
Porting Native Oberon to the Gneiss Mi
rokernel { A Guideline

for Future Ports

Ja
ques Elo� and Frank van Riet

eloff�
s.sun.a
.za

vanriet�
s.sun.a
.za

Department of Computer S
ien
e

University of Stellenbos
h

11 February 1999

Abstra
t

The obje
t of this report is to give a brief overview of how Native Oberon System 3, Release

2.3.0 was ported to the Gneiss Mi
rokernel. It serves two main purposes. First, to des
ribe

the pro
ess of porting the system to the Gneiss kernel and the methods that were applied

during this pro
ess to a

omplish our goals. Se
ond, to serve as a guideline for when future

ports are attempted in order to minimize the type and number of errors that may o

ur

during su
h an exer
ise.

1

Contents

1 Introdu
tion 4

1.1 Conventions Used in this Report . 4

1.2 Overview of the Current Port . 4

1.3 System Spe
i�
ations . 5

1.4 A
knowledgements . 6

2 Porting Oberon 6

2.1 Beginning the Port . 6

2.1.1 The Basi
 Test Model . 6

2.1.2 Testing Memory Management . 7

2.1.3 Ex
eption Handlers . 8

2.1.4 Completion of the Oberon Core . 10

2.2 Porting Gadgets . 10

2.3 Porting Gneiss Related Modules . 10

2.4 Integration with CFS . 11

2.5 Continuing Gneiss Kernel Development . 12

3 Porting: A General Approa
h 12

3.1 Introdu
tion . 12

3.2 Cross Platform Development . 12

3.3 Debugging Te
hniques . 13

3.3.1 The Tra
e Module . 14

3.3.2 Serial Terminals . 14

3.3.3 Debugging the Display Driver . 15

3.3.4 The De
oder Module . 15

3.4 The OP2 Assembler . 15

3.5 The BootLinker . 16

4 Garbage Colle
tion and Memory Management 16

4.1 Introdu
tion . 16

4.2 The Initialization Pro
ess . 16

4.3 Memory Allo
ation . 17

4.3.1 Introdu
tion . 17

4.3.2 The Basis of Allo
ation: NewBlo
k . 19

4.3.3 Stru
tured Blo
ks: NewSys . 20

4.3.4 Stru
tured Blo
ks: NewRe
 . 21

4.3.5 Stru
tured Blo
ks: NewArr . 22

4.3.6 Stru
tured Blo
ks: NewSysArr . 22

4.4 Monitoring Memory Usage . 22

4.5 Colle
ting Garbage . 22

4.5.1 Introdu
tion . 22

4.5.2 The Mark Phase . 22

4.5.3 Sta
k Traversal in Threads . 23

4.5.4 The Sweep Phase . 23

2

5 Module Modi�
ations 24

5.1 Introdu
tion . 24

5.2 IPC.Mod . 25

5.3 VMSL.Mod . 26

5.4 ExpSL.Mod . 26

5.5 DmaSL.Mod . 26

5.6 GStrings.Mod . 26

5.7 Tra
e.Mod . 26

5.8 Kernel.Mod . 26

5.9 Display.Mod . 34

5.10 HDSL.Mod . 35

5.11 Disk.Mod . 36

5.12 Files.Mod . 36

5.13 Files.Mod (CFS) . 37

5.14 CFS.Mod . 37

5.15 FileDir.Mod . 37

5.16 Input.Mod . 38

5.17 Bu�ers.Mod . 38

5.18 Modules.Mod . 38

5.19 Viewers.Mod . 38

5.20 Fonts.Mod . 38

5.21 Reals.Mod . 39

5.22 MenuViewers.Mod . 39

5.23 Obje
ts.Mod . 39

5.24 Texts.Mod . 39

5.25 TextFrames.Mod . 39

5.26 Fonts.Mod . 39

5.27 FPA.Mod . 40

5.28 Oberon.Mod . 40

5.29 System.Mod . 40

5.30 Edit.Mod . 41

5.31 Strings.Mod . 41

5.32 NamePlates.Mod . 41

5.33 TextDo
s.Mod . 41

5.34 PanelDo
s.Mod . 42

5.35 Dire
tories.Mod . 42

6 Future Work 42

A Sour
e Listings 44

A.1 Lo
ating Garbage Colle
tion Errors . 44

A.2 The De
oder Module . 45

3

List of Figures

1 Sta
k Layout for an Ex
eption . 9

2 Initialization of the Heap . 17

3 Heap Blo
k Stru
tures . 19

4 Basi
 Allo
ation using NewBlo
k . 20

5 Type Des
riptor for Re
ords . 21

6 Marking Blo
ks . 23

List of Tables

1 System Resour
e Usage During Booting . 11

2 Interpretation of the SFAM Fields . 18

3 Tag Constru
tion for Sweeping . 24

4

1 Introdu
tion

The report is divided into several se
tions. While some fo
us dire
tly on the proje
t of

porting Oberon, others play a more informative part like the se
tion on garbage
olle
tion.

Se
tion 1.2 gives a brief overview of what the proje
t entailed. Se
tion 2 fo
us on how the

port was a

omplished, where and how it was started and how the di�erent modules �nally

ame together to form a single new system. General topi
s su
h as debugging,
ross platform

development and the system
on�guration that was used during the
urrent port will be

dis
ussed in Se
tion 3 .

Se
tion 4 plays only an informative part. This se
tion should serve as a good introdu
tory

text before delving into the sour
e
ode of the garbage
olle
tor and its related routines. The

authors feel it is ne
essary to in
lude this se
tion as the garbage
olle
tor was one of the

most
omplex se
tions of
ode en
ountered during the
urrent port, and, without a basi

understanding of how memory management fun
tions inside Oberon, making modi�
ations

or lo
ating errors in this se
tion
an be
ome time
onsuming and diÆ
ult.

Se
tion 5 gives a detailed des
ription of ea
h individual module that was involved during

the
urrent port. Although this se
tion stri
tly applies to the
urrent port, it should assist the

reader in obtaining the ne
essary knowledge to understand the Oberon sour
e
ode, espe
ially

how the di�erent modules are integrated, and hopefully redu
e the time required to perform

future ports.

1.1 Conventions Used in this Report

� The term
urrent port refers to the porting pro
ess of Native Oberon System 3,

Release 2.3.0 to the Gneiss environment.

� The term previous port refers to the system that was originally ported from DOS

Oberon in 1992.

� The term kernel is used inter
hangeably throughout the report and will be quali�ed

in the
ontext that it is used in as it
an refer to both the Gneiss mi
rokernel and the

Oberon Kernel module.

1.2 Overview of the Current Port

The proje
t was started to a

omplish a number of goals. First, to make the new Native

Oberon environment available to repla
e the the previous port. Se
ond, to in
lude the Gadgets

Graphi
al User Interfa
e (GUI) as an extension of the traditional viewer system thereby

making it more a

essible and easier to grasp for new users, espe
ially �rst year students who

use Oberon primarily as a tea
hing tool. Third, to possibly repla
e the IOSvr in the kernel

making Oberon the primary display through whi
h all information is
hannelled in
luding

other VM's. Last, to integrate the new system with the Ca
hing File Server whi
h repla
ed

the HFS system. Due to design
onstraints en
ountered, it was de
ided to keep the IOSvr

for the time being.

The IOSvr is
onsidered to be la
king in performan
e being one of the oldest servers

in the Gneiss kernel. The removal or repla
ement of the server would naturally hold many

advantages, but would also introdu
e
ertain design problems.

5

The greatest disadvantage
urrently is that the IOSvr is slow and does not o�er support

for the latest available Super VGA (SVGA)
hip sets found in most IBM Compatible PC

systems today. The IOSvr only supports standard VGA and one SVGA
hip set namely the

Tseng ET4000. This being the
ase, removing the IOSvr would allow one to use the display

drivers that Native Oberon provides, thus supporting a far wider variety of display hardware.

The greatest problem the authors foresaw was that the IOSvr supports both a text based

and a graphi
al oriented environment. The text environment is where VM's, ex
ept Oberon,

normally display information by making use of the WindowSvr. On
e the IOSvr is removed,

Oberon would be
ome the only a
tive display me
hanism on the system. Other VM's would

no longer be able to display themselves unless it was done inside the Oberon environment.

VM's in the text based environment allow for a
ertain amount of intera
tion as users
an

qui
kly swit
h from one VM to the next. In Oberon, the main s
heduling loop prohibits this

swit
hing to a
ertain extend in that only one task
an exe
ute at a
ertain time, even though

there may be many tasks installed in the
entral loop.

By removing the IOSvr, these two paradigms would have to be integrated into a single

environment. First, the viewer system would have to be extended to allow VM's to make

requests to display themselves inside the Oberon environment. In order to servi
e su
h re-

quests, the Oberon module would have to take on both the role of
lient and server where it

traditionally only played the role of a
lient of the Gneiss kernel. The biggest
hallenge was

that even if this new viewer me
hanism
ould be introdu
ed, VM's would no longer have the

same amount of freedom with regards to user intera
tion.

Se
ond, Oberon would need extensive modi�
ations in order to distinguish between viewers

owned by itself and those belonging to other VM's. One example here is that VM's might

sometimes need to display
riti
al data that requires a user's attention immediately. If Oberon

was busy attending to another task, the VM's request would simply be blo
ked until it
ould

be servi
ed. The result of this
ould be quite fatal, espe
ially if the information is lost and

ould not be retrieved again.

Given the
urrent status of the IOSvr, the authors' obje
tives and limited time frame of

two months, it was de
ided that the IOSvr would be kept during the
urrent port. Although

the standard VGA display driver that Native Oberon provides was used, it required a
ertain

amount of modi�
ation in order to work with the IOSvr and was only made possible by the

fa
t that the IOSvr supported the hardware.

1.3 System Spe
i�
ations

This se
tion gives a brief overview of the di�erent systems that were employed during the

urrent port:

� Sour
e: Native Oberon, System 3, Release 2.3.0

� Target: Gneiss mi
rokernel 0.74f with Ca
hing Filer Server (CFS)

� Development: Native Oberon, System 3, Release 2.3.0

� Testing: Gneiss mi
rokernel 0.73y, stand-alone DOS based version

Se
tion 3.2 gives a more detailed explanation on how the systems were employed to intera
t

with one another and fa
ilitated in the testing of the software.

6

1.4 A
knowledgements

We would like to extend our thanks and gratitude to the following people. They were always

eager to assist, whether it was simply a meaningful suggestion, the time they took to �t us

into their daily s
hedules or the replies to all the e-mail. It is mu
h appre
iated.

� Pieter de Villiers

� Eben Esterhuyse (Assistan
e during the integration of the
urrent port with CFS

(Ca
hing File Server))

� Alan Webber

� Ja
o Loubser

� Pieter Muller (ETH, for all the information provided regarding the garbage
olle
tor,

espe
ially for the information
ontained in Se
tions 4.3.3, 4.3.4, 4.3.5 and 4.3.6, as well

for making all the Oberon sour
e
ode available to us. Also involved with the previous

port)

� Johan de Villiers (Data-Fusion, assistan
e with debugging ex
eption handlers. Also

involved with the previous port)

� De Villiers De Wet (Data-Fusion, assistan
e with the garbage
olle
tor and debugging

suggestions. Also involved with the previous port)

� R�egis Crelier and Thomas Burri (R�egis Crelier drew the original heap diagrams. It was

redrawn by Thomas Burri and reprodu
ed for this report with the permission of Pieter

Muller)

2 Porting Oberon

2.1 Beginning the Port

Before writing a single line of
ode, the authors
on
entrated on understanding ea
h individual

module and its part in the Oberon hierar
hy. Understanding the Gneiss kernel is also very

important as it partially repla
e some of the fun
tions whi
h the Kernel module ful�lls under

Native. Be
ause the Kernel module forms the basis of the system, it follows that this was

the �rst Native module that was ported.

2.1.1 The Basi
 Test Model

Initially the Native kernel was stripped of all fun
tionality. Apart from the initialization
ode,

it
ontained only a single implemented pro
edure namely Exit that was taken from the Oberon

kernel from the previous port. From this a test VM was
onstru
ted. Stubs were implemented

for the memory routines in order to allow it to link
orre
tly. The memory routines were not

onsidered important at this stage as no dynami
 stru
tures were implemented. Following is

the
ode for the �rst VM that we used for testing the new Kernel module under Gneiss:

7

MODULE Test;

IMPORT

Kernel;

BEGIN

Kernel.Exit(0)

END Test.

The simplisti
 design was motivated by the fa
t that the VM fa
ilitated in providing the

means for testing the new Kernelmodule and therefore need not be a
omplex program itself.

In order for the test VM to exe
ute, the Kernel module had to be initialized
orre
tly.

The test VM was extended as more fun
tionality was introdu
ed to the Kernel module.

During these extensions it be
ame
lear that tra
king di�eren
es in the implementations

between the Kernel module of Native and that of the previous port was very important.

Although lo
ating
hanges that are Gneiss spe
i�
 usually proves to be a fairly easy task,

are must still be taken. Sometimes
ode might be en
ountered that is Gneiss spe
i�
, but

whi
h is no longer required. The same is true for Native
ode. Sometimes
ertain pro
edures

and fun
tions will need to be repla
ed with a Gneiss equivalent. Quite often se
tions were

en
ountered in the Kernelmodule whose servi
es were performed by servers inside the Gneiss

kernel. Consequently, these parts of the Native Kernel were removed or modi�ed to interfa
e

with Gneiss.

2.1.2 Testing Memory Management

Testing the memory management routines is very
omplex. Although there exist a number

of simple tests that
an be
ondu
ted, they only serve a general purpose and result in giving

a global view of memory management.

The initial tests fo
used on those routines that monitored memory usage. These rou-

tines are: LargestAvailable, Available and Used. On
e they proved to return a

urate

information the a
tual allo
ation and deallo
ation of memory was tested.

The authors again relayed on a simple test. A elementary dynami
 stru
ture like a binary

tree was
onstru
ted after whi
h it was traversed, deallo
ated and an expli
it
all was made to

the garbage
olle
tor. Memory usage was reported before, during and after the
onstru
tion

and traversal of the stru
ture.

During the early stages when work was still performed on the Oberon
ore, a number of

unre
overable errors o

urred. During the booting pro
ess of Oberon, the garbage
olle
tor

was a
tivated and
olle
ted all the a
tive �le handles before the module loader had
ompleted

loading all the required modules. After every possible
ause was explored, it was suspe
ted

that the error originated during garbage
olle
tion. The suspi
ion was veri�ed when
he
ks

were implemented on the root pointer of the �le handles. This pointer spontaneously turned

NIL during the booting pro
ess, shortly after the garbage
olle
tor was
alled for the �rst

time.

A more spe
ialized test

1

was applied and immediately failed, thus strengthening the

authors' suspi
ion that the garbage
olle
tor did
olle
t blo
ks of memory that still
ontained

a
tive referen
es, in this
ase, the root of all the �le handles. The error was introdu
ed by

1

Refer to Appendix A.1 for the sour
e
ode used in this test

8

a se
tion of
ode that was omitted during the port and whi
h was responsible for the initial

setup of the heap.

As the system's
omplexity in
reased, brought on both by the number of modules that

were loaded and by the fa
t that Gadgets and the
ompiler was a
tively used, it be
ame harder

to lo
ate memory errors. As the system was tested over a longer period of time, it
ame to

the authors' attention that memory fragmentation in
reased, espe
ially when
ompiling large

groups of modules like Gadgets. The situation rea
hed a point where the largest blo
k of

ontiguous memory a

ounted for roughly 2.5% of the total available memory, whi
h is not

onsidered to be an a

eptable level. This
learly indi
ated that there was an error in the

memory management system.

Although garbage
olle
tion does not
ompletely remove fragmentation, it does limit it to

a far better extent than would have otherwise been possible had memory management been

left under the
ontrol of the programmer to allo
ate and deallo
ate memory as he or she saw

�t.

After a detailed investigation it was determined that the implementation of the �lesystem

was responsible for the fragmentation. During a
ompile session, a number of new �le handles

are allo
ated as many temporary �les are
reated apart from the sour
e, symbol and obje
t

�les. Sin
e �le handles are fairly large, memory is allo
ated from the list
ontaining the largest

free blo
ks. Refer to Se
tion 4.3.2 for a more detailed explanation on basi
 memory allo
ation.

Compiling a large system like Gadgets speeds the fragmentation pro
ess. Sin
e a termination

handler was used in the Files module, the handles were only marked for
olle
tion during an

exit from Oberon. This meant that the fragmented memory
ould never be restored as those

�le handles used for the
reation of the temporary �les were never
olle
ted.

2.1.3 Ex
eption Handlers

The way Oberon handles ex
eptions under Gneiss di�ers signi�
antly from how it is imple-

mented under Native Oberon. During initialization the InitTrapHandling pro
edure
reates

a lo
al thread in the Oberon VM
alled Dispat
her. This thread e�e
tively loops and and

blo
ks until an ex
eption o

urs. The ex
eption is dete
ted by repeatedly issuing
alls to the

AwaitEx
eptions fun
tion. This fun
tion in turn does an IPC transa
tion with the ex
eption

server inside the Gneiss kernel to
he
k if an ex
eptions did o

ur.

On
e the ex
eption is dete
ted, the ma
hine state is saved and the ipTable is
he
ked

to see if a trap handler has been installed for the ex
eption that o

urred. If so,
ontrol is

transfered to the handler by simulating an interrupt and
alling the SetState fun
tion. The

SetState fun
tion is responsible for the a
tual
ontrol transfer to the handler. If the ipTable

returns a NIL pointer for the spe
i�ed ex
eption, the DefaultHandler pro
edure is
alled.

The OP2 Compiler no longer supports the + operator to
ompile interrupt handlers as

was the
ase in the previous port. The S
heduler pro
edure therefore no longer generates

a sta
k to simulate an interrupt, but rather one to simulate a pro
edure
all. Transfer

and Sta
kbase
an no longer be in-lined using the - operator and have been transformed

into formal pro
edures. The use of normal pro
edure
alls also mean that the sta
k pointer

register, ESP, needs to be adjusted as no RET instru
tion will be exe
uted to pop the registers

from the sta
k that was pushed during the pro
edure
all. Figure 1 gives an outline of how

the sta
k will be
on�gured before the handler for the ex
eption is exe
uted.

Considering the
hanges that were made in the Kernel module to the ex
eption handling

me
hanism, it follows that the System module also needed to be modi�ed. System is respon-

9

Dispatcher CS

EIP

EBP

EAX

Loop

EBPTransfer Entry code

Entry code

Result of StackBase()

Parameter to Transfer

Figure 1: Sta
k Layout for an Ex
eption

sible for opening a trap viewer whenever an ex
eption o

urs to inform the user of the error.

On
e this is done, System performs a tra
eba
k to lo
ate the origin of the ex
eption and

ontinues this tra
eba
k from the module in whi
h it o

urred until it rea
hes the s
heduling

loop in the Oberon module. The following modi�
ations were required by the System module

due to
hanges made in the Kernel module:

� The EFlags and EBP registers are no longer read from the sta
k. Instead, their values

are obtained from the ma
hine state exported from the Kernel module in the state

variable.

� The detailed option is no longer supported. As was done in the previous port, a
omplete

register dump is written to the Messages window.

� An expli
it EXIT has been inserted in the tra
eba
k loop and is
alled on
e the tra
e-

ba
k rea
hes the Oberon.Loop pro
edure. Due to the
hanges in the sta
k layout, the

pro
edure
an no longer terminate as it did under Native.

Although the testing of the ex
eption handler proved simple,
orre
ting and debugging it

posed more of a
hallenge. The �rst test involved an empty VM whi
h simply tried to referen
e

a NIL pointer. This of
ourse leads to a page fault being generated and invoked the ex
eption

handler. The test was applied to a variety of ex
eptions, in
luding issuing breakpoints (INT

3), invalid ma
hine instru
tions and division by zero. What is also very important during this

sort of testing is the veri�
ation of the ma
hine state. Ea
h VM exe
utes in a separate address

spa
e, usually starting at 20000000H. On
e an ex
eption is generated, EIP (the instru
tion

pointer) must be veri�ed to make sure that it does not
ontain a value lying outside the VM's

address spa
e. If so,
are must be taken to determine the reason for this and if ne
essary, the

required steps to
orre
t it must be implemented and the routines must be tested again to

verify the
orre
tions.

On
e the basi
 ex
eption handling worked
orre
tly, a dummy loop was installed in the

test VM in order to simulate the main s
heduling loop in Oberon. This was done in order to

test if the handler, either an installed one or the default one,
ould in fa
t transfer
ontrol

ba
k to the main s
heduling loop on
e the ex
eption has been generated and handled.

Testing was
ompleted when the basi
 Oberon environment was ported. Given that an

ex
eption o

urred, a register dump is given in the Messages window and a trap viewer is

10

opened inside Oberon with a sta
k tra
e ba
k, indi
ating where the ex
eption originated. The

tra
e ba
k must be
arefully veri�ed and all values, espe
ially the PC

2

, must be
he
ked.

2.1.4 Completion of the Oberon Core

The Oberon
ore was
ompleted by
ompiling and testing the ne
essary modules required by a

very basi
 Oberon system. This in
ludes those modules responsible for display management,

the basi
 viewer system and editor as well as the module loader and s
heduler in the Oberon

module.

Although the
ore is fairly small, lo
ating errors during this phase
an prove diÆ
ult as

there are more opportunities for errors to �nd their way into the
ode. An error in the input

driver might only be dete
ted at a later stage for example or errors might o

ur that
ould

point to any number of modules that might have been the origin of the error.

Extensive use was made of the Tra
e module to obtain as mu
h information as was

possible. The module loader was extensively monitored, as were the routines for a

essing

the display and input drivers as well as the �le system related routines.

2.2 Porting Gadgets

The Gadgets environment proved to be fairly easy to port. The only requirement being that

it be re
ompiled on the ported system on
e the basi
 environment was
onsidered stable.

Certain modi�
ations were required, but proved to be few and fairly
on
entrated within

a small group of modules.

Not all appli
ations were
onsidered during the
urrent port though. Modules o�ering

Telnet and FTP servi
es were left out as Gneiss already provides these servi
es to users.

Also, all the network modules required to interfa
e with the gadgets networking environment

were not port as it will require a signi�
ant amount of modi�
ation to work
orre
tly under

Gneiss. A further reason for not porting network related Gadgets modules is that our obje
tive

was to port Gadgets and not Gadget based appli
ations.

Those modules not requiring modi�
ations were ported as it imposed no further
on-

straints on the already limited time frame. It must also be remembered that many of the

Gadgets based modules are proje
ts that were given to students at ETH and that the sour
e

ode is not distributed with the rest of the system, nor is it
overed by the li
ense agreement.

The authors do however foresee that on
e the network environment of Gadgets has been

adapted to work under Gneiss and interfa
e with the NetSvr and other networking software

that these appli
ations
ould easily be ported. The result of su
h a port would mean that

web browsing utilities and email fa
ilities would be
ome available.

2.3 Porting Gneiss Related Modules

Although not part of the original obje
tives, it was de
ided to port as many of the older,

Gneiss spe
i�
 modules to the new Native environment under Gneiss. Only a limited amount

of modules were ported due to time
onstraints. In order to lend some form of priority to

the pro
ess, those modules most likely to be used were identi�ed as suitable
andidates and

in
lude:

� Pat
h

2

Program Counter

11

� PFinder

� Env

� VM

� Print

� Andy

2.4 Integration with CFS

The �nal phase of the port was
on
luded by moving the
urrent port from a single user

environment to a distributed, multi-user environment and integrating it with the Ca
hing

File Server (CFS) whi
h repla
ed the HFS system during the last half of 1998.

The CFS related modules required a small amount of modi�
ations. Certain
onstru
ts

that were inherited from HFS seems to have been allowed under the previous port due to

possible errors in the
ompiler with regards to
asting extended re
ord types. The new OP2

ompiler required that some modi�
ations be made to CFS in order to allow the
ode to

fun
tion
orre
tly. Most of the modi�
ations related to dynami
 extended re
ord types that

were
ast into other types and passed as dereferen
ed parameters during IPC
alls.

The advantage in performan
e o�ered by CFS [2℄ over HFS proved to be more than

adequate given the in
rease in the amount of �le servi
es required to boot Native under

Gneiss. Table 1 gives a brief outline on the in
rease in system requirements for Native

Oberon, espe
ially where memory is
on
erned.

Version Modules Memory (K) Filesystem Calls

Current Port, 2.3.0

a

28 255 339

Current Port, 2.3.0 59 808 985

Current Port, 2.3.0

b

68 1130 1334

Previous Port, 1.6 31 245 338

Previous Port, 1.6

37 380 491

a

Ex
luding Gadgets and OP2 Compiler

b

In
luding the OP2 Compiler

In
luding the Compiler

Table 1: System Resour
e Usage During Booting

Be
ause of the way that CFS handles the storage of �les, Edit and
ertain Gadgets related

modules required modi�
ation to their storage routines. In order to
reate a ba
kup �le, the

original
opy must �rst be renamed before a new �le is
reated and stored. This is required

be
ause of the way the
a
he is organized. Not doing so will lead to the destru
tion of the

original �le with the data
ontained in the ba
kup �le. CFS was also extended to give a

detailed dire
tory of �les in
luding their date and time stamps as well as the a
tual �le size.

Testing Native Oberon under CFS introdu
ed
ertain problems be
ause of the organization

and stru
ture of the �le system. When ever a user requests a �le, CFS �rst try to lo
ate a

lo
al
opy in the users a

ount. If unsu

essful, the group a

ount is queried of whi
h the

12

user is a member. If the �le
ould still not be lo
ated, the �lesystem tries to lo
ate the �le

from a spe
ial group
alled ZeroGroup. Only if the last instan
e fail
an it be assumed that

the �le is not present on the server. Sin
e ZeroGroup is still based on the previous port, as

are many of the other groups on the system, it often happened that CFS retrieved �les from

ZeroGroup when it
ould not be lo
ated in the Native group a

ount. This of
ourse lead to

version mismat
hes and many modules
ould not be tested until it
ould be ensured that all

the required �les were in fa
t inside the Native group.

One solution that was investigated was the
reation of multiple ZeroGroups, but due to

the �lesystem, this was not possible. On
e Native be
omes stable, the remaining �les from

the previous port should be repla
ed with those of the
urrent port to ensure
onsisten
y on

the �le server

2.5 Continuing Gneiss Kernel Development

No investigation was done as to what the in
uen
e of the
urrent port would be on the

development of the Gneiss kernel. It is however quite
lear that all modules relaying on the

use of assembly language would need modi�
ations to
onform with the new syntax imposed

by the OP2
ompiler. The authors do feel however that the development of the Gneiss kernel

be
ontinued under the previous port for the time being until the
urrent port has proven itself

as a suitable environment, but a steady and progressive transition to the new environment

should be
onsidered.

3 Porting: A General Approa
h

3.1 Introdu
tion

This se
tion
on
entrates on the general aspe
ts of porting and the topi
s are dis
ussed in

the
ontext of the
urrent port, in
luding the appli
ation and impa
t that these topi
s had

on the porting pro
ess.

3.2 Cross Platform Development

Cross platform development is a topi
 whi
h needs to be approa
hed with
aution. Unlike

development under a single system, working a
ross more than one platform
reates ample

opportunities for introdu
ing errors, espe
ially where the mismat
h of versions are
on
erned.

The authors often found that on
e an error was lo
ated it proved quite diÆ
ult to attribute

the error to a spe
i�
 system or simply view it as a
ase of pure in
ompatibility between two

versions.

The
urrent port required that a group of very distin
t environments had to be used, either

in
onjun
tion with one another or separately. These environments in
lude the following:

� The Native Oberon system, Release 2.3.0

� The stand-alone version of Oberon under Gneiss as implemented in the previous port.

For this, version 0.73y and 0.74f of the Gneiss kernel was used.

� The distributed version of Oberon under Gneiss, in
luding the new Ca
hing File Server

(CFS) as implemented in the previous port.

13

� The distributed version of Oberon under Gneiss, in
luding the new Ca
hing File Server

(CFS) as implemented in the
urrent port.

Although Native Oberon was the primary sour
e of the port, the previous implementation

was
onstantly used as a referen
e. First, to gain an understanding of how the system fun
-

tioned in the past. As there were none of the DOS Oberon sour
es in existen
e, the authors

quite often had to make assumptions to determine whi
h
ode was possibly modi�ed during

the previous port or whi
h was reprodu
ed without modi�
ations. It was quite
ommon to

en
ounter
ode from the previous port whi
h either did not
ontain a

ompanying
omments

or whi
h were simply fragments of ideas never implemented. Se
ond, to serve as an indi
ation

of whi
h pro
edures and fun
tions had to be modi�ed in order to interfa
e with Gneiss instead

of dire
tly a

essing the hardware as is the
ase with Native Oberon.

All the development was done under Native Oberon. On
e the software needed to be tested

it was transferred to disk and loaded unto a separate ma
hine whi
h
ontained the stand-

alone version of Gneiss and Oberon from the previous port. In order to speed the pro
ess,

ustomized �les were
reated, similar to make�les one would typi
ally use with C under

Unix. These �les
ontained the ne
essary
ommands for
opying, renaming and
ompiling

all the modules. As the development pro
ess matured, all the software was
ompiled on the

development ma
hine and transfered in whole to Gneiss.

During the early phases of development this proved to be an e�e
tive method. As the

amount of
ode that required testing in
reased, the turn around time

3

in
reased dramati
ally,

sometimes to as mu
h as forty minutes
ompared to an average of approximately �ve to ten

minutes during the early stages of the porting pro
ess. The basi
 system that was
ompiled

was modi�ed to in
lude all the required modules up to the
ompression utilities. On
e the

basi
 system was transferred, the remainder of the system was brought over in Oberon's Ar

ompression format and un
ompressed on the target ma
hine. Although this method had

a signi�
ant impa
t on redu
ing the turn around time, it
ould only be applied e�e
tively

during a
omplete system transfer.

On
e a stable stand-alone system was
reated the target platform was
hanged to a ma-

hine running the distributed version of Gneiss under CFS. This ma
hine was used to test

the interfa
e to CFS. In order to
reate a safe environment, the development pro
ess was

ontinued using a single a

ount on CFS. On
e this proved su

essful, all the system �les

4

,

in
luding the do
umentation, examples and appli
ations were transferred to the Native group

a

ount. A separate group
alled NativeSr

ontaining the sour
e
ode was also
reated in

order to guard the
ode from prying users.

3.3 Debugging Te
hniques

Although Gneiss o�ers a full set of debugging tools, the authors refrained from using them

sin
e the obje
t �le format was in
onsistent between the previous and
urrent port, thus

rendering the debugger in
apable of giving a

urate information. A more manual form of

debugging was employed, utilizing every part of the system that
ould yield useful information

in order to
larify, des
ribe and explain program behaviour.

3

Turn around time refers to the amount of time it takes to
reate a new image, reboot the test ma
hine,

upload the new image and run all the required tests before returning to the development ma
hine

4

Obje
t and Symbol �les

14

Some may
onsider the applied methods ar
hai
, but the type of systems programming

that was involved required a more dire
t and hands-on approa
h to debugging. In the authors'

experien
e it proved quite su

essful in lo
ating errors eÆ
iently. The most time
onsuming

part of the pro
ess was
orre
ting the errors whi
h were often very subtle.

3.3.1 The Tra
e Module

The Tra
emodule is
apable of displaying arbitrary text information in the Messageswindow.

This module was often used as a method for lo
alizing errors by pla
ing tra
e
ode at both

the entry and exit points of a pro
edure. The following extra
t of
ode will be used to explain

this
on
ept.

PROCEDURE MyPro
1;

BEGIN

Tra
e.String("Entering MyPro
1"); Tra
e.Ln;

...

(* Remainder of pro
edure body *)

...

Tra
e.String("Leaving MyPro
1"); Tra
e.Ln;

END MyPro
1;

If the entry point tra
e
ode was written in the Messages window, but not the tra
e
ode

ontained at the exit point, it served as an indi
ation that the pro
edure failed during it's

exe
ution. Any other pro
edure that might be
alled from inside a spe
i�
 pro
edure also

ontained entry and exit tra
e
ode. Should a pro
edure
all any other pro
edure one is

able to lo
alize possible errors by lo
ating the innermost pro
edure with entry
ode, but no

exit
ode. Apart from this, it also provided a
on
ise overview of program
ow and module

intera
tion.

The Tra
e module was also employed to assist with more general tasks. Whenever a pro-

edure dealt with
omplex
al
ulations, the Tra
emodule was used to display this information

in order to verify it with the authors' pre
al
ulated-
al
ulated values.

Too many tra
e
ode
an also hinder one's debugging e�orts. On
e a se
tion of
ode

has been tested and seems to work, either remove all the related tra
e
ode or keep a short

message. Too mu
h information at on
e does not assist, but rather overwhelms and
onfuses.

Also, note that tra
e
ode written to the Messages window will
ause the VM to grow

from time to time, usually in multiples of 8K. One might easily view this
hange in available

memory as a leak of some sort, while in e�e
t it is quite normal. The Messages VM was

written in Modula-2
ode and designed to grow dynami
ally. As more tra
e
ode is written

to this window, it eventually needs to allo
ate additional memory in order to bu�er the text

and
onsequently the VM size in
reases usually in blo
ks of 8K.

3.3.2 Serial Terminals

A serial terminal was employed as debugging tool when the display driver was ported. Certain

design problems during the early stages of this phase prohibited the authors from using the

Messages window as the primary debugging tool sin
e there was no a
tive display when a

system
rash o

urred during a swit
h from text to graphi
s mode.

15

The serial terminal was also used to gain information on the behaviour of the garbage

olle
tor and other fun
tions under the Native kernel that use the set of serial tra
e routines

in the Kernel module to output debug information.

Sin
e serial terminals do not provide a s
roll ba
k me
hanism,
are must be taken in

sele
ting the type of information that need to be displayed. It is best to use the Tra
e

module for information with a high repetition rate and reserve the serial terminal for very

spe
i�
 information.

3.3.3 Debugging the Display Driver

Native Oberon supplies a spe
ial display driver
alled Tra
e.Display.Mod whi
h
an be used

during debugging. Sin
e all the modules in the Oberon
ore depend on a display driver being

present, testing and debugging
an be
ome a
omplex issue. The Tra
e.Display module

does not
ontain a single line of
ode to deal with graphi
s hardware. Instead, the pro
edure

bodies were repla
ed with tra
e
ode to output information about the spe
i�
 pro
edure.

The advantage is that one
an easily
ompile and test the remainder of the Oberon
ore

without introdu
ing an unstable devi
e driver. Considering how the IOSvr fun
tions, an

unstable display driver
ould mean that there is no means for swit
hing ba
k to the Messages

window to view important debug information or determine where a possible system
rash

o

urred.

3.3.4 The De
oder Module

The De
oder module provides another means for performing low level debugging as it is

apable of giving a
omplete assembly dump of a module in
luding the a
tual hexade
imal

formats of ma
hine instru
tions. The De
oder was used in order to verify
ertain modules

that
ontained assembler
ode. It also served in gaining a solid understanding of the type

of
ode that is generated for pro
edures and fun
tions, espe
ially with regards to entry and

exit
ode. This knowledge was extensively used to debug the ex
eption handling me
hanism

of the Kernel module as a detailed des
ription of the sta
k layout was required. The sour
e

text of a test module along with the De
oder output is given in Appendix A.2 as an example.

3.4 The OP2 Assembler

The OP2
ompiler o�ers a far more suitable environment for using assembly language than

was possible under the previous port by way of the DInline.Assemble
onstru
t. Sin
e

pro
edures and fun
tions
an no longer
ontain mixed se
tions of both Oberon and assembler

ode, older
ode
onforming to the mixed layout requires the separation of the assembler and

Oberon
ode.

Another feature is that the type of ma
hine instru
tions required must be spe
i�ed. If for

example i486 privileged instru
tions need to be a

essed, the pro
edure must spe
ify this in

terms of prede�ned sets like:

PROCEDURE MyPro
;

CODE {SYSTEM.i486,SYSTEM.Privileged}

...

END MyPro
;

16

Those instru
tions not supported
urrently by the OP2
ompiler
an be implemented by

using the ma
hine language values and de
laring the instru
tion as a sequen
e of bytes. The

te
hni
al do
umentation [3℄ at ETH also
ontain examples for using the new assembler. It

must be remembered that under Gneiss, the restri
tions for using the assembler are mu
h

stronger imposed due to the layout of the mi
rokernel and the use of prote
ted address

spa
es. Unlike Native Oberon, the Kernel module exe
utes as a user pro
ess in privilege

level 3 under Gneiss, whereas under Native Oberon the Kernel module exe
uted at level 0

with other modules residing in level 3.

Native based modules seldom require
hanges to the a
tual assembler
ode unless modi-

�
ations are required to interfa
e
orre
tly with Gneiss. It is more likely that
hanges would

need to be made to older Gneiss spe
i�
 modules that are brought into the new environment

and requires to be re
ompiled with the OP2
ompiler.

3.5 The BootLinker

The BootLinker module
an also be used for debugging purposes, but only during the devel-

opment of the stati
ally linked image of the new Oberon VM. Any ex
eption that may o

ur

inside the address spa
e of the stati
 image
an be easily lo
ated using the BootLinker.Find

ommand in
onjun
tion with the
ompiler. The linker also
reates a log �le whi
h
ontains

data regarding the stati
 image that was linked, and although this �le is generated for the us-

ages of the linker only, it might help to give insight into the way modules are linked together.

The sour
e
ode of the BootLinker might also be helpful as the
ode is well
ommented, but

an extensive knowledge of the obje
t
ode format is a prerequisite.

4 Garbage Colle
tion and Memory Management

4.1 Introdu
tion

This se
tion gives an overview of how memory allo
ation strategies work inside Oberon as

well as the pro
ess of garbage
olle
tion and the related routines involved with this pro
ess.

Most of the information in this se
tion was obtained from Pieter Muller at ETH. Though the

hanges that were made to the Native kernel's memory related routines during the
urrent

port to perform the ne
essary fun
tions under Gneiss were subtle, the authors feel that a

detailed dis
ussion is justi�able given the impa
t that these routines have on the Oberon

environment. Without a basi
 understanding, lo
ating errors or attempting to
orre
t them

in this part of the Kernel module might prove futile and extremely time
onsuming.

Native Oberon uses a group of routines for allo
ating memory. The programmer is usually

just aware of making a
all to the NEW pro
edure, or in rare
ases to the SYSTEM.NEW pro
edure.

As will be
ome
lear in this se
tion, what a
tually happens during su
h a pro
edure
all is

mu
h more
omplex and most of the details are hidden away inside the Kernel module.

4.2 The Initialization Pro
ess

During the initialization of the Kernelmodule there are two very important pro
edures named

Init and InitKernel. The Init pro
edure is responsible for setting up the sta
k and heap

and repla
es the InitHeap pro
edure of Native Oberon. If no sta
k environment variable is

17

firstBlock

endBlock
8

40

MOD 32 = 28

MOD 32 = 28

heapAdr

heapSize

Figure 2: Initialization of the Heap

supplied the size will default to 60K. If one is spe
i�ed it is
he
ked against a lower boundary

of 32K. The �nal value is then redu
ed by 4K and added to the
urrent sta
k size of the VM.

The same method is applied when setting up the heap. If the heap environment variable

is present, its value is used. If the variable is absent or
ontains a negative value, the size

defaults to 256K, the default VM size. After this the total free memory is
al
ulated and the

requested size is tested against this as well. Also take note that 128K of the available memory

under Gneiss is reserved. Should this part of the initialization pro
ess fail, a CoreHalt will be

issued. The last part of InitKernel is responsible for initializing the Sta
kOrg and heapSize

variables.

The InitKernel pro
edure is responsible for initializing the firstBlo
k and endBlo
k

variables, aligning ea
h on a 32-byte boundary and then adjusting the address by -4 to align it

on an 8 byte boundary. firstBlo
k and endBlo
k represent the lower and upper boundaries

of the heap respe
tively. After this, the memory between these two pointers are initialized

to 0. On
e this is done, the firstBlo
k variable is
ast into a FreeBlo
k, initialized and a

single FreeBlo
k stru
ture is
reated spanning the whole of the heap. Figure 2 gives a basi

layout of this pro
ess.

Unlike Native whi
h
alls the garbage
olle
tor expli
itly in the InitHeap pro
edure,

InitKernel makes a
all to the Sweep pro
edure to initialize the free lists. This is done

be
ause the garbage
olle
tor under Gneiss uses a dynami
 stru
ture
alled info to perform

the sta
k tra
ing of threads. Sin
e no memory e�e
tively exist at this stage, Sweep is
alled

instead to
reate the free list, after whi
h the info stru
ture is allo
ated.

Under Native Oberon the initialization of the firstBlo
k and endBlo
k variables are

mu
h more
omplex as fa
tors like low memory

5

and DMA are taken into a

ount.

Two spe
ial type des
riptors are also lo
ated right at the beginning of InitKernel, namely

ptrElemTag and dynarrElemTag whi
h is used during the allo
ation of dynami
 arrays in the

NewArr pro
edure. Refer to Se
tion 4.3.5 for a more detailed explanation.

5

Memory between the 640K and 1Mb boundary

18

4.3 Memory Allo
ation

4.3.1 Introdu
tion

When allo
ating memory there are �ve pro
edures to take note of. They are:

� PROCEDURE NewBlo
k(size: LONGINT): InitPtr;

� PROCEDURE NewRe
(VAR p: ADDRESS; tag: Tag);

� PROCEDURE NewSys(VAR p: ADDRESS; size: LONGINT);

� PROCEDURE NewArr(VAR p: ADDRESS; eltag: Tag;

nofelem,nofdim: LONGINT);

� PROCEDURE NewSysArr(VAR p: ADDRESS;

size,tdsize: LONGINT);

The NewSysArr pro
edure is the latest addition as open arrays were introdu
ed with

Native Oberon. In the previous port, NewRe
, NewSys and NewArr used to be fun
tions with

the return type as the address. Together with NewSysArr they have been turned into proper

pro
edures returning the address in a variable parameter. NewBlo
k forms the basis of the

other four pro
edures and is either
alled dire
tly as in NewSys or indire
tly as in NewSysArr

whi
h
alls NewSys, in turn issuing a
all to NewBlo
k.

The
ompiler is responsible for generating the
orre
t
ode to
all the required memory

allo
ation routine depending on the type of stru
ture involved. When
reating stati
ally

linked images using the BootLinker, the memory routines must be expli
itly spe
i�ed.

Currently, Native Oberon distinguishes between the following set of stru
tures:

� POINTER TO RECORD variables allo
ated with NEW

� POINTER TO ARRAY OF Type, where type is a pointer type, allo
ated with NEW

� POINTER TO ARRAY OF Type, where type is not a pointer, allo
ated with NEW

� Blo
ks allo
ated using the SYSTEM.NEW pro
edure

Memory for the �rst two stru
tures are allo
ated by using the Re
Blk and ArrBlk stru
-

tures respe
tively. For the last two, SysBlks are used [3℄. All dynami
 stru
tures are allo
ated

on the heap and under Gneiss, this is the available memory after a VM is loaded into its given

address spa
e, usually 256K

6

(The default VM size) minus the VM binary size, sta
k base

and header. The pro
ess of setting up the heap has been dis
ussed in Se
tion 4.2. Figure 3

illustrates the layout of the di�erent heap blo
ks.

The SFAM bit �elds in Figure 3 refers to the spe
ial markings of a tag used during allo
ation

and garbage
olle
tion and is explained in Table 2. The meaning and use of these bit �elds

will be
ome
lear in the later dis
ussions on memory allo
ation and garbage
olle
tion.

6

The
urrent port has in
reased the default size to 512K

19

1010

lastElemToMark

reserved

firstElem

dim1

dim0

ArrBlk

TDesc

1000
RecBlk

MOD 32 = 0

recsize

MOD 16 = 8

0000

0000

TDesc

MOD 32 = 0

size

Filler

-4

24

SysBlk

1
2

0

size
SFAMSFAM

Figure 3: Heap Blo
k Stru
tures

Constant Set Name Value

SubObjBit subobj 3

FreeBit free 2

ArrayBit array 1

MarkBit mark 0

Table 2: Interpretation of the SFAM Fields

20

4.3.2 The Basis of Allo
ation: NewBlo
k

As mentioned in Se
tion 4.3.1, NewBlo
k forms the basis of all the allo
ation pro
edures.

Oberon keeps a list of pointers in a variable
alled A whi
h points to all the free memory

blo
ks. The size parameter of NewBlo
k is always rounded up to the nearest 32 bytes. Ea
h

index in A points to a list of free blo
ks belonging to a
ertain size ex
ept A[0℄ whi
h is never

used. A[1℄ therefore points to the list of free blo
ks that are 32 bytes in size, A[2℄ to those

blo
ks being 64 bytes in size and so on. The ex
eption being A[N℄ whi
h points to larger

blo
ks of variable sizes whi
h are all a multiple of 32 and larger than those in A[N-1℄

7

.

The requested size is divided by the blo
k size B, where B=32, to determine the list in

whi
h to sear
h for a free blo
k. The index into the free list array is kept in i. The address

of the list is kept in adr and the address of the last list, A[N℄, is kept in AN.

A �rst �t strategy is employed during the allo
ation pro
ess. A[i℄ is of
ourse the preferred

list in whi
h the blo
k must be allo
ated, but this is not always possible as there may not be

any blo
ks available. adr is
ast into an InitPtr and, if not NIL, it is taken as the pointer

whi
h points to the blo
k of memory that must be used for the allo
ation. If this fails, the

sear
h gradually
ontinues until the �nal list in AN is rea
hed. If adr is not NIL, it is assumed

that a valid free list has been found and the sear
hing pro
ess terminates.

Should AN also be a NIL pointer, one of two situations might o

ur. If it is the �rst

attempt at allo
ation, firstTry = TRUE, the garbage
olle
tor is
alled to possibly free up

memory that might have be
ome available sin
e the last a
tivation of the garbage
olle
tor.

firstTry is set to FALSE and NewBlo
k
alls itself. If the pro
ess repeats itself and fails again

to satisfy the request the reserve pointer is set to NIL, the garbage
olle
tor is
alled in

order to
olle
t the reserved memory and a CoreHalt is issued to indi
ate that the request

failed. The reserved memory is freed to allow Oberon to open a trap viewer to inform the

user of the problem. The garbage
olle
tor will automati
ally reallo
ate the reserved memory

on
e there is more than 64K of memory available.

The �nal part of NewBlo
k determines if the allo
ation
aused fragmentation. It might

be that the programmer requested 64 bytes of memory, but the smallest blo
k available to

satisfy the request was only 96 bytes. The remaining 32 bytes must be pla
ed ba
k into the

free list stru
ture. The remaining memory, if any, is
al
ulated in rest and pla
ed in the

orre
t free list by repeating the set of
al
ulations that were performed during the �rst part

of NewBlo
k. The �nal step is to mark the blo
k as free by setting the FreeBit in the Tag

and inserting it into the list of free blo
ks. The sequen
e:

restptr^.next := A[i℄;

A[i℄ := SYSTEM.VAL(ADDRESS,restptr);

is responsible for the insertion into the free list.

Figure 4 gives an illustration of the pro
ess des
ribed above. It it is assumed that A[2℄

points to a NIL list, indi
ating that there are no free blo
ks available that are 64 bytes in

size. NewBlo
k re
eives a request for 64 bytes. The Blo
k is allo
ated from N[3℄ resulting in

a blo
k of 96 bytes being allo
ated. The blo
k is split up into two blo
ks of 32 and 64 bytes

in size respe
tively. The remaining 32 bytes are pla
ed ba
k at the head of the list in A[1℄

and a pointer in ptr is returned pointing to the blo
k of 64 bytes.

7

In the original implementation of Oberon the free list
onsisted out of four lists pointing to blo
ks of 16,

32, 64 and 128 bytes and a �fth list pointing to blo
ks sizes that are a multiple of 128 bytes [1℄.

21

N-1 N
A

0 1 2 3

96

rest

64

32

ptr

Figure 4: Basi
 Allo
ation using NewBlo
k

4.3.3 Stru
tured Blo
ks: NewSys

The SYSTEM.NEW pro
edure is implemented in NewSys and uses a SysBlk as des
ribed in

Figure 3. NewSys �rst adjusts the requested size before NewBlo
k is
alled to allo
ate a blo
k

of memory. The �rst adjustment is to
ompensate for the indire
t tag and a
tual tag whi
h

onstitutes 28 bytes in total. The se
ond adjustment is made by
learing the lower 5 bits of

the requested size in order to round it up to the nearest 32 bytes.

On
e a pointer has been allo
ated, NewSys
ontinues initializing the memory by �lling in

zero values. As
an be seen from the
ode, the initialization is done in groups of 32 bytes,

starting at the end of the stru
ture and
ontinuing until the start is rea
hed. It is suspe
ted

that this

8

was done in order to allow for more e�e
tive register allo
ation on RISC based

pro
essors under the old DECoberon that was ported from DOS Oberon. This method of

initialization is also present in the other routines dis
ussed later on.

NewSys
on
ludes by setting up the tag. Important �elds to take note of are z1 whi
h is

set to -4 and is used as a sentinel for the garbage
olle
tor. z3 is set to the value of the double

word (32 bits) stored at the address [EBP+4℄. This is used for debugging purposes only in

order for the BootLinker to lo
ate where the allo
ation of the stru
ture o

urred.

4.3.4 Stru
tured Blo
ks: NewRe

NewRe
 fa
ilitates the dynami
 allo
ation of re
ords with the NEW(ptr)
ommand and uses

a Re
Blk to allo
ate memory (Refer to Figure 3). The tag parameter is supplied by the

ompiler whi
h generates the
orre
t
ode when en
ountering the NEW statement. The tag

parameter may be a NIL tag in whi
h
ase a des
riptor for an ARRAY * OF CHAR should be

allo
ated. The initialization of the memory follows a similar pattern to that of NewSys by

moving over the blo
k of memory and
learing all the bytes to zero. The
ode to initialize

the type des
riptor is generated after the
all to NEW.

Ea
h re
ord type is des
ribed by a type des
riptor. The layout of the type des
riptor is

8

As per Pieter Muller, ETH

22

tdsize

0000

-4

self

ext

-4(n+1)

16 tags

0000

recsize

n ptroffs

name

mdesc

mths

0

0

1

1

MOD 32 = 0

MOD 16 = 8
TDesc

-4

0

-4

8

12

16

48

52

-68

-4

4

td
si

ze

0

Figure 5: Type Des
riptor for Re
ords

shown in Figure 5. tdsize is the size of the type des
riptor in bytes. The -4 entry is used as

a sentinel for the garbage
olle
tor. ext is the extension level of the re
ord type. The name

ontains the name of the re
ord type, but will be empty for anonymous types. mdes
 is a

pointer to the module des
riptor in whi
h the type was de
lared. mths are the type bound

pro
edures for the re
ord. The tag �elds point to the base types of an extended re
ord

and will be NIL if not used. re
size is the size of the a
tual re
ord des
ribed by the type

des
riptor. The ptroffs �eld
ontain the o�sets of pointers inside the re
ord. The negative

�eld at the end is again used as a sentinel for the garbage
olle
tor.

4.3.5 Stru
tured Blo
ks: NewArr

Pro
edure NewArr implements the allo
ation for NEW(ptr) where the parameter is a POINTER

TO ARRAY. NewArr �rst
he
ks to see if the elTag parameter, whi
h is a pointer to the type

des
riptor of the re
ord type used for the elements, is NIL. If this is the
ase, the element type is

a pointer and not a re
ord type and the ptrElemTag type des
riptor is used, otherwise NewArr

uses the dynarrElemTag type des
riptor. Both these type des
riptors are de�ned inside the

Kernel module and are lo
ated during the Initialization pro
ess des
ribed in Se
tion 4.2.

4.3.6 Stru
tured Blo
ks: NewSysArr

NewSysArr is similar to NewSys ex
ept that the tags are marked di�erently after memory has

been allo
ated with NewSys in order to distinguish it from normal SysBlks.

23

block
0

-4SFAM

XXXX

block XXX1

SFAM -4

0

Figure 6: Marking Blo
ks

4.4 Monitoring Memory Usage

Memory usage is monitored by way of three fun
tions, Available, LargestAvailable and

Used. Available simply adds all the available blo
k sizes in all the free blo
k lists to
al
ulate

the total amount of available memory. LargestAvailable simply sear
hes for the free blo
k

with the largest size. Sin
e the free lists are ordered in an as
ending fashion, the sear
h is

performed from A[N℄ towards A[0℄ in order to optimize the pro
ess. The amount of memory

in use is
al
ulated by subtra
ting the amount of free memory from the total heap size. VMHeap

ontains the heap size and is initialized in the Init pro
edure during the main initialization

of the Kernel module.

4.5 Colle
ting Garbage

4.5.1 Introdu
tion

Garbage
olle
tion in Oberon is
arried out in two separate phases known as the mark and

sweep phase. During the mark phase, all pointers that still
ontain valid referen
es are marked

and this is done on a module basis. Next the lo
al sta
k is
he
ked and possible pointers are

also marked

9

. The pro
ess
on
ludes by sweeping over the heap,
olle
ting all blo
ks that

were not marked, and pla
ing them ba
k into the free lists of memory blo
ks.

4.5.2 The Mark Phase

The mark phase begins inside the GC pro
edure by �rst marking ea
h module so that the

pointers to the module des
riptors are not
olle
ted. The pro
edure distinguishes between

those blo
ks that are sub-obje
ts and those that are not.

If it is determined that blo
k is not a sub-obje
t, the tag is retrieved and a new tag
alled

marked is
onstru
ted with the marked bit set. If tag # marked, then the tag belongs to a

previously unmarked blo
k that may require marking. Refer to Figure 6.

9

Under Gneiss, ea
h thread in the
urrent VM under whi
h the garbage
olle
tor exist is
he
ked as ea
h

thread
ontains its own sta
k.

24

Tag variable SFAM bits

p�.tag XXXX

tag X0XX

notmarked X0X0

tdes
 X000

Table 3: Tag Constru
tion for Sweeping

4.5.3 Sta
k Traversal in Threads

Unlike Native Oberon whi
h
ontains a single user level sta
k, a VM su
h as Oberon
ontains

more than one thread and therefore more than one sta
k. Sin
e ea
h thread
ontains its own

sta
k, the sta
k tra
ing
ode have to
he
k ea
h sta
k separately to lo
ate all the pointers

that requires marking in ea
h thread. On
e all the threads have been evaluated, the sta
k of

the main thread is examined.

Ea
h 32-bit value in the sta
k is taken and passed on as a possible
andidate to the

Candidates pro
edure. The reason for this is that it not possible to tell whi
h sta
k entry

does in fa
t
ontain a pointer of some sort. The whole pro
ess is repeated for every thread

in the VM.

The Candidate pro
edure re
eives an address as a parameter whi
h is
he
ked against the

upper and lower boundaries of the heap
ontained in firstBlo
k and endBlo
k. Candidate

distinguishes between the di�erent types of heap blo
ks by examining the alignment of the

address whi
h
ould be either p MOD 32 = 0 or p MOD 16 = 8. For ea
h address whi
h

onforms to the required alignment of a pointer the tag is retrieved and the address is pla
ed

into a list named
andidates. On
e the list be
omes full, Che
kCandidates is
alled.

Che
kCandidates begins by sorting the list of addresses in the
andidates array before

examining them. Ea
h address is examined a

ording to the type of pointer and if valid,

marked by
alling the Mark pro
edure.

4.5.4 The Sweep Phase

Sweep begins by
learing all the free lists. This is done by assigning the nil
onstant to the

root of ea
h of the free lists kept in A. During this pro
ess, a dupli
ate list is
onstru
ted in

lastA whi
h simply points to the same address as A.

The sweep phase is
arried out over the whole heap, starting at firstBlo
k and
ontinuing

until endBlo
k is rea
hed. In order to determine whi
h pointers must be swept, a group of tags

are
onstru
ted from the original tag of the
urrent pointer under investigation. The group

of tags are represented by tag, notmarked and tdes
. Ea
h tag is based on its prede
essor

with one additional bit
leared, ex
ept for the SubObj bit. Table 3 illustrates how the tags

are
onstru
ted. The X value indi
ates a bit with an unknown setting.

The next step is to determine the size of the stru
ture that is being dealt with and

therefore Sweep must determine if it is an array or not by
omparing notmarked and tdes
.

If notmarked # tdes
, it is assumed that the stru
ture is an array of some sort and the size is

al
ulated by the number of elements and the basi
 element size. Non-array based stru
tures

ontain the
orre
t size in the size �eld of the tag. On
e the size has been determined, a

25

FreeBlo
kPtr is
onstru
ted and inserted into lastA before
ontinuing with the next pointer.

Be
ause the lastA stru
ture points to A, the free list will automati
ally be re
onstru
ted in

A.

5 Module Modi�
ations

5.1 Introdu
tion

This se
tion gives a detailed des
ription of all the modules that were a�e
ted during the

urrent port. Ea
h sub-se
tion
ontains a brief general overview of the module after whi
h a

detailed des
ription of all the pro
edures and fun
tions
ontained in the module is given.

Please note that the information
ontained in the underlying sub-se
tions only apply to

the
urrent port. It is likely that future ports would require some amount of modi�
ation.

The authors have attempted to give an indi
ation of this for ea
h module, but this is purely

spe
ulative and therefore subje
t to
hange as new releases of Native Oberon be
ome available.

Ea
h module se
tion
ontains a stru
tured overview of the type of modi�
ations that were

made during the
urrent port. Following is a list of subse
tions that might be en
ountered

when dealing with a spe
i�
 module. These subse
tions serve only as a guideline for future

ports and should assist in redu
ing the time required to make modi�
ations to individual

modules.

� Port Dire
tion: Indi
ates whether the module was taken from Native and modi�ed

to be
ompatible with Gneiss or if the opposite was done during the
urrent port. In

some
ases, the port was a

omplished by working in both dire
tions.

� System: Indi
ates on whi
h distribution the module is in
luded.

� Global Constants Added: Indi
ates new
onstants added during the
urrent port.

� Global Constants Removed: Indi
ates
onstants that were removed during the
ur-

rent port.

� Global Types Added: Indi
ates new types added during the
urrent port

� Global Types Removed: Indi
ates types that were removed during the the
urrent

port.

� Global Variables Added: Indi
ates new variables that were added during the
urrent

port.

� Global Variables Removed: Indi
ates variables that were removed during the
urrent

port.

� Pro
edures Removed: Indi
ates pro
edures and fun
tions that were removed during

the
urrent port.

� Pro
edures Added: Indi
ates pro
edures and fun
tions that were added during the

urrent port.

� Pro
edures Modi�ed: Indi
ates pro
edures and fun
tions that required modi�
ation

during the
urrent port.

26

� Main Initialization and General Information: Explains
hanges that were made

to the main module initialization blo
k as well as other general
hanges that might have

been made to the module.

� Future Ports: This gives an estimate of the type of
hanges foreseen in order to port

the module again as new releases of Native Oberon be
omes available

5.2 IPC.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Pro
edures Added:

� PROCEDURE Transa
tionHa
k(porta,portb: LONGINT;

req,rep: LONGINT; ms: LONGINT): LONGINT;

� PROCEDURE Re
eiveRequestHa
k(porta, portb: LONGINT;

req: LONGINT): LONGINT;

� PROCEDURE SendReplyHa
k(diff: LONGINT; rep: LONGINT): LONGINT;

� PROCEDURE CreatePortHa
k(port: LONGINT): LONGINT;

� PROCEDURE LookupGlobalPortHa
k(num: LONGINT; port: LONGINT): LONGINT;

Main Initialization and General Information: Certain
hanges were warranted by

hanges in the new inline assembler provided by the OP2 Compiler. The new pro
edures

that were added was done to a

ommodate the
hanges in the assembler. Refer to Se
tion 3.4

for more details on the
hanges to the assembler. The required
hanges to the IPC module

were made during 1997 by Eben Esterhuyse.

Future Ports: No major
hanges foreseen. Depends on
hanges inside the Gneiss kernel.

5.3 VMSL.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.4 ExpSL.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

27

5.5 DmaSL.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.6 GStrings.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: This module was previously known as

Strings.Mod. Native Oberon
ontains a module by the same name whi
h di�ers in imple-

mentation. It has been renamed during the
urrent port to avoid errors. The new Strings

module under Native Oberon
ontains support for ISO strings and other extensions and is

extensively used by Gadgets. The renaming was required to avoid module
on
i
ts.

Future Ports: No major
hanges foreseen.

5.7 Tra
e.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.8 Kernel.Mod

Port Dire
tion: Gneiss to Native. Native to Gneiss

System: CFS and Stand-alone.

Global Constants Added:

� tCom1* = 3F8H;

� tCom2* = 2F8H;

� tCom3* = 3E8H;

� tCom4* = 2E8H;

� t7Bits* = 2;

� t8Bits* = 3;

� t1Stop* = 0;

� t2Stop* = 4;

� tParNone1* = 0;

� tParOdd* = 8;

28

� tParNone2* = 16;

� tParEven* = 24;

� tBaud110* = 0;

� tBaud150* = 32;

� tBaud300* = 64;

� tBaud600* = 96;

� tBaud1200* = 128;

� tBaud2400* = 160;

� tBaud4800* = 192;

� tBaud9600* = 224;

The group of
onstants listed above are used to initialize the serial terminal. The tComXXX

onstants are used to sele
t the COM port. t7Bits and t8Bits sele
ts the number of data bits

while t1Stop and t2Stop sele
t the stop bits. tParXXX determines the parity and tBaudXXX

sele
ts the baud rate. Global Constants Removed:

� IRQ* = 32;

� IDTSize = 32+16;

� IntA0 = 020H;

� IntA1 = 021H;

� IntB0 = 0A0H;

� IntB1 = 0A1H;

� V86EnterInt = 28;

� V86ExitInt = 29;

� KernelCodeSel = 1*8;

� KernelSta
kSel = 2*8;

� UserCodeSel = 3*8 + 3;

� UserSta
kSel = 4*8 + 3;

� DataSel = 4*8;

� KernelTR = 5*8;

� PS = 4096;

� PTEs = 1024;

29

� KernelSta
kSize = 16*1024;

� PageNotPresent = 0;

� NormalPage = 7;

� V86 = TRUE;

� Operators = FALSE;

� VesaAdr = 0E0000000H;

� VesaSize = 400000H;

� DefaultPageHeap = 16384;

� DefaultSta
kSize = 128*1024;

� Rate = 1193180;

Global Types Removed:

� GateDes
riptor

� SegmentDes
riptor

� TSSDes

� IDT

� GDT

� PageTablePtr

� PageDire
toryPtr

� Vendor

� V86Regs

Global Variables Removed:

� bt

� memTop

� dma0

� dma1

� dmafree

� handler0

� idt

� gdt

30

� ktss

� glue

� intHandler

� instip

� kernelpd

� v86pd

� handlingtrap

� old
opro

� trapCR

� trapDR

� trapfpu

� mapPtr

� vregadr

� vframe

�
onfigadr

� pspeed

� pageheap

� pageheap0

� pageheap1

� kpar

� apmofs

� powersave

� beepInit

� beeps

�
puversion

�
pufeatures

�
puvendor

�
pu

Pro
edures Removed:

31

� PROCEDURE StoreIDT(adr: LONGINT);

� PROCEDURE StoreGDT(adr: LONGINT);

� PROCEDURE WriteGDT;

� PROCEDURE WriteIDT;

� PROCEDURE Reboot;

� PROCEDURE -GoFrom0To3(ss,sp,
s: LONGINT; ip: Pro
);

� PROCEDURE -CLTS;

� PROCEDURE LoadIDT(base,size: LONGINT);

� PROCEDURE LoadGDT(base,size: LONGINT);

� PROCEDURE SetTR(tr: LONGINT);

� PROCEDURE -ReadMSR(msr: LONGINT; lowadr,highadr: LONGINT);

� PROCEDURE -WriteMSR(msr: LONGINT; low,high: SET);

� PROCEDURE V86Exit;

� PROCEDURE V86Swit
h;

� PROCEDURE V86IntHandler;

� PROCEDURE -CR0(): LONGINT;

� PROCEDURE -CR2(): LONGINT;

� PROCEDURE -CR3(): LONGINT;

� PROCEDURE -CR4(): LONGINT;

� PROCEDURE -DR0(): LONGINT;

� PROCEDURE -DR1(): LONGINT;

� PROCEDURE -DR2(): LONGINT;

� PROCEDURE -DR3(): LONGINT;

� PROCEDURE -DR6(): LONGINT;

� PROCEDURE -DR7(): LONGINT;

� PROCEDURE -DS(): LONGINT;

� PROCEDURE -ES(): LONGINT;

� PROCEDURE -FS(): LONGINT;

� PROCEDURE -GS(): LONGINT;

32

� PROCEDURE -SS(): LONGINT;

� PROCEDURE InitPro
essor;

� PROCEDURE StrToInt(s: ARRAY OF CHAR): LONGINT;

� PROCEDURE Fill4(dest,size,filler: LONGINT);

� PROCEDURE InitHeap;

� PROCEDURE IsRAM(adr: LONGINT): BOOLEAN;

� PROCEDURE Che
kMemory;

� PROCEDURE ReadBootTable;

� PROCEDURE EnableEmulation;

� PROCEDURE DisableEmulation;

� PROCEDURE -StoreFPEnv(adr: LONGINT);

� PROCEDURE LoadSegRegs(data: LONGINT);

� PROCEDURE -HLT;

� PROCEDURE InterruptHandler;

� PROCEDURE InitInterrupts;

� PROCEDURE EnableMM(pd: LONGINT);

� PROCEDURE InitMemory;

� PROCEDURE -Call15;

� PROCEDURE ReadClo
k;

� PROCEDURE Clo
kHandler;

� PROCEDURE InitClo
k;

� PROCEDURE *TimerHandler;

� PROCEDURE InitTimer;

� PROCEDURE Allo
atePage(VAR p: ADDRESS);

� PROCEDURE MapPage(pd: ADDRESS; virt,phys: LONGINT);

� PROCEDURE MappedPage(pd: ADDRESS; virt: LONGINT): LONGINT;

� PROCEDURE MapMem(pd: ADDRESS; virtAdr,size,phys: LONGINT);

� PROCEDURE GetCMOS(i: SHORTINT): INTEGER;

� PROCEDURE PutCMOS(i: SHORTINT; val: CHAR);

33

� PROCEDURE BCD2(x: INTEGER): LONGINT;

� PROCEDURE ToBCD(x: LONGINT): INTEGER;

� PROCEDURE WriteType(t: ADDRESS);

� PROCEDURE NMIHandler;

� PROCEDURE Unexpe
ted;

� PROCEDURE SetupFPU;

� PROCEDURE Beep(hz: LONGINT);

� PROCEDURE Delay(ms: LONGINT);

� PROCEDURE InitBeeps;

� PROCEDURE BeepStr(msg: ARRAY OF CHAR);

� PROCEDURE Dete
t486(): BOOLEAN;

� PROCEDURE Dete
t586(): BOOLEAN;

� PROCEDURE Dete
tCopro
essor(): BOOLEAN;

� PROCEDURE SetupFlags;

� PROCEDURE Setup486Flags;

� PROCEDURE Setup586Flags;

� PROCEDURE CPUID(VAR vendor: Vendor; VAR version, features: LONGINT);

� PROCEDURE APM(VAR gdtofs, apmofs: LONGINT): BOOLEAN;

� PROCEDURE APMPowerOff;

� PROCEDURE -Swit
hToLevel3(ss,sp,
s: LONGINT);

Pro
edures Added:

� PROCEDURE EnableSTra
e*(t :BOOLEAN);

This pro
edure is responsible for enabling or disabling IO privileges to perform tra
ing

through the serial ports and sets Tra
eOn := t.

Pro
edures Modi�ed:

� PROCEDURE CoreHalt(msg :ARRAY OF CHAR; n :LONGINT);

CoreHalt now writes a short message followed by the error
ode to the Messages win-

dow. The error
ode
ontained in n has been left un
hanged from Native Oberon.

� PROCEDURE WriteChar*(
 :CHAR);

Modi�ed to test if Tra
eOn = TRUE before writing to the serial port.

34

� PROCEDURE InitTra
ing*(base :INTEGER; speed :LONGINT;

setting :SHORTINT);

Previously implemented as a parameterless pro
edure in Native. It now
ontains pa-

rameters to initialize the serial port. The parameters are sele
ted by ORing the required

onstants as in the following example:

InitTra
ing(tCom2,9600,t7Bits+tParOdd);

� PROCEDURE MapPhysi
al*(physAdr,size :LONGINT; VAR virtAdr :LONGINT);

Although the pro
edure still
arry the same set of parameters as the Native Oberon

implementation, the a
tual mapping is done through the ExpSvr.

� PROCEDURE NewDMA*(size :LONGINT; VAR adr, phys :ADDRESS);

Although the pro
edure still
arry the same set of parameters as the Native Oberon

implementation, the a
tual mapping is done through the DmaSvr.

� PROCEDURE GC*;

Code related to the FontRoot variable that was used in the previous port has been

removed. FontRoot was used as a dummy node to stop the garbage
olle
tor from

olle
ting fonts. The sta
k tra
ing
ode was also modi�ed to
he
k ea
h thread in the

VM and was taken from the previous port.

� PROCEDURE InitRuntime;

All
ode relating to V86 mode has been removed.

� PROCEDURE Shutdown*(
ode :LONGINT);

This pro
edure simply performs an Exit(0).

� PROCEDURE Idle*(
ode : LONGINT);

Empty stub implemented for this routine.

Future Ports: The authors foresee signi�
ant
hanges to this module, subje
t to the

hanges in Gneiss and the Kernel module of Native. As already mentioned, the kernel is one

of the most important modules in the Oberon hierar
hy as it forms the basis for the other

modules, espe
ially devi
e drivers.

5.9 Display.Mod

Under the previous port the display driver
onsisted out of two modules namely Display

and ColorDisplay. ColorDisplay was written in pure assembler using the now outdated

Assembler module. The Display module formed the front end of the display driver and also

ontained the ne
essary
ode for
ommuni
ating with the IOSvr.

In Native Oberon, the display driver is
ontained in whole inside the Display module.

Native Oberon uses a pre�x in front of the module name to distinguish between the supported

display hardware. For example, the standard VGA driver is
ontained in VGA.Display.Mod

while the SVGA driver is
ontained in SVGA.Display.Mod.

All drivers under Native Oberon have dire
t a

ess to the display memory lo
ated at an

absolute address of A0000H. Under Gneiss, this area of memory is only a

essible by mapping

the absolute address unto a virtual address. The MapDisplay pro
edure is responsible for

this.

35

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Global Variables Added: These variables were added to allow the display driver to work

with the IOSvr.

� ioPort : IPC.Port;

Used for a

essing the IOSvr

� address : LONGINT;

Contains the virtual address for the video memory

� displayFlag : BOOLEAN;

All the pro
edures responsible for writing to the display
an only do so if the driver

has a

ess to it. This
ag is toggled ea
h time a swit
h o

urs between Oberon and the

Gneiss environment

� update* : BOOLEAN;

Indi
ates to Oberon that a swit
h o

urred ba
k to the graphi
s mode. When set,

Oberon will redraw the
omplete display. Swit
h ba
k to text mode assigns a FALSE

value to this variable.

Pro
edures Modi�ed:

� PROCEDURE Map*(X: INTEGER): LONGINT;

This fun
tion now only returns the virtual address that was used for mapping the VGA's

physi
al address. The virtual address is
ontained in the address variable. Remember

that this is an absolute address and not just the segment part.

� PROCEDURE Dot*(
ol,x,y,mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

� PROCEDURE CopyBlo
k*(SX,SY,W,H,DX,DY,mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

� PROCEDURE CopyPattern*(
ol: INTEGER; pat: Pattern;

X,Y,mode: INTEGER); Modi�ed to test if the displayFlag variable is set.

� PROCEDURE ReplConst*(
ol,X,Y,W,H,mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

� PROCEDURE FillPattern*(
ol: INTEGER; pat: Pattern;

pX,pY,X,Y,W,H, mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

� PROCEDURE ReplPattern*(
ol: INTEGER; pat: Pattern;

X,Y,W,H,mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

� PROCEDURE DisplayBlo
k*(B: LONGINT; DX,DY,W,H,SX,SY,mode: INTEGER);

Modi�ed to test if the displayFlag variable is set.

36

� PROCEDURE Depth*(X: INTEGER): INTEGER;

Sin
e the IOSvr only supports 16
olour modes, this fun
tion will only return a value

of 4 indi
ating a depth of 16
olours (4 bits per pixel).

Pro
edures Added: Please note that the following pro
edures were taken from the Display

module as implemented in the previous port.

� PROCEDURE MapDisplay;

Maps the physi
al display memory unto a virtual address

� PROCEDURE ReleaseDisplay*;

� PROCEDURE RegainDisplay*;

� PROCEDURE OpenDisplay;

E�e
tively swit
hes from text to graphi
s mode

� PROCEDURE CloseDisplay;

Close the graphi
s display and swit
h ba
k to text mode

Main Initialization and General Information: Modi�ed to in
lude the initialization

ode required by Gneiss. This was taken 'As is' from the previous port.

Future Ports: Limited amount of
hanges foreseen. During the
urrent port, Native 2.3.2

be
ame available. As a simple exer
ise the new driver was adapted to the
urrent port to

investigate how qui
kly it
ould be a

omplished. It took less than 3 minutes with only 5

lines of
ode being added or modi�ed.

5.10 HDSL.Mod

Port Dire
tion: Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.11 Disk.Mod

Port Dire
tion: Gneiss to Native.

System: Stand-alone.

Global Variables Modi�ed:

� map :POINTER TO ARRAY OF LONGINT

Changes in the OP2
ompiler prompted this modi�
ation. Memory for map is allo
ated

using the NEW(p,n) statement instead of SYSTEM.NEW.

Pro
edures Added:

� PROCEDURE Available*() :LONGINT;

Returns amount of available disk spa
e.

� PROCEDURE Marked*(se
 :LONGINT) :BOOLEAN;

37

� PROCEDURE Size*() :LONGINT;

Returns the size of the lo
al disk in terms of se
tors.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.12 Files.Mod

Port Dire
tion: Gneiss to Native. Native to Gneiss

System: Stand-alone.

Global Variables Added:

� PathChar* :Char;

Brought over from the FileDir module in order to be
onsistent with CFS.

Pro
edures Added:

� PROCEDURE Copy(sour
e, dest, size :LONGINT);

This pro
edure is for internal use only and fa
ilitates a fast, low level
opying fun
tion.

Pro
edures Modi�ed:

� PROCEDURE Register(f :File);

The pro
edure body was repla
ed with the Native implementation.

� PROCEDURE Copy(sour
e, dest, size :LONGINT);

This pro
edure is for internal use only and fa
ilitates a fast, low level
opying fun
tion.

� PROCEDURE CleanUp*(f :SYSTEM.PTR);

Under the previous port, CleanUp was installed as a GCnotifier, but sin
e noti-

�ers are no longer used, CleanUp is installed using the Kernel.RegisterObj pro-

edure. In order to stop the garbage
olle
tor from
olle
ting the root �le handle,

Kernel.DisableTra
ing is used.

Main Initialization and General Information: Under the previous port, variables of

type File was implemented using type LONGINT. It has been repla
ed with type File in the

urrent port. Also note that the Files module still uses 1K se
tors and not 2K se
tors as is

the
ase under Native Oberon. Future Ports: No major
hanges foreseen.

5.13 Files.Mod (CFS)

Port Dire
tion: Gneiss to Native.

System: CFS.

Global Variables Added:

� PathChar* :Char;

Moved from the FileDir module as CFS does not
ontain a FileDir module.

Pro
edures Added:

� PROCEDURE Copy(sour
e, dest, size :LONGINT);

Refer to Se
tion 5.12

38

Pro
edures Modi�ed:

� PROCEDURE CleanUp*(f :SYSTEM.PTR);

Refer to Se
tion 5.12

� PROCEDURE FileSvrCall(Operation :LONGINT...);

Buf is now an extended type of Core.Basi
Header due to in
onsisten
ies found with

the
ompiler under the previous port. If the type is not extended, SYSTEM.VAL will

not update the values of the �elds of the extended re
ord
orre
tly under Native.

� PROCEDURE GetName(F :File; VAR name :ARRAY OF CHAR);

Main Initialization and General Information: Refer to Se
tion 5.12.

Future Ports: No major
hanges foreseen.

5.14 CFS.Mod

Port Dire
tion: Gneiss to Native.

System: CFS.

Pro
edures Modi�ed:

� PROCEDURE SvrCall(Operation :LONGINT...);

Buf is now an extended type of Core.Basi
Header due to in
onsisten
ies found with

the
ompiler under the previous port. If the type is not extended, SYSTEM.VAL will

not update the values of the �elds of the extended re
ord
orre
tly under Native.

Main Initialization and General Information: Longint's repla
ed with File pointers.

Still uses 1K se
tors, not 2K as under Native. Added disable tra
ing
ode. Modi�ed to use

the default viewer system installed instead of the System module viewers.

Future Ports: No major
hanges foreseen.

5.15 FileDir.Mod

Port Dire
tion: Gneiss to Native.

System: Stand-alone.

Global Variables Removed:

� PathChar* :Char;

Removed to be
onsistent with CFS whi
h does not
ontain the FileDir module.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.16 Input.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Pro
edures Added:

� PROCEDURE KeyState(VAR keys :SET);

Empty stub implemented to maintain
ompatibility with Native

39

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.17 Bu�ers.Mod

Port Dire
tion: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.18 Modules.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.19 Viewers.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.20 Fonts.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.21 Reals.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.22 MenuViewers.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

40

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.23 Obje
ts.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.24 Texts.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.25 TextFrames.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.26 Fonts.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.27 FPA.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

5.28 Oberon.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Global Variables Added:

41

� ioport :IPC.Port

Pro
edures Added:

� PROCEDURE SetPalette;

Performs the a
tual palette swit
h.

� PROCEDURE Redraw;

This pro
edure was brought in from Gneiss and is responsible for refreshing the display.

� PROCEDURE SetTimer(ms :LONGINT;

This pro
edure was brought in from Gneiss. It is used to res
hedule the main loop in

Oberon.

� PROCEDURE Loop*;

Redraw is now
alled upon re
eiving a signal from the Display module. If there is

any network input available, the related handler for the NetTask will be
alled. The

pro
edure was also modi�ed so that an idle loop would be allowed to be res
heduled by

Gneiss.

Pro
edures Modi�ed:

� PROCEDURE ResetPalette;

Main Initialization and General Information: Added NetTask for possible future ex-

pansion and
ompatibility with Gneiss implementation of previous port.

Future Ports: No major
hanges foreseen.

5.29 System.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Global Variables Added:

� pos :INTEGER;

� pat :ARRAY 32 OF CHAR;

Pro
edures Modi�ed:

� PROCEDURE List*(name :ARRAY OF CHAR; time, date, size :LONGINT;

VAR
ont :BOOLEAN);

Native
ode repla
ed with Gneiss
ode of previous port.

� PROCEDURE Dire
tory*;

Native
ode repla
ed with Gneiss
ode of previous port.

� PROCEDURE Wat
h*;

Removed
ode that reports any disk related information.

� PROCEDURE Trap*(error,fp,p
, page :LONGINT);

Refer to Se
tion 2.1.3.

Main Initialization and General Information: No modi�
ations required. Only re
om-

pile with the OP2 Compiler.

Future Ports: No major
hanges foreseen.

42

5.30 Edit.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: This module required modi�
ations un-

der CFS due to the way the the �lesystem routines are implemented. No modi�
ations were

made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

5.31 Strings.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: All
ode relating to the FileDir module

was removed for the CFS as the FileDir module does not exist under CFS. No modi�
ations

were made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

5.32 NamePlates.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: All
ode relating to the FileDir module

was removed under CFS as the FileDir module does not exist under CFS. No modi�
ations

were made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

5.33 TextDo
s.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: This module required modi�
ations un-

der CFS due to the way the the �lesystem routines are implemented. No modi�
ations were

made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

5.34 PanelDo
s.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: This module required modi�
ations un-

der CFS due to the way the the �lesystem routines are implemented. No modi�
ations were

made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

5.35 Dire
tories.Mod

Port Dire
tion: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

43

Main Initialization and General Information: All
ode relating to the FileDir module

was removed for the CFS as the FileDir module does not exist under CFS. No modi�
ations

were made for the Stand-alone implementation.

Future Ports: No major
hanges foreseen.

6 Future Work

This se
tion tries to give suggestions for future work that might be attempted under the

urrent port.

� Extending the IOSvr to in
lude support for
ertain SVGA
hip sets in order to allow

Gadgets to work in a higher resolution or the possible repla
ement of the IOSvr by a

new display me
hanism.

� Modifying the networking support o�ered by Native Oberon in order to extend the

Gadgets environment to allow the in
lusion of modules that provide email and web

based servi
es, to do so under Gneiss.

� A detailed study to determine if Gneiss kernel development under the
urrent port

would proof to be a viable option to
onsider.

� Updating the S
ope debugging tool designed by de Villiers de Wet to
omply with the

new obje
t
ode format. As release 2.3.3 introdu
ed yet another obje
t �le format, the

authors suggest waiting until the stable release 2.3.4 is available before attempting this.

Referen
es

[1℄ N. Wirth and J. Gutkne
ht. Proje
t Oberon | The design and implementation of an

Operating system and
ompiler. Addison-Wesley, 1991.

[2℄ E. Esterhuyse. The Ca
hing File Server (CFS): Ca
heSVR v1.2a | A Te
hni
al Report.

Te
hni
al Report, 1999.

[3℄ http://www.oberon.ethz.
h/native/Te
h.html - Te
hni
al notes regarding the
urrent

Oberon release in HTML format.

44

A Sour
e Listings

A.1 Lo
ating Garbage Colle
tion Errors

(* pmuller 13.02.95/13.11.95

jeloff 20.1.99 modified to work under Gneiss *)

MODULE TGC;

IMPORT

Kernel,Tra
e,SYSTEM;

PROCEDURE Che
k(p: LONGINT);

VAR

b: POINTER TO ARRAY 10000000 OF LONGINT;

s: LONGINT;

inside: BOOLEAN;

BEGIN

Kernel.GC; (* this will put p^ on the free list if GC is broken *)

inside := FALSE;

LOOP

s := Kernel.LargestAvailable();

IF s <= 500 THEN EXIT END; (* 500 < 4000 *)

DEC(s,32); (* allow spa
e for type des
riptor added by SYSTEM.NEW *)

SYSTEM.NEW(SYSTEM.VAL(SYSTEM.PTR,b),s);

IF (p >= SYSTEM.VAL(LONGINT,b)) & (p < SYSTEM.VAL(LONGINT,b)+s) THEN

inside := TRUE;

EXIT

END

END;

IF inside THEN

Tra
e.String("Inside! Error found."); Tra
e.Ln

ELSE

Tra
e.String("Not inside. Error not found."); Tra
e.Ln

END;

Kernel.GC

END Che
k;

PROCEDURE Inside1*;

VAR

p: POINTER TO ARRAY 4000 OF CHAR;

BEGIN

NEW(p); p^ := "quite safe";

Che
k(SYSTEM.VAL(LONGINT,p));

Tra
e.String("p is "); Tra
e.String(p^);

Tra
e.Ln

END Inside1;

45

PROCEDURE Inside2*;

VAR

p: POINTER TO ARRAY 4000 OF CHAR;

BEGIN

SYSTEM.NEW(SYSTEM.VAL(SYSTEM.PTR,p),4000); p^ := "quite safe";

Che
k(SYSTEM.VAL(LONGINT,p));

Tra
e.String("p is "); Tra
e.String(p^);

END Inside2;

BEGIN

Inside1;

Inside2;

Kernel.Exit(0)

END TGC.

Compiler.Compile \s TGC.Mod~

BootLinker.Link tg

\new Kernel.NewRe
 \sysnew Kernel.NewSys \newarr Kernel.NewArr

\newsysarr Kernel.NewSysArr

\list Kernel.modules

\integrate 20000000H

IPC GStrings VMSL ExpSL RandomNumbers Tra
e DmaSL Kernel tg
 ~

The test module TGC
ondu
ts a very general test of the garbage
olle
tor. If the test

worked
orre
tly, one should see the messages p is quite safe and Not inside. Error

not found. The absen
e of any one of these messages indi
ates that there are still errors in

the garbage
olle
tor.

A.2 The De
oder Module

MODULE Test;

PROCEDURE Sum(x,y :INTEGER) :INTEGER;

BEGIN

RETURN x+y

END Sum;

PROCEDURE Go*;

VAR

x,y,z :INTEGER;

BEGIN

x := 50; y :=25; z := Sum(x,y)

END Go;

46

End Test.

.....

PROCEDURE Sum

0007H: 55 push ebp

0008H: 8B EC mov ebp,esp

000AH: 66|8B 5D 0C mov bx,12[ebp℄

000EH: 66|8B 55 08 mov dx,8[ebp℄

0012H: 66|8B C3 mov ax,bx

0015H: 66|03 C2 add ax,dx

0018H: 8B E5 mov esp,ebp

001AH: 5D pop ebp

001BH: C2 08 00 ret 8

001EH: 6A 03 push 3

0020H: CC int 3

.....

47

