Language is defined by:

● Set of terminal symbols.
● Set of nonterminal symbols.
● Set of syntactic equations (productions)
● Start symbol



Syntax  = production syntax | ∅.
production = identifier "=" expression "." .
expression = term | expression "|" term.
Term = factor | term factor.
Factor = identifier | string.
Identifier = letter | identifier letter | identifier 
digit.
string = stringhead """.
stringhead = """ | stringhead character.
Letter = "A" | ... | "Z".
Digit = "0" | ... | "9".

Backus Naur form, BNF, 1960.



syntax = {production}.
production = identifier "=" expression "." .
expression = term {"|" term}.
term = factor {factor}.
Factor = identifier | string | "(" expression ")
" | "[" expression "]" | "{" expression "}".
Identifier = letter {letter | digit}.
String = """ {character} """.
Letter = "A" | ... | "Z".
Digit = "0" | ... | "9".

Extended Backus Naur form, EBNF, 1977. By N. Wirth.



{x} is equivalent to an arbitrarily long sequence of x, therefore



{x} is equivalent to an arbitrarily long sequence of x, therefore

A = A B | ∅



{x} is equivalent to an arbitrarily long sequence of x, therefore

A = A B | ∅

Can be formulated as

A = {B}.



A factor of the form [x] is equivalent to “x or nothing”.



A factor of the form [x] is equivalent to “x or nothing”.

Need for the special symbol ∅ vanishes.



<postal-address> ::= <name-part> <street-address> <zip-part>

      <name-part> ::= <personal-part> <last-name> <opt-suffix-part> <EOL> 
                    | <personal-part> <name-part>

  <personal-part> ::= <initial> "." | <first-name>

 <street-address> ::= <house-num> <street-name> <opt-apt-num> <EOL>

       <zip-part> ::= <town-name> "," <state-code> <ZIP-code> <EOL>

<opt-suffix-part> ::= "Sr." | "Jr." | <roman-numeral> | ""
    <opt-apt-num> ::= <apt-num> | ""

US postal address in BNF



digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
digit                = "0" | digit excluding zero ;



Context free languages are languages that are describable 
by a context free grammar. So the question reduces to : 
What is a context free grammar?



A language is a set of strings, where each string is built up 
from a base set of allowable symbols, the alphabet (Σ). Each 
such string is called a sentence of the language. This 
includes the empty sentence of no symbols at all.



For most languages, not just any sequences of symbols form 
a sentence, but there are certain structural rules that define 
the allowable sentences. These structural rules, taken 
together, form what is known as the grammar of the 
language.
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<statement> = <subject> <action verb> <indirect object> 
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob
<verb> = throws | gives | takes
<indirect object> = Ann | Bob | him | her
<object> = the ball | the sock
<linking verb> = is
<adjective> = female | male | tired | sleepy



<statement> = <subject> <action verb> <indirect object> 
<object> | <subject> <linking verb> <adjective>
<subject> = Ann | Bob
<verb> = throws | gives | takes
<indirect object> = Ann | Bob | him | her
<object> = the ball | the sock
<linking verb> = is
<adjective> = female | male | tired | sleepy

This looks like a possible road to representing language, but it has a problem, 
which is expressed by the term “context-free”. That is, you can’t build a finite 
context-free language which can hold certain types of relations between 
things. We can’t build a language where, say, saying “Ann is female.” would 
imply that in order to speak of Ann as an indirect object later on, we have to 
use “her”.



CFG - context free grammar

a set of production rules that describe all 
possible strings in a given formal language. 
Production rules are simple replacements.
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Recoursive descent parser

● Before the parsing starts, first symbol of 
the entity we parse is the current

● Function reads all symbols of the current 
non-terminal, or emits error

● If rules for this non-terminal contain other 
non-terminals in right side of equation, 
then function calls functions to call those 
non-terminals

● Then first symbol of the next construct is 
current.



Current symbol at the start and the end of the parsing function of non-terminal A.



therefore

NextCh(); - read the first symbol 
in to variable ch.



therefore

NextCh(); - read the first symbol 
in to variable ch.

S(); - function of parsing a 
beginning of non-terminal;



therefore

NextCh(); - read the first symbol in to 
variable ch.

S(); - function of parsing a beginning 
of non-terminal;

If ch # eot then begin error() end;



Regular languages



Regular languages

Syntactic equations of the form defined in EBNF generate context-free 
languages. 



Regular languages

Syntactic equations of the form defined in EBNF generate context-free 
languages. 

Substitution of the symbol left of = by a sequence derived from the expression 
to the right of = is always permitted, regardless of the context in which the 
symbol is embedded within the sentence. 



● Machine language
● Assembly language
● High level language





https://www.masswerk.at/6502/6502_instruction_set.html
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Harvard architecture

● In a computer using the Harvard architecture, the CPU can 
both read an instruction and perform a data memory access 
at the same time, even without a cache.

● A Harvard architecture computer can thus be faster for a 
given circuit complexity because instruction fetches and 
data access do not contend for a single memory pathway.

● has distinct code and data address spaces: instruction 
address zero is not the same as data address zero. 
Instruction address zero might identify a twenty-four bit 
value, while data address zero might indicate an eight-bit 
byte 
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CPU

● Program counter
● Instruction decoder
● Data bus
● General purpose registers
● Arithmetic and logic unit











CISC (it is a retronym)



● Complex instruction-decoding logic, driven by the need for a single instruction 
to support multiple addressing modes.
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● Complex instruction-decoding logic, driven by the need for a single instruction 
to support multiple addressing modes.

● Small number of general purpose registers. Instructions which operate directly 
on memory, and only the limited amount of chip space is dedicated for general 
purpose registers.

● Several special purpose registers. Many CISC designs set aside special 
registers for the stack pointer, interrupt handling, and so on. This can simplify 
the hardware design somewhat, at the expense of making the instruction set 
more complex.

● 'Condition code" register. This register reflects whether the result of the last 
operation is less than, equal to, or greater than zero and records if certain error 
conditions occur.

CISC



● One Cycle Execution Time: RISC processors have a CPI 
(clock per instruction) of one cycle.

RISC



● One Cycle Execution Time: RISC processors have a CPI 
(clock per instruction) of one cycle.

● Pipelining: A technique that allows simultaneous 
execution of parts, or stages, of instructions to more 
efficiently process instructions.

RISC



● One Cycle Execution Time: RISC processors have a CPI 
(clock per instruction) of one cycle.

● Pipelining: A technique that allows simultaneous 
execution of parts, or stages, of instructions to more 
efficiently process instructions.

● Large Number of Registers. The RISC design philosophy 
generally incorporates a larger number of registers to 
prevent large amounts of interactions with memory.

RISC
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Direct addressing mode:
 
                movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
              movl (%eax), %ebx

 Eax helds an address, and we move the value at that address to ebx.
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Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Direct addressing mode:
 
                movl ADDRESS, %eax

This loads %eax with the value at memory address ADDRESS.

Indirect addressing mode:
              movl (%eax), %ebx

 %eax helds an address, and we move the value at that address to %ebx.

Base pointer addressing mode:

              movl  4(%eax), %ebx

As indirect, but adds a constant value to the address in the register. Useful for 
record fields.

https://en.wikipedia.org/wiki/Addressing_mode


Addresing modes
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Immediate addressing mode:

                movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would 
be used.
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                movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would 
be used.

Register addressing mode:

simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.
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Addresing modes

https://en.wikipedia.org/wiki/Addressing_mode

Immediate addressing mode:

                movl $12, %eax
If we did not use $ sign, then the value located at memory location 12 would 
be used.

Register addressing mode:

simply moves data in or out of a register. In all of our examples, register
addressing mode was used for the other operand.

Every mode except immediate mode can be used as either the source or 
destination operand. 
Immediate mode can only be a source operand.

https://en.wikipedia.org/wiki/Addressing_mode
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How functions work.

function name - represents the address where the function’s code starts. (in 
asm - label)

function parameters.

local variables

static variables

global variables

return address

return value



Calling conventions.
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byte byte2 = 199; // 11000111
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overflows

byte byte1 = 150; // 10010110  
byte byte2 = 199; // 11000111

byte byte3 = byte1 + byte2;
byte3 = 94 

150+199=349, binary 1 0101 1101, 
the upper 1 bit is dropped and the byte becomes 
               0101 1101;
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Why computers use ‘two’s complement’ to represent signed numbers?

Clock arithmetic

In the “clock arithmetic”, 2,  14 and –10 are just three 
different ways to write down the same number. 

They are interchangeable in multiplications too:

formal term for “clock arithmetic” is “modular 
arithmetic”. In modular arithmetic, two numbers are 
equivalent if they leave the same non-negative 
remainder when divided by a particular number. 
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consider 3-bit integers, which can represent integers from 0 to 7. 
If you add or multiply two of these 3-bit numbers in fixed-width binary arithmetic, you’ll get the 
“modular arithmetic” answer:
   1 + 2 –> 3
   4 + 5 -> 1
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Why computers use ‘two’s complement’ to represent signed numbers?

Imagine infinite number line:

Then curl the number line into a circle so that 1000 overlaps the 000:



Why computers use ‘two’s complement’ to represent signed numbers?

the adder for unsigned integers can be used for signed integers too, exactly 
as it is!

You can interpret those eight values as signed or unsigned.



Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it 
from 2N. 

For example, to get the representation of –2 in 3-bit arithmetic, you can 
compute 8 – 2 = 6, and so –2 is represented in two’s complement as 6 in 
binary: 110.



Why computers use ‘two’s complement’ to represent signed numbers?

It is called “two’s complement” because to negate an integer, you subtract it 
from 2N. 

For example, to get the representation of –2 in 3-bit arithmetic, you can 
compute 8 – 2 = 6, and so –2 is represented in two’s complement as 6 in 
binary: 110.

another way to compute two’s complement, which is easier to imagine 
implemented in hardware:

1. Start with a binary representation of the number you need to negate
2. Flip all bits
3. Add one











Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine());
int b = int.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f  call    79084EA0 
00000054  mov     ecx,eax 
00000056  imul    esi,edi
00000059  mov     edx,esi 
0000005b  mov     eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine());
uint b = uint.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f  call    79084EA0 
00000054  mov     ecx,eax 
00000056  imul    esi,edi
00000059  mov     edx,esi 
0000005b  mov     eax,dword ptr [ecx]

The IMUL instruction does not know whether its arguments are signed or 
unsigned, and it can still multiply them correctly!



Why computers use ‘two’s complement’ to represent signed numbers?

int a = int.Parse(Console.ReadLine());
int b = int.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f  call    79084EA0 
00000054  mov     ecx,eax 
00000056  imul    esi,edi
00000059  mov     edx,esi 
0000005b  mov     eax,dword ptr [ecx]

uint a = uint.Parse(Console.ReadLine());
uint b = uint.Parse(Console.ReadLine());
Console.WriteLine(a * b);

0000004f  call    79084EA0 
00000054  mov     ecx,eax 
00000056  imul    esi,edi
00000059  mov     edx,esi 
0000005b  mov     eax,dword ptr [ecx]

IMUL is for signed multiplications. MUL is for unsigned. IMUL checks for 
overflows and sets the overflow processor flag.
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Why computers use ‘two’s complement’ to represent signed numbers?

Pascal:

if (a < 0) then
    a := ((not a) or 128) + 1;

C:

int convert(int a) {

 if (a < 0)

   a = ~(-a) + 1;

 return a;

}



Why computers use ‘two’s complement’ to represent signed numbers?

Pros:

● Same cpu instructions for addition, substruction, multiplication (check 
overflow flags)

● No -0

Cons:

● Unusual for humans representation
● if you try to negate the lowest representable value, you get an overflow



Why computers use ‘two’s complement’ to represent signed numbers?

Sign extention



Why computers use ‘two’s complement’ to represent signed numbers?


