Porting Native Oberon to the Gneiss Microkernel — A Guideline
for Future Ports

Jacques Eloff and Frank van Riet
eloff@cs.sun.ac.za
vanriet@cs.sun.ac.za

Department of Computer Science
University of Stellenbosch

11 February 1999

Abstract

The object of this report is to give a brief overview of how Native Oberon System 3, Release
2.3.0 was ported to the Gneiss Microkernel. It serves two main purposes. First, to describe
the process of porting the system to the Gneiss kernel and the methods that were applied
during this process to accomplish our goals. Second, to serve as a guideline for when future
ports are attempted in order to minimize the type and number of errors that may occur
during such an exercise.

Contents

1 Introduction

1.1 Conventions Used in this Report
1.2 Overview of the Current Port
1.3 System Specificationso Lo
1.4 Acknowledgements

2 Porting Oberon
Beginning the Port o

2.1

2.2
2.3
24
2.5

2.1.1
2.1.2
2.1.3
2.14

The Basic Test Model
Testing Memory Management
Exception Handlers
Completion of the Oberon Core

Porting Gadgets L
Porting Gneiss Related Modules
Integration with CFS
Continuing Gneiss Kernel Development

3 Porting: A General Approach

3.1 Introduction e e
3.2 Cross Platform Development
3.3 Debugging Techniques
3.3.1 The Trace Module
3.3.2 Serial Terminals
3.3.3 Debugging the Display Driver,
3.3.4 The Decoder Module
3.4 The OP2 Assembler s
3.5 The BootLinker e
4 Garbage Collection and Memory Management
4.1 Introduction. e e e e e
4.2 The Initialization Process e
4.3 Memory Allocation
4.3.1 Introduction e
4.3.2 The Basis of Allocation: NewBlock
4.3.3 Structured Blocks: NewSys
4.3.4 Structured Blocks: NewRec
4.3.5 Structured Blocks: NewArr,
4.3.6 Structured Blocks: NewSysArr
4.4 Monitoring Memory Usage o
4.5 Collecting Garbage L
4.5.1 Introduction e
4.5.2 The Mark Phase e
4.5.3 Stack Traversal in Threads
4.54 TheSweep Phase

O U R

N oo

10
10
11
12

12
12
12
13
14
14
15
15
15
16

5 Module Modifications

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
9.35

Introduction
IPC.Mod
VMSL.Mod
ExpSL.Mod
DmaSL.Mod . . .
GStrings.Mod . . .
Trace.Mod
Kernel.Mod
Display.Mod
HDSL.Mod
Disk.Mod
Files.Mod
Files.Mod (CFS) .
CFS.Mod
FileDir.Mod
Input.Mod
Buffers.Mod
Modules.Mod . . .
Viewers.Mod . . .
Fonts.Mod
Reals.Mod
MenuViewers.Mod
Objects.Mod . . .
Texts.Mod
TextFrames.Mod .
Fonts.Mod
FPAMod
Oberon.Mod
System.Mod
Edit.Mod
Strings.Mod
NamePlates.Mod .
TextDocs.Mod . .
PanelDocs.Mod . .
Directories.Mod . .

6 Future Work

A Source Listings
A.1 Locating Garbage Collection Errors.
A.2 The Decoder Module

24
24
25
26
26
26
26
26
26
34
35
36
36
37
37
37
38
38
38
38
38
39
39
39
39
39
39
40
40
40
41
41
41
41
42
42

42

List of Figures

ST W N~

Stack Layout for an Exception
Initialization of the Heap . . .
Heap Block Structures
Basic Allocation using NewBlock
Type Descriptor for Records . .
Marking Blocks

List of Tables

1
2
3

System Resource Usage During Booting
Interpretation of the SFAM Fields

Tag Construction for Sweeping

11
18

1 Introduction

The report is divided into several sections. While some focus directly on the project of
porting Oberon, others play a more informative part like the section on garbage collection.
Section 1.2 gives a brief overview of what the project entailed. Section 2 focus on how the
port was accomplished, where and how it was started and how the different modules finally
came together to form a single new system. General topics such as debugging, cross platform
development and the system configuration that was used during the current port will be
discussed in Section 3 .

Section 4 plays only an informative part. This section should serve as a good introductory
text before delving into the source code of the garbage collector and its related routines. The
authors feel it is necessary to include this section as the garbage collector was one of the
most complex sections of code encountered during the current port, and, without a basic
understanding of how memory management functions inside Oberon, making modifications
or locating errors in this section can become time consuming and difficult.

Section 5 gives a detailed description of each individual module that was involved during
the current port. Although this section strictly applies to the current port, it should assist the
reader in obtaining the necessary knowledge to understand the Oberon source code, especially
how the different modules are integrated, and hopefully reduce the time required to perform
future ports.

1.1 Conventions Used in this Report

e The term current port refers to the porting process of Native Oberon System 3,
Release 2.3.0 to the Gneiss environment.

e The term previous port refers to the system that was originally ported from DOS
Oberon in 1992.

e The term kernel is used interchangeably throughout the report and will be qualified
in the context that it is used in as it can refer to both the Gneiss microkernel and the
Oberon Kernel module.

1.2 Overview of the Current Port

The project was started to accomplish a number of goals. First, to make the new Native
Oberon environment available to replace the the previous port. Second, to include the Gadgets
Graphical User Interface (GUI) as an extension of the traditional viewer system thereby
making it more accessible and easier to grasp for new users, especially first year students who
use Oberon primarily as a teaching tool. Third, to possibly replace the I0Svr in the kernel
making Oberon the primary display through which all information is channelled including
other VM'’s. Last, to integrate the new system with the Caching File Server which replaced
the HFS system. Due to design constraints encountered, it was decided to keep the I0Svr
for the time being.

The I0Svr is considered to be lacking in performance being one of the oldest servers
in the Gneiss kernel. The removal or replacement of the server would naturally hold many
advantages, but would also introduce certain design problems.

The greatest disadvantage currently is that the I0Svr is slow and does not offer support
for the latest available Super VGA (SVGA) chip sets found in most IBM Compatible PC
systems today. The I0Svr only supports standard VGA and one SVGA chip set namely the
Tseng ET4000. This being the case, removing the I0Svr would allow one to use the display
drivers that Native Oberon provides, thus supporting a far wider variety of display hardware.

The greatest problem the authors foresaw was that the I0Svr supports both a text based
and a graphical oriented environment. The text environment is where VM'’s, except Oberon,
normally display information by making use of the WindowSvr. Once the I0Svr is removed,
Oberon would become the only active display mechanism on the system. Other VM’s would
no longer be able to display themselves unless it was done inside the Oberon environment.

VM’s in the text based environment allow for a certain amount of interaction as users can
quickly switch from one VM to the next. In Oberon, the main scheduling loop prohibits this
switching to a certain extend in that only one task can execute at a certain time, even though
there may be many tasks installed in the central loop.

By removing the I0Svr, these two paradigms would have to be integrated into a single
environment. First, the viewer system would have to be extended to allow VM’s to make
requests to display themselves inside the Oberon environment. In order to service such re-
quests, the Oberon module would have to take on both the role of client and server where it
traditionally only played the role of a client of the Gneiss kernel. The biggest challenge was
that even if this new viewer mechanism could be introduced, VM’s would no longer have the
same amount of freedom with regards to user interaction.

Second, Oberon would need extensive modifications in order to distinguish between viewers
owned by itself and those belonging to other VM’s. One example here is that VM’s might
sometimes need to display critical data that requires a user’s attention immediately. If Oberon
was busy attending to another task, the VM’s request would simply be blocked until it could
be serviced. The result of this could be quite fatal, especially if the information is lost and
could not be retrieved again.

Given the current status of the I0Svr, the authors’ objectives and limited time frame of
two months, it was decided that the I0Svr would be kept during the current port. Although
the standard VGA display driver that Native Oberon provides was used, it required a certain
amount of modification in order to work with the I0Svr and was only made possible by the
fact that the I0Svr supported the hardware.

1.3 System Specifications

This section gives a brief overview of the different systems that were employed during the
current port:

e Source: Native Oberon, System 3, Release 2.3.0

e Target: Gneiss microkernel 0.74f with Caching Filer Server (CFS)
e Development: Native Oberon, System 3, Release 2.3.0

e Testing: Gneiss microkernel 0.73y, stand-alone DOS based version

Section 3.2 gives a more detailed explanation on how the systems were employed to interact
with one another and facilitated in the testing of the software.

1.4 Acknowledgements

We would like to extend our thanks and gratitude to the following people. They were always
eager to assist, whether it was simply a meaningful suggestion, the time they took to fit us
into their daily schedules or the replies to all the e-mail. It is much appreciated.

e Pieter de Villiers

e Eben Esterhuyse (Assistance during the integration of the current port with CFS
(Caching File Server))

e Alan Webber
e Jaco Loubser

e Pieter Muller (ETH, for all the information provided regarding the garbage collector,
especially for the information contained in Sections 4.3.3, 4.3.4, 4.3.5 and 4.3.6, as well
for making all the Oberon source code available to us. Also involved with the previous

port)

e Johan de Villiers (Data-Fusion, assistance with debugging exception handlers. Also
involved with the previous port)

e De Villiers De Wet (Data-Fusion, assistance with the garbage collector and debugging
suggestions. Also involved with the previous port)

e Régis Crelier and Thomas Burri (Régis Crelier drew the original heap diagrams. It was
redrawn by Thomas Burri and reproduced for this report with the permission of Pieter
Muller)

2 Porting Oberon

2.1 Beginning the Port

Before writing a single line of code, the authors concentrated on understanding each individual
module and its part in the Oberon hierarchy. Understanding the Gneiss kernel is also very
important as it partially replace some of the functions which the Kernel module fulfills under
Native. Because the Kernel module forms the basis of the system, it follows that this was
the first Native module that was ported.

2.1.1 The Basic Test Model

Initially the Native kernel was stripped of all functionality. Apart from the initialization code,
it contained only a single implemented procedure namely Exit that was taken from the Oberon
kernel from the previous port. From this a test VM was constructed. Stubs were implemented
for the memory routines in order to allow it to link correctly. The memory routines were not
considered important at this stage as no dynamic structures were implemented. Following is
the code for the first VM that we used for testing the new Kernel module under Gneiss:

MODULE Test;

IMPORT
Kernel;

BEGIN
Kernel .Exit (0)
END Test.

The simplistic design was motivated by the fact that the VM facilitated in providing the
means for testing the new Kernel module and therefore need not be a complex program itself.
In order for the test VM to execute, the Kernel module had to be initialized correctly.

The test VM was extended as more functionality was introduced to the Kernel module.
During these extensions it became clear that tracking differences in the implementations
between the Kernel module of Native and that of the previous port was very important.
Although locating changes that are Gneiss specific usually proves to be a fairly easy task,
care must still be taken. Sometimes code might be encountered that is Gneiss specific, but
which is no longer required. The same is true for Native code. Sometimes certain procedures
and functions will need to be replaced with a Gneiss equivalent. Quite often sections were
encountered in the Kernel module whose services were performed by servers inside the Gneiss
kernel. Consequently, these parts of the Native Kernel were removed or modified to interface
with Gneiss.

2.1.2 Testing Memory Management

Testing the memory management routines is very complex. Although there exist a number
of simple tests that can be conducted, they only serve a general purpose and result in giving
a global view of memory management.

The initial tests focused on those routines that monitored memory usage. These rou-
tines are: LargestAvailable, Available and Used. Once they proved to return accurate
information the actual allocation and deallocation of memory was tested.

The authors again relayed on a simple test. A elementary dynamic structure like a binary
tree was constructed after which it was traversed, deallocated and an explicit call was made to
the garbage collector. Memory usage was reported before, during and after the construction
and traversal of the structure.

During the early stages when work was still performed on the Oberon core, a number of
unrecoverable errors occurred. During the booting process of Oberon, the garbage collector
was activated and collected all the active file handles before the module loader had completed
loading all the required modules. After every possible cause was explored, it was suspected
that the error originated during garbage collection. The suspicion was verified when checks
were implemented on the root pointer of the file handles. This pointer spontaneously turned
NIL during the booting process, shortly after the garbage collector was called for the first
time.

A more specialized test ! was applied and immediately failed, thus strengthening the
authors’ suspicion that the garbage collector did collect blocks of memory that still contained
active references, in this case, the root of all the file handles. The error was introduced by

IRefer to Appendix A.1 for the source code used in this test

a section of code that was omitted during the port and which was responsible for the initial
setup of the heap.

As the system’s complexity increased, brought on both by the number of modules that
were loaded and by the fact that Gadgets and the compiler was actively used, it became harder
to locate memory errors. As the system was tested over a longer period of time, it came to
the authors’ attention that memory fragmentation increased, especially when compiling large
groups of modules like Gadgets. The situation reached a point where the largest block of
contiguous memory accounted for roughly 2.5% of the total available memory, which is not
considered to be an acceptable level. This clearly indicated that there was an error in the
memory management system.

Although garbage collection does not completely remove fragmentation, it does limit it to
a far better extent than would have otherwise been possible had memory management been
left under the control of the programmer to allocate and deallocate memory as he or she saw
fit.

After a detailed investigation it was determined that the implementation of the filesystem
was responsible for the fragmentation. During a compile session, a number of new file handles
are allocated as many temporary files are created apart from the source, symbol and object
files. Since file handles are fairly large, memory is allocated from the list containing the largest
free blocks. Refer to Section 4.3.2 for a more detailed explanation on basic memory allocation.
Compiling a large system like Gadgets speeds the fragmentation process. Since a termination
handler was used in the Files module, the handles were only marked for collection during an
exit from Oberon. This meant that the fragmented memory could never be restored as those
file handles used for the creation of the temporary files were never collected.

2.1.3 Exception Handlers

The way Oberon handles exceptions under Gneiss differs significantly from how it is imple-
mented under Native Oberon. During initialization the InitTrapHandling procedure creates
a local thread in the Oberon VM called Dispatcher. This thread effectively loops and and
blocks until an exception occurs. The exception is detected by repeatedly issuing calls to the
AwaitExceptions function. This function in turn does an IPC transaction with the exception
server inside the Gneiss kernel to check if an exceptions did occur.

Once the exception is detected, the machine state is saved and the ipTable is checked
to see if a trap handler has been installed for the exception that occurred. If so, control is
transfered to the handler by simulating an interrupt and calling the SetState function. The
SetState function is responsible for the actual control transfer to the handler. If the ipTable
returns a NIL pointer for the specified exception, the DefaultHandler procedure is called.

The OP2 Compiler no longer supports the + operator to compile interrupt handlers as
was the case in the previous port. The Scheduler procedure therefore no longer generates
a stack to simulate an interrupt, but rather one to simulate a procedure call. Transfer
and Stackbase can no longer be in-lined using the - operator and have been transformed
into formal procedures. The use of normal procedure calls also mean that the stack pointer
register, ESP, needs to be adjusted as no RET instruction will be executed to pop the registers
from the stack that was pushed during the procedure call. Figure 1 gives an outline of how
the stack will be configured before the handler for the exception is executed.

Considering the changes that were made in the Kernel module to the exception handling
mechanism, it follows that the System module also needed to be modified. System is respon-

Dispatcher cs
EIP
EBP —»Entry code
EAX —»Result of StackBase()
Loop [—9Parameter to Transfer
Transfer —I: EBP | Entry code

Figure 1: Stack Layout for an Exception

sible for opening a trap viewer whenever an exception occurs to inform the user of the error.
Once this is done, System performs a traceback to locate the origin of the exception and
continues this traceback from the module in which it occurred until it reaches the scheduling
loop in the Oberon module. The following modifications were required by the System module
due to changes made in the Kernel module:

e The EFlags and EBP registers are no longer read from the stack. Instead, their values
are obtained from the machine state exported from the Kernel module in the state
variable.

e The detailed option is no longer supported. As was done in the previous port, a complete
register dump is written to the Messages window.

e An explicit EXIT has been inserted in the traceback loop and is called once the trace-
back reaches the Oberon.Loop procedure. Due to the changes in the stack layout, the
procedure can no longer terminate as it did under Native.

Although the testing of the exception handler proved simple, correcting and debugging it
posed more of a challenge. The first test involved an empty VM which simply tried to reference
a NIL pointer. This of course leads to a page fault being generated and invoked the exception
handler. The test was applied to a variety of exceptions, including issuing breakpoints (INT
3), invalid machine instructions and division by zero. What is also very important during this
sort of testing is the verification of the machine state. Each VM executes in a separate address
space, usually starting at 20000000H. Once an exception is generated, EIP (the instruction
pointer) must be verified to make sure that it does not contain a value lying outside the VM’s
address space. If so, care must be taken to determine the reason for this and if necessary, the
required steps to correct it must be implemented and the routines must be tested again to
verify the corrections.

Once the basic exception handling worked correctly, a dummy loop was installed in the
test VM in order to simulate the main scheduling loop in Oberon. This was done in order to
test if the handler, either an installed one or the default one, could in fact transfer control
back to the main scheduling loop once the exception has been generated and handled.

Testing was completed when the basic Oberon environment was ported. Given that an
exception occurred, a register dump is given in the Messages window and a trap viewer is

10

opened inside Oberon with a stack trace back, indicating where the exception originated. The
trace back must be carefully verified and all values, especially the PC 2, must be checked.

2.1.4 Completion of the Oberon Core

The Oberon core was completed by compiling and testing the necessary modules required by a
very basic Oberon system. This includes those modules responsible for display management,
the basic viewer system and editor as well as the module loader and scheduler in the Oberon
module.

Although the core is fairly small, locating errors during this phase can prove difficult as
there are more opportunities for errors to find their way into the code. An error in the input
driver might only be detected at a later stage for example or errors might occur that could
point to any number of modules that might have been the origin of the error.

Extensive use was made of the Trace module to obtain as much information as was
possible. The module loader was extensively monitored, as were the routines for accessing
the display and input drivers as well as the file system related routines.

2.2 Porting Gadgets

The Gadgets environment proved to be fairly easy to port. The only requirement being that
it be recompiled on the ported system once the basic environment was considered stable.

Certain modifications were required, but proved to be few and fairly concentrated within
a small group of modules.

Not all applications were considered during the current port though. Modules offering
Telnet and FTP services were left out as Gneiss already provides these services to users.
Also, all the network modules required to interface with the gadgets networking environment
were not port as it will require a significant amount of modification to work correctly under
Gneiss. A further reason for not porting network related Gadgets modules is that our objective
was to port Gadgets and not Gadget based applications.

Those modules not requiring modifications were ported as it imposed no further con-
straints on the already limited time frame. It must also be remembered that many of the
Gadgets based modules are projects that were given to students at ETH and that the source
code is not distributed with the rest of the system, nor is it covered by the license agreement.

The authors do however foresee that once the network environment of Gadgets has been
adapted to work under Gneiss and interface with the NetSvr and other networking software
that these applications could easily be ported. The result of such a port would mean that
web browsing utilities and email facilities would become available.

2.3 Porting Gneiss Related Modules

Although not part of the original objectives, it was decided to port as many of the older,
Gneiss specific modules to the new Native environment under Gneiss. Only a limited amount
of modules were ported due to time constraints. In order to lend some form of priority to
the process, those modules most likely to be used were identified as suitable candidates and
include:

e Patch

*Program Counter

11

PFinder

o Env
e VM

Print

Andy

2.4 Integration with CFS

The final phase of the port was concluded by moving the current port from a single user
environment to a distributed, multi-user environment and integrating it with the Caching
File Server (CFS) which replaced the HFS system during the last half of 1998.

The CFS related modules required a small amount of modifications. Certain constructs
that were inherited from HFS seems to have been allowed under the previous port due to
possible errors in the compiler with regards to casting extended record types. The new OP2
compiler required that some modifications be made to CFS in order to allow the code to
function correctly. Most of the modifications related to dynamic extended record types that
were cast into other types and passed as dereferenced parameters during IPC calls.

The advantage in performance offered by CFS [2] over HFS proved to be more than
adequate given the increase in the amount of file services required to boot Native under
Gneiss. Table 1 gives a brief outline on the increase in system requirements for Native
Oberon, especially where memory is concerned.

| Version | Modules | Memory (K) | Filesystem Calls ||
Current Port, 2.3.0% 28 255 339
Current Port, 2.3.0 59 808 985
Current Port, 2.3.0° 68 1130 1334
Previous Port, 1.6 31 245 338
Previous Port, 1.6° 37 380 491

“Excluding Gadgets and OP2 Compiler
*Including the OP2 Compiler
“Including the Compiler

Table 1: System Resource Usage During Booting

Because of the way that CFS handles the storage of files, Edit and certain Gadgets related
modules required modification to their storage routines. In order to create a backup file, the
original copy must first be renamed before a new file is created and stored. This is required
because of the way the cache is organized. Not doing so will lead to the destruction of the
original file with the data contained in the backup file. CFS was also extended to give a
detailed directory of files including their date and time stamps as well as the actual file size.

Testing Native Oberon under CFS introduced certain problems because of the organization
and structure of the file system. When ever a user requests a file, CFS first try to locate a
local copy in the users account. If unsuccessful, the group account is queried of which the

12

user is a member. If the file could still not be located, the filesystem tries to locate the file
from a special group called ZeroGroup. Only if the last instance fail can it be assumed that
the file is not present on the server. Since ZeroGroup is still based on the previous port, as
are many of the other groups on the system, it often happened that CFS retrieved files from
ZeroGroup when it could not be located in the Native group account. This of course lead to
version mismatches and many modules could not be tested until it could be ensured that all
the required files were in fact inside the Native group.

One solution that was investigated was the creation of multiple ZeroGroups, but due to
the filesystem, this was not possible. Once Native becomes stable, the remaining files from
the previous port should be replaced with those of the current port to ensure consistency on
the file server

2.5 Continuing Gneiss Kernel Development

No investigation was done as to what the influence of the current port would be on the
development of the Gneiss kernel. It is however quite clear that all modules relaying on the
use of assembly language would need modifications to conform with the new syntax imposed
by the OP2 compiler. The authors do feel however that the development of the Gneiss kernel
be continued under the previous port for the time being until the current port has proven itself
as a suitable environment, but a steady and progressive transition to the new environment
should be considered.

3 Porting: A General Approach

3.1 Introduction

This section concentrates on the general aspects of porting and the topics are discussed in
the context of the current port, including the application and impact that these topics had
on the porting process.

3.2 Cross Platform Development

Cross platform development is a topic which needs to be approached with caution. Unlike
development under a single system, working across more than one platform creates ample
opportunities for introducing errors, especially where the mismatch of versions are concerned.
The authors often found that once an error was located it proved quite difficult to attribute
the error to a specific system or simply view it as a case of pure incompatibility between two
versions.

The current port required that a group of very distinct environments had to be used, either
in conjunction with one another or separately. These environments include the following;:

e The Native Oberon system, Release 2.3.0

e The stand-alone version of Oberon under Gneiss as implemented in the previous port.
For this, version 0.73y and 0.74f of the Gneiss kernel was used.

e The distributed version of Oberon under Gneiss, including the new Caching File Server
(CFS) as implemented in the previous port.

13

e The distributed version of Oberon under Gneiss, including the new Caching File Server
(CFS) as implemented in the current port.

Although Native Oberon was the primary source of the port, the previous implementation
was constantly used as a reference. First, to gain an understanding of how the system func-
tioned in the past. As there were none of the DOS Oberon sources in existence, the authors
quite often had to make assumptions to determine which code was possibly modified during
the previous port or which was reproduced without modifications. It was quite common to
encounter code from the previous port which either did not contain accompanying comments
or which were simply fragments of ideas never implemented. Second, to serve as an indication
of which procedures and functions had to be modified in order to interface with Gneiss instead
of directly accessing the hardware as is the case with Native Oberon.

All the development was done under Native Oberon. Once the software needed to be tested
it was transferred to disk and loaded unto a separate machine which contained the stand-
alone version of Gneiss and Oberon from the previous port. In order to speed the process,
customized files were created, similar to makefiles one would typically use with C under
Unix. These files contained the necessary commands for copying, renaming and compiling
all the modules. As the development process matured, all the software was compiled on the
development machine and transfered in whole to Gneiss.

During the early phases of development this proved to be an effective method. As the
amount of code that required testing increased, the turn around time 3 increased dramatically,
sometimes to as much as forty minutes compared to an average of approximately five to ten
minutes during the early stages of the porting process. The basic system that was compiled
was modified to include all the required modules up to the compression utilities. Once the
basic system was transferred, the remainder of the system was brought over in Oberon’s Arc
compression format and uncompressed on the target machine. Although this method had
a significant impact on reducing the turn around time, it could only be applied effectively
during a complete system transfer.

Once a stable stand-alone system was created the target platform was changed to a ma-
chine running the distributed version of Gneiss under CFS. This machine was used to test
the interface to CFS. In order to create a safe environment, the development process was
continued using a single account on CFS. Once this proved successful, all the system files*,
including the documentation, examples and applications were transferred to the Native group
account. A separate group called NativeSrc containing the source code was also created in
order to guard the code from prying users.

3.3 Debugging Techniques

Although Gneiss offers a full set of debugging tools, the authors refrained from using them
since the object file format was inconsistent between the previous and current port, thus
rendering the debugger incapable of giving accurate information. A more manual form of
debugging was employed, utilizing every part of the system that could yield useful information
in order to clarify, describe and explain program behaviour.

3Turn around time refers to the amount of time it takes to create a new image, reboot the test machine,
upload the new image and run all the required tests before returning to the development machine
40bject and Symbol files

14

Some may consider the applied methods archaic, but the type of systems programming
that was involved required a more direct and hands-on approach to debugging. In the authors’
experience it proved quite successful in locating errors efficiently. The most time consuming
part of the process was correcting the errors which were often very subtle.

3.3.1 The Trace Module

The Trace module is capable of displaying arbitrary text information in the Messages window.
This module was often used as a method for localizing errors by placing trace code at both
the entry and exit points of a procedure. The following extract of code will be used to explain
this concept.

PROCEDURE MyProc1i;
BEGIN
Trace.String("Entering MyProcl1"); Trace.Ln;

(* Remainder of procedure body *)

Trace.String("Leaving MyProcl"); Trace.Ln;
END MyProci;

If the entry point trace code was written in the Messages window, but not the trace code
contained at the exit point, it served as an indication that the procedure failed during it’s
execution. Any other procedure that might be called from inside a specific procedure also
contained entry and exit trace code. Should a procedure call any other procedure one is
able to localize possible errors by locating the innermost procedure with entry code, but no
exit code. Apart from this, it also provided a concise overview of program flow and module
interaction.

The Trace module was also employed to assist with more general tasks. Whenever a pro-
cedure dealt with complex calculations, the Trace module was used to display this information
in order to verify it with the authors’ precalculated-calculated values.

Too many trace code can also hinder one’s debugging efforts. Once a section of code
has been tested and seems to work, either remove all the related trace code or keep a short
message. Too much information at once does not assist, but rather overwhelms and confuses.

Also, note that trace code written to the Messages window will cause the VM to grow
from time to time, usually in multiples of 8K. One might easily view this change in available
memory as a leak of some sort, while in effect it is quite normal. The Messages VM was
written in Modula-2 code and designed to grow dynamically. As more trace code is written
to this window, it eventually needs to allocate additional memory in order to buffer the text
and consequently the VM size increases usually in blocks of 8K.

3.3.2 Serial Terminals

A serial terminal was employed as debugging tool when the display driver was ported. Certain
design problems during the early stages of this phase prohibited the authors from using the
Messages window as the primary debugging tool since there was no active display when a
system crash occurred during a switch from text to graphics mode.

15

The serial terminal was also used to gain information on the behaviour of the garbage
collector and other functions under the Native kernel that use the set of serial trace routines
in the Kernel module to output debug information.

Since serial terminals do not provide a scroll back mechanism, care must be taken in
selecting the type of information that need to be displayed. It is best to use the Trace
module for information with a high repetition rate and reserve the serial terminal for very
specific information.

3.3.3 Debugging the Display Driver

Native Oberon supplies a special display driver called Trace.Display.Mod which can be used
during debugging. Since all the modules in the Oberon core depend on a display driver being
present, testing and debugging can become a complex issue. The Trace.Display module
does not contain a single line of code to deal with graphics hardware. Instead, the procedure
bodies were replaced with trace code to output information about the specific procedure.

The advantage is that one can easily compile and test the remainder of the Oberon core
without introducing an unstable device driver. Considering how the I0Svr functions, an
unstable display driver could mean that there is no means for switching back to the Messages
window to view important debug information or determine where a possible system crash
occurred.

3.3.4 The Decoder Module

The Decoder module provides another means for performing low level debugging as it is
capable of giving a complete assembly dump of a module including the actual hexadecimal
formats of machine instructions. The Decoder was used in order to verify certain modules
that contained assembler code. It also served in gaining a solid understanding of the type
of code that is generated for procedures and functions, especially with regards to entry and
exit code. This knowledge was extensively used to debug the exception handling mechanism
of the Kernel module as a detailed description of the stack layout was required. The source
text of a test module along with the Decoder output is given in Appendix A.2 as an example.

3.4 The OP2 Assembler

The OP2 compiler offers a far more suitable environment for using assembly language than
was possible under the previous port by way of the DInline.Assemble construct. Since
procedures and functions can no longer contain mixed sections of both Oberon and assembler
code, older code conforming to the mixed layout requires the separation of the assembler and
Oberon code.

Another feature is that the type of machine instructions required must be specified. If for
example 1486 privileged instructions need to be accessed, the procedure must specify this in
terms of predefined sets like:

PROCEDURE MyProc;
CODE {SYSTEM.i486,SYSTEM.Privileged}

END MyProc;

16

Those instructions not supported currently by the OP2 compiler can be implemented by
using the machine language values and declaring the instruction as a sequence of bytes. The
technical documentation [3] at ETH also contain examples for using the new assembler. It
must be remembered that under Gneiss, the restrictions for using the assembler are much
stronger imposed due to the layout of the microkernel and the use of protected address
spaces. Unlike Native Oberon, the Kernel module executes as a user process in privilege
level 3 under Gneiss, whereas under Native Oberon the Kernel module executed at level 0
with other modules residing in level 3.

Native based modules seldom require changes to the actual assembler code unless modi-
fications are required to interface correctly with Gneiss. It is more likely that changes would
need to be made to older Gneiss specific modules that are brought into the new environment
and requires to be recompiled with the OP2 compiler.

3.5 The BootLinker

The BootLinker module can also be used for debugging purposes, but only during the devel-
opment of the statically linked image of the new Oberon VM. Any exception that may occur
inside the address space of the static image can be easily located using the BootLinker.Find
command in conjunction with the compiler. The linker also creates a log file which contains
data regarding the static image that was linked, and although this file is generated for the us-
ages of the linker only, it might help to give insight into the way modules are linked together.
The source code of the BootLinker might also be helpful as the code is well commented, but
an extensive knowledge of the object code format is a prerequisite.

4 Garbage Collection and Memory Management

4.1 Introduction

This section gives an overview of how memory allocation strategies work inside Oberon as
well as the process of garbage collection and the related routines involved with this process.
Most of the information in this section was obtained from Pieter Muller at ETH. Though the
changes that were made to the Native kernel’s memory related routines during the current
port to perform the necessary functions under Gneiss were subtle, the authors feel that a
detailed discussion is justifiable given the impact that these routines have on the Oberon
environment. Without a basic understanding, locating errors or attempting to correct them
in this part of the Kernel module might prove futile and extremely time consuming.

Native Oberon uses a group of routines for allocating memory. The programmer is usually
just aware of making a call to the NEW procedure, or in rare cases to the SYSTEM. NEW procedure.
As will become clear in this section, what actually happens during such a procedure call is
much more complex and most of the details are hidden away inside the Kernel module.

4.2 The Initialization Process

During the initialization of the Kernel module there are two very important procedures named
Init and InitKernel. The Init procedure is responsible for setting up the stack and heap
and replaces the InitHeap procedure of Native Oberon. If no stack environment variable is

17

MOD 32=28
P firstBlock
heapAd 40
r
P
heapSize
MOD 32=28
J_B ' P endBlock

Figure 2: Initialization of the Heap

supplied the size will default to 60K. If one is specified it is checked against a lower boundary
of 32K. The final value is then reduced by 4K and added to the current stack size of the VM.

The same method is applied when setting up the heap. If the heap environment variable
is present, its value is used. If the variable is absent or contains a negative value, the size
defaults to 256K, the default VM size. After this the total free memory is calculated and the
requested size is tested against this as well. Also take note that 128K of the available memory
under Gneiss is reserved. Should this part of the initialization process fail, a CoreHalt will be
issued. The last part of InitKernel is responsible for initializing the StackOrg and heapSize
variables.

The InitKernel procedure is responsible for initializing the firstBlock and endBlock
variables, aligning each on a 32-byte boundary and then adjusting the address by -4 to align it
on an 8 byte boundary. firstBlock and endBlock represent the lower and upper boundaries
of the heap respectively. After this, the memory between these two pointers are initialized
to 0. Once this is done, the firstBlock variable is cast into a FreeBlock, initialized and a
single FreeBlock structure is created spanning the whole of the heap. Figure 2 gives a basic
layout of this process.

Unlike Native which calls the garbage collector explicitly in the InitHeap procedure,
InitKernel makes a call to the Sweep procedure to initialize the free lists. This is done
because the garbage collector under Gneiss uses a dynamic structure called info to perform
the stack tracing of threads. Since no memory effectively exist at this stage, Sweep is called
instead to create the free list, after which the info structure is allocated.

Under Native Oberon the initialization of the firstBlock and endBlock variables are
much more complex as factors like low memory ° and DMA are taken into account.

Two special type descriptors are also located right at the beginning of InitKernel, namely
ptrElemTag and dynarrElemTag which is used during the allocation of dynamic arrays in the
NewArr procedure. Refer to Section 4.3.5 for a more detailed explanation.

’Memory between the 640K and 1Mb boundary

18

4.3 Memory Allocation
4.3.1 Introduction

When allocating memory there are five procedures to take note of. They are:

e PROCEDURE NewBlock(size: LONGINT): InitPtr;
e PROCEDURE NewRec(VAR p: ADDRESS; tag: Tag);
o PROCEDURE NewSys (VAR p: ADDRESS; size: LONGINT);

e PROCEDURE NewArr (VAR p: ADDRESS; eltag: Tag;
nofelem,nofdim: LONGINT);

e PROCEDURE NewSysArr(VAR p: ADDRESS;
size,tdsize: LONGINT);

The NewSysArr procedure is the latest addition as open arrays were introduced with
Native Oberon. In the previous port, NewRec, NewSys and NewArr used to be functions with
the return type as the address. Together with NewSysArr they have been turned into proper
procedures returning the address in a variable parameter. NewBlock forms the basis of the
other four procedures and is either called directly as in NewSys or indirectly as in NewSysArr
which calls NewSys, in turn issuing a call to NewBlock.

The compiler is responsible for generating the correct code to call the required memory
allocation routine depending on the type of structure involved. When creating statically
linked images using the BootLinker, the memory routines must be explicitly specified.

Currently, Native Oberon distinguishes between the following set of structures:

e POINTER TO RECORD variables allocated with NEW
e POINTER TO ARRAY OF Type, where type is a pointer type, allocated with NEW
e POINTER TO ARRAY OF Type, where type is not a pointer, allocated with NEW

e Blocks allocated using the SYSTEM.NEW procedure

Memory for the first two structures are allocated by using the RecBlk and ArrBIk struc-
tures respectively. For the last two, SysBlks are used [3]. All dynamic structures are allocated
on the heap and under Gneiss, this is the available memory after a VM is loaded into its given
address space, usually 256K® (The default VM size) minus the VM binary size, stack base
and header. The process of setting up the heap has been discussed in Section 4.2. Figure 3
illustrates the layout of the different heap blocks.

The SFAM bit fields in Figure 3 refers to the special markings of a tag used during allocation
and garbage collection and is explained in Table 2. The meaning and use of these bit fields
will become clear in the later discussions on memory allocation and garbage collection.

5The current port has increased the default size to 512K

19

ArrBlk
—>

TDesc 4 SFAM

(3\ ('
| 1010 RecBIk | 1000
—>
lastElemToMark
reserved
. 7
firstElem 's)
0000
dimo T
size
diml
-4
24
0
Filler 1
2
Sk 0000
¥ —>
. J . J
Figure 3: Heap Block Structures
H Constant ‘ Set Name ‘ Value H
SubODbjBit | subobj 3
FreeBit free 2
ArrayBit array 1
MarkBit mark 0

20

Table 2: Interpretation of the SFAM Fields

MOD 32=0

az15%91

T MOD32=0

ozl

MOD 16 =8

4.3.2 The Basis of Allocation: NewBlock

As mentioned in Section 4.3.1, NewBlock forms the basis of all the allocation procedures.
Oberon keeps a list of pointers in a variable called A which points to all the free memory
blocks. The size parameter of NewBlock is always rounded up to the nearest 32 bytes. Each
index in A points to a list of free blocks belonging to a certain size except A[0] which is never
used. A[1] therefore points to the list of free blocks that are 32 bytes in size, A[2] to those
blocks being 64 bytes in size and so on. The exception being A[N] which points to larger
blocks of variable sizes which are all a multiple of 32 and larger than those in A[N-1] 7.

The requested size is divided by the block size B, where B=32, to determine the list in
which to search for a free block. The index into the free list array is kept in i. The address
of the list is kept in adr and the address of the last list, A[N], is kept in AN.

A first fit strategy is employed during the allocation process. A[i] is of course the preferred
list in which the block must be allocated, but this is not always possible as there may not be
any blocks available. adr is cast into an InitPtr and, if not NIL, it is taken as the pointer
which points to the block of memory that must be used for the allocation. If this fails, the
search gradually continues until the final list in AN is reached. If adr is not NIL, it is assumed
that a valid free list has been found and the searching process terminates.

Should AN also be a NIL pointer, one of two situations might occur. If it is the first
attempt at allocation, firstTry = TRUE, the garbage collector is called to possibly free up
memory that might have become available since the last activation of the garbage collector.
firstTry is set to FALSE and NewBlock calls itself. If the process repeats itself and fails again
to satisfy the request the reserve pointer is set to NIL, the garbage collector is called in
order to collect the reserved memory and a CoreHalt is issued to indicate that the request
failed. The reserved memory is freed to allow Oberon to open a trap viewer to inform the
user of the problem. The garbage collector will automatically reallocate the reserved memory
once there is more than 64K of memory available.

The final part of NewBlock determines if the allocation caused fragmentation. It might
be that the programmer requested 64 bytes of memory, but the smallest block available to
satisfy the request was only 96 bytes. The remaining 32 bytes must be placed back into the
free list structure. The remaining memory, if any, is calculated in rest and placed in the
correct free list by repeating the set of calculations that were performed during the first part
of NewBlock. The final step is to mark the block as free by setting the FreeBit in the Tag
and inserting it into the list of free blocks. The sequence:

restptr”.next := A[i];
A[i] := SYSTEM.VAL(ADDRESS,restptr);

is responsible for the insertion into the free list.

Figure 4 gives an illustration of the process described above. It it is assumed that A[2]
points to a NIL list, indicating that there are no free blocks available that are 64 bytes in
size. NewBlock receives a request for 64 bytes. The Block is allocated from N[3] resulting in
a block of 96 bytes being allocated. The block is split up into two blocks of 32 and 64 bytes
in size respectively. The remaining 32 bytes are placed back at the head of the list in A[1]
and a pointer in ptr is returned pointing to the block of 64 bytes.

"In the original implementation of Oberon the free list consisted out of four lists pointing to blocks of 16,
32, 64 and 128 bytes and a fifth list pointing to blocks sizes that are a multiple of 128 bytes [1].

21

- | 0 1 2 3 } N-1|] N
- qj q:ncl'z
rest
e —
| | |

32
96

ptr

Figure 4: Basic Allocation using NewBlock

4.3.3 Structured Blocks: NewSys

The SYSTEM.NEW procedure is implemented in NewSys and uses a SysBlk as described in
Figure 3. NewSys first adjusts the requested size before NewBlock is called to allocate a block
of memory. The first adjustment is to compensate for the indirect tag and actual tag which
constitutes 28 bytes in total. The second adjustment is made by clearing the lower 5 bits of
the requested size in order to round it up to the nearest 32 bytes.

Once a pointer has been allocated, NewSys continues initializing the memory by filling in
zero values. As can be seen from the code, the initialization is done in groups of 32 bytes,
starting at the end of the structure and continuing until the start is reached. It is suspected
that this ® was done in order to allow for more effective register allocation on RISC based
processors under the old DECoberon that was ported from DOS Oberon. This method of
initialization is also present in the other routines discussed later on.

NewSys concludes by setting up the tag. Important fields to take note of are z1 which is
set to -4 and is used as a sentinel for the garbage collector. z3 is set to the value of the double
word (32 bits) stored at the address [EBP+4]. This is used for debugging purposes only in
order for the BootLinker to locate where the allocation of the structure occurred.

4.3.4 Structured Blocks: NewRec

NewRec facilitates the dynamic allocation of records with the NEW(ptr) command and uses
a RecBlk to allocate memory (Refer to Figure 3). The tag parameter is supplied by the
compiler which generates the correct code when encountering the NEW statement. The tag
parameter may be a NIL tag in which case a descriptor for an ARRAY * OF CHAR should be
allocated. The initialization of the memory follows a similar pattern to that of NewSys by
moving over the block of memory and clearing all the bytes to zero. The code to initialize
the type descriptor is generated after the call to NEW.

Each record type is described by a type descriptor. The layout of the type descriptor is

8As per Pieter Muller, ETH

22

0000
TFHO - MOD 32=0
tdsize
-4
self
12
ext
16
name
48
mdesc -
52 T
[}]
N 1]
k) '
=2 mths 1
0
-68
'
'
16 tags "
0
TDesc| oL 0000
esc
| - <€4— MOD 16=8
recsize
4
n ptroffs
-4(n+1)

Figure 5: Type Descriptor for Records

shown in Figure 5. tdsize is the size of the type descriptor in bytes. The -4 entry is used as
a sentinel for the garbage collector. ext is the extension level of the record type. The name
contains the name of the record type, but will be empty for anonymous types. mdesc is a
pointer to the module descriptor in which the type was declared. mths are the type bound
procedures for the record. The tag fields point to the base types of an extended record
and will be NIL if not used. recsize is the size of the actual record described by the type
descriptor. The ptroffs field contain the offsets of pointers inside the record. The negative
field at the end is again used as a sentinel for the garbage collector.

4.3.5 Structured Blocks: NewArr

Procedure NewArr implements the allocation for NEW(ptr) where the parameter is a POINTER
TO ARRAY. NewArr first checks to see if the elTag parameter, which is a pointer to the type
descriptor of the record type used for the elements, is NIL. If this is the case, the element type is
a pointer and not a record type and the ptrElemTag type descriptor is used, otherwise NewArr
uses the dynarrElemTag type descriptor. Both these type descriptors are defined inside the
Kernel module and are located during the Initialization process described in Section 4.2.

4.3.6 Structured Blocks: NewSysArr

NewSysArr is similar to NewSys except that the tags are marked differently after memory has
been allocated with NewSys in order to distinguish it from normal SysBlks.

23

SFAM _,

block XXXX
- 0
SFAM 4

block XXX1
- 0

Figure 6: Marking Blocks

4.4 Monitoring Memory Usage

Memory usage is monitored by way of three functions, Available, LargestAvailable and
Used. Available simply adds all the available block sizes in all the free block lists to calculate
the total amount of available memory. LargestAvailable simply searches for the free block
with the largest size. Since the free lists are ordered in an ascending fashion, the search is
performed from A[N] towards A[0] in order to optimize the process. The amount of memory
in use is calculated by subtracting the amount of free memory from the total heap size. VMHeap
contains the heap size and is initialized in the Init procedure during the main initialization
of the Kernel module.

4.5 Collecting Garbage
4.5.1 Introduction

Garbage collection in Oberon is carried out in two separate phases known as the mark and
sweep phase. During the mark phase, all pointers that still contain valid references are marked
and this is done on a module basis. Next the local stack is checked and possible pointers are
also marked . The process concludes by sweeping over the heap, collecting all blocks that
were not marked, and placing them back into the free lists of memory blocks.

4.5.2 The Mark Phase

The mark phase begins inside the GC procedure by first marking each module so that the
pointers to the module descriptors are not collected. The procedure distinguishes between
those blocks that are sub-objects and those that are not.

If it is determined that block is not a sub-object, the tag is retrieved and a new tag called
marked is constructed with the marked bit set. If tag # marked, then the tag belongs to a
previously unmarked block that may require marking. Refer to Figure 6.

9Under Gneiss, each thread in the current VM under which the garbage collector exist is checked as each
thread contains its own stack.

24

H Tag variable ‘ SFAM bits H

pt.tag XXXX
tag X0XX
notmarked X0X0
tdesc X000

Table 3: Tag Construction for Sweeping

4.5.3 Stack Traversal in Threads

Unlike Native Oberon which contains a single user level stack, a VM such as Oberon contains
more than one thread and therefore more than one stack. Since each thread contains its own
stack, the stack tracing code have to check each stack separately to locate all the pointers
that requires marking in each thread. Once all the threads have been evaluated, the stack of
the main thread is examined.

Each 32-bit value in the stack is taken and passed on as a possible candidate to the
Candidates procedure. The reason for this is that it not possible to tell which stack entry
does in fact contain a pointer of some sort. The whole process is repeated for every thread
in the VM.

The Candidate procedure receives an address as a parameter which is checked against the
upper and lower boundaries of the heap contained in firstBlock and endBlock. Candidate
distinguishes between the different types of heap blocks by examining the alignment of the
address which could be either p MOD 32 = 0 or p MOD 16 = 8. For each address which
conforms to the required alignment of a pointer the tag is retrieved and the address is placed
into a list named candidates. Once the list becomes full, CheckCandidates is called.

CheckCandidates begins by sorting the list of addresses in the candidates array before
examining them. FEach address is examined according to the type of pointer and if valid,
marked by calling the Mark procedure.

4.5.4 The Sweep Phase

Sweep begins by clearing all the free lists. This is done by assigning the nil constant to the
root of each of the free lists kept in A. During this process, a duplicate list is constructed in
lastA which simply points to the same address as A.

The sweep phase is carried out over the whole heap, starting at firstBlock and continuing
until endBlock is reached. In order to determine which pointers must be swept, a group of tags
are constructed from the original tag of the current pointer under investigation. The group
of tags are represented by tag, notmarked and tdesc. Each tag is based on its predecessor
with one additional bit cleared, except for the SubObj bit. Table 3 illustrates how the tags
are constructed. The X value indicates a bit with an unknown setting.

The next step is to determine the size of the structure that is being dealt with and
therefore Sweep must determine if it is an array or not by comparing notmarked and tdesc.
If notmarked # tdesc, it is assumed that the structure is an array of some sort and the size is
calculated by the number of elements and the basic element size. Non-array based structures
contain the correct size in the size field of the tag. Once the size has been determined, a

25

FreeBlockPtr is constructed and inserted into 1astA before continuing with the next pointer.
Because the lastA structure points to A, the free list will automatically be reconstructed in
A.

5 Module Modifications

5.1 Introduction

This section gives a detailed description of all the modules that were affected during the
current port. Fach sub-section contains a brief general overview of the module after which a
detailed description of all the procedures and functions contained in the module is given.

Please note that the information contained in the underlying sub-sections only apply to
the current port. It is likely that future ports would require some amount of modification.
The authors have attempted to give an indication of this for each module, but this is purely
speculative and therefore subject to change as new releases of Native Oberon become available.

Each module section contains a structured overview of the type of modifications that were
made during the current port. Following is a list of subsections that might be encountered
when dealing with a specific module. These subsections serve only as a guideline for future
ports and should assist in reducing the time required to make modifications to individual
modules.

e Port Direction: Indicates whether the module was taken from Native and modified
to be compatible with Gneiss or if the opposite was done during the current port. In
some cases, the port was accomplished by working in both directions.

e System: Indicates on which distribution the module is included.
¢ Global Constants Added: Indicates new constants added during the current port.

¢ Global Constants Removed: Indicates constants that were removed during the cur-
rent port.

¢ Global Types Added: Indicates new types added during the current port

e Global Types Removed: Indicates types that were removed during the the current
port.

¢ Global Variables Added: Indicates new variables that were added during the current
port.

¢ Global Variables Removed: Indicates variables that were removed during the current
port.

e Procedures Removed: Indicates procedures and functions that were removed during
the current port.

e Procedures Added: Indicates procedures and functions that were added during the
current port.

e Procedures Modified: Indicates procedures and functions that required modification
during the current port.

26

e Main Initialization and General Information: Explains changes that were made
to the main module initialization block as well as other general changes that might have
been made to the module.

e Future Ports: This gives an estimate of the type of changes foreseen in order to port
the module again as new releases of Native Oberon becomes available

5.2 IPC.Mod

Port Direction: Gneiss to Native.
System: CFS and Stand-alone.
Procedures Added:

e PROCEDURE TransactionHack(porta,portb: LONGINT;
req,rep: LONGINT; ms: LONGINT): LONGINT;

e PROCEDURE ReceiveRequestHack(porta, portb: LONGINT;
req: LONGINT): LONGINT;

e PROCEDURE SendReplyHack(diff: LONGINT; rep: LONGINT): LONGINT;
e PROCEDURE CreatePortHack(port: LONGINT): LONGINT;
e PROCEDURE LookupGlobalPortHack(num: LONGINT; port: LONGINT): LONGINT;

Main Initialization and General Information: Certain changes were warranted by
changes in the new inline assembler provided by the OP2 Compiler. The new procedures
that were added was done to accommodate the changes in the assembler. Refer to Section 3.4
for more details on the changes to the assembler. The required changes to the IPC module
were made during 1997 by Eben Esterhuyse.

Future Ports: No major changes foreseen. Depends on changes inside the Gneiss kernel.

5.3 VMSL.Mod

Port Direction: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.

Future Ports: No major changes foreseen.

5.4 ExpSL.Mod

Port Direction: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.

Future Ports: No major changes foreseen.

27

5.5 DmaSL.Mod

Port Direction: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.

Future Ports: No major changes foreseen.

5.6 GStrings.Mod

Port Direction: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: This module was previously known as
Strings.Mod. Native Oberon contains a module by the same name which differs in imple-
mentation. It has been renamed during the current port to avoid errors. The new Strings
module under Native Oberon contains support for ISO strings and other extensions and is
extensively used by Gadgets. The renaming was required to avoid module conflicts.

Future Ports: No major changes foreseen.

5.7 Trace.Mod

Port Direction: Gneiss to Native.

System: CFS and Stand-alone.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.

Future Ports: No major changes foreseen.

5.8 Kernel.Mod

Port Direction: Gneiss to Native. Native to Gneiss
System: CFS and Stand-alone.
Global Constants Added:

e tComl*x = 3F8H;
e tCom2*x = 2F8H;
e tCom3*x = 3E8H;
e tComd* = 2E8H;
e t7Bits* = 2;
e t8Bits* = 3;
e t1Stop* = O;
e t2Stop* = 4;

e tParNonelx = 0;

e tPar(0dd* = 8;

28

e tParNone2* = 16;

e tParEven* = 24;

e tBaud110x = 0;

e tBaud150* = 32;

e tBaud300* = 64;

e tBaud600* = 96;

e tBaud1200*%x = 128;
e tBaud2400*% = 160;
e tBaud4800* = 192;
e tBaud9600* = 224;

The group of constants listed above are used to initialize the serial terminal. The tComXXX
constants are used to select the COM port. t7Bits and t8Bits selects the number of data bits
while t1Stop and t2Stop select the stop bits. tParXXX determines the parity and tBaudXXX
selects the baud rate. Global Constants Removed:

e IRQ* = 32;

e IDTSize = 32+16;

e IntAO = 020H;
e IntAl = 021H;
e IntBO = OAOH;
e IntB1 = OA1lH;

e V86EnterInt = 28;

e V86ExitInt = 29;

e KernelCodeSel = 1%8;

e KernelStackSel = 2%8;

e UserCodeSel = 3%8 + 3;
e UserStackSel = 4x8 + 3;
e DataSel = 4x%3;

e KernelTR = 5%8;

e PS = 4096;

e PTEs = 1024;

29

KernelStackSize = 16%1024;
PageNotPresent = 0;
NormalPage = 7;

V86 = TRUE;

Operators = FALSE;

VesaAdr = OEOOOOOOOH;
VesaSize = 400000H;
DefaultPageHeap = 16384;
DefaultStackSize = 128%1024;

Rate = 1193180;

Global Types Removed:

GateDescriptor
SegmentDescriptor
TSSDesc

IDT

GDT

PageTablePtr
PageDirectoryPtr
Vendor

V86Regs

Global Variables Removed:

bt
memTop
dmaO
dmal
dmafree
handlerO
idt

gdt

30

Procedures Removed:

ktss

glue
intHandler
instip
kernelpd
v86pd
handlingtrap
oldcopro
trapCR
trapDR
trapfpu
mapPtr
vregadr
virame
configadr
pspeed
pageheap
pageheap0
pageheapl
kpar
apmofs
powersave
beepInit
beeps
cpuversion
cpufeatures
cpuvendor

cpu

31

PROCEDURE StoreIDT(adr: LONGINT);

PROCEDURE StoreGDT(adr: LONGINT);

PROCEDURE WriteGDT;

PROCEDURE WriteIDT;

PROCEDURE Reboot;

PROCEDURE -GoFrom0To3(ss,sp,cs: LONGINT; ip: Proc);
PROCEDURE -CLTS;

PROCEDURE LoadIDT(base,size: LONGINT);

PROCEDURE LoadGDT(base,size: LONGINT);

PROCEDURE SetTR(tr: LONGINT);

PROCEDURE -ReadMSR(msr: LONGINT; lowadr,highadr: LONGINT);
PROCEDURE -WriteMSR(msr: LONGINT; low,high: SET);
PROCEDURE V86Exit;

PROCEDURE V86Switch;

PROCEDURE V86IntHandler;

PROCEDURE -CRO(): LONGINT;

PROCEDURE -CR2(): LONGINT;

PROCEDURE -CR3(): LONGINT;

PROCEDURE -CR4(): LONGINT;

PROCEDURE -DRO(): LONGINT;

PROCEDURE -DR1(): LONGINT;

PROCEDURE -DR2(): LONGINT;

PROCEDURE -DR3(): LONGINT;

PROCEDURE -DR6(): LONGINT;

PROCEDURE -DR7(): LONGINT;

PROCEDURE -DS(): LONGINT;

PROCEDURE -ES(): LONGINT;

PROCEDURE -FS(): LONGINT;

PROCEDURE -GS(): LONGINT;

32

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

-SS(): LONGINT;

InitProcessor;

StrToInt(s: ARRAY OF CHAR): LONGINT;
Fill4(dest,size,filler: LONGINT);
InitHeap;

IsRAM(adr: LONGINT): BOOLEAN;

CheckMemory;

ReadBootTable;

EnableEmulation;

DisableEmulation;

-StoreFPEnv(adr: LONGINT);
LoadSegRegs(data: LONGINT);

-HLT;

InterruptHandler;

InitInterrupts;

EnableMM(pd: LONGINT);

InitMemory;

-Callis;

ReadClock;

ClockHandler;

InitClock;

*TimerHandler;

InitTimer;

AllocatePage (VAR p: ADDRESS);

MapPage(pd: ADDRESS; virt,phys: LONGINT);
MappedPage (pd: ADDRESS; virt: LONGINT): LONGINT;
MapMem(pd: ADDRESS; virtAdr,size,phys: LONGINT);
GetCMOS(i: SHORTINT): INTEGER;

PutCMOS(i: SHORTINT; val: CHAR);

33

e PROCEDURE BCD2(x: INTEGER): LONGINT;

e PROCEDURE ToBCD(x: LONGINT): INTEGER;

e PROCEDURE WriteType(t: ADDRESS);

e PROCEDURE NMIHandler;

e PROCEDURE Unexpected;

e PROCEDURE SetupFPU;

e PROCEDURE Beep(hz: LONGINT);

e PROCEDURE Delay(ms: LONGINT);

e PROCEDURE InitBeeps;

e PROCEDURE BeepStr(msg: ARRAY OF CHAR);

e PROCEDURE Detect486(): BOOLEAN;

e PROCEDURE Detect586(): BOOLEAN;

e PROCEDURE DetectCoprocessor(): BOOLEAN;

e PROCEDURE SetupFlags;

e PROCEDURE Setup486Flags;

e PROCEDURE Setup586Flags;

e PROCEDURE CPUID(VAR vendor: Vendor; VAR version, features: LONGINT);

e PROCEDURE APM(VAR gdtofs, apmofs: LONGINT): BOOLEAN;

e PROCEDURE APMPower(ff;

e PROCEDURE -SwitchToLevel3(ss,sp,cs: LONGINT);
Procedures Added:

e PROCEDURE EnableSTrace*(t :BOOLEAN);
This procedure is responsible for enabling or disabling IO privileges to perform tracing
through the serial ports and sets TraceOn := t.

Procedures Modified:

e PROCEDURE CoreHalt(msg :ARRAY OF CHAR; n :LONGINT);
CoreHalt now writes a short message followed by the error code to the Messages win-
dow. The error code contained in n has been left unchanged from Native Oberon.

e PROCEDURE WriteChar*(c :CHAR);
Modified to test if TraceOn = TRUE before writing to the serial port.

34

e PROCEDURE InitTracing*(base :INTEGER; speed :LONGINT;
setting :SHORTINT);
Previously implemented as a parameterless procedure in Native. It now contains pa-
rameters to initialize the serial port. The parameters are selected by ORing the required
constants as in the following example:
InitTracing(tCom2,9600,t7Bits+tPar0dd) ;

e PROCEDURE MapPhysical*(physAdr,size :LONGINT; VAR virtAdr :LONGINT);
Although the procedure still carry the same set of parameters as the Native Oberon
implementation, the actual mapping is done through the ExpSvr.

e PROCEDURE NewDMA*(size :LONGINT; VAR adr, phys :ADDRESS);
Although the procedure still carry the same set of parameters as the Native Oberon
implementation, the actual mapping is done through the DmaSvr.

e PROCEDURE GCx*;
Code related to the FontRoot variable that was used in the previous port has been
removed. FontRoot was used as a dummy node to stop the garbage collector from
collecting fonts. The stack tracing code was also modified to check each thread in the
VM and was taken from the previous port.

e PROCEDURE InitRuntime;
All code relating to V86 mode has been removed.

e PROCEDURE Shutdown*(code :LONGINT);
This procedure simply performs an Exit (0).

e PROCEDURE Idle*(code : LONGINT);
Empty stub implemented for this routine.

Future Ports: The authors foresee significant changes to this module, subject to the
changes in Gneiss and the Kernel module of Native. As already mentioned, the kernel is one
of the most important modules in the Oberon hierarchy as it forms the basis for the other
modules, especially device drivers.

5.9 Display.Mod

Under the previous port the display driver consisted out of two modules namely Display
and ColorDisplay. ColorDisplay was written in pure assembler using the now outdated
Assembler module. The Display module formed the front end of the display driver and also
contained the necessary code for communicating with the I0Svr.

In Native Oberon, the display driver is contained in whole inside the Display module.
Native Oberon uses a prefix in front of the module name to distinguish between the supported
display hardware. For example, the standard VGA driver is contained in VGA.Display.Mod
while the SVGA driver is contained in SVGA.Display.Mod.

All drivers under Native Oberon have direct access to the display memory located at an
absolute address of AOOOOH. Under Gneiss, this area of memory is only accessible by mapping
the absolute address unto a virtual address. The MapDisplay procedure is responsible for
this.

35

Port Direction: Native to Gneiss.

System: CFS and Stand-alone.

Global Variables Added: These variables were added to allow the display driver to work
with the I0Svr.

e ioPort : IPC.Port;
Used for accessing the I0Svr

e address : LONGINT;
Contains the virtual address for the video memory

e displayFlag : BOOLEAN;
All the procedures responsible for writing to the display can only do so if the driver
has access to it. This flag is toggled each time a switch occurs between Oberon and the
Gneiss environment

e updatex : BOOLEAN;
Indicates to Oberon that a switch occurred back to the graphics mode. When set,
Oberon will redraw the complete display. Switch back to text mode assigns a FALSE
value to this variable.

Procedures Modified:

e PROCEDURE Map#*(X: INTEGER): LONGINT;
This function now only returns the virtual address that was used for mapping the VGA’s
physical address. The virtual address is contained in the address variable. Remember
that this is an absolute address and not just the segment part.

e PROCEDURE Dot*(col,x,y,mode: INTEGER);
Modified to test if the displayFlag variable is set.

e PROCEDURE CopyBlock#(SX,SY,W,H,DX,DY,mode: INTEGER);
Modified to test if the displayFlag variable is set.

e PROCEDURE CopyPattern*(col: INTEGER; pat: Pattern;
X,Y,mode: INTEGER); Modified to test if the displayFlag variable is set.

e PROCEDURE ReplConst*(col,X,Y,W,H,mode: INTEGER);
Modified to test if the displayFlag variable is set.

e PROCEDURE FillPattern*(col: INTEGER; pat: Pattern;
pX,pY,X,Y,W,H, mode: INTEGER);
Modified to test if the displayFlag variable is set.

e PROCEDURE ReplPattern*(col: INTEGER; pat: Pattern;
X,Y,W,H,mode: INTEGER);
Modified to test if the displayFlag variable is set.

e PROCEDURE DisplayBlock#(B: LONGINT; DX,DY,W,H,SX,SY,mode: INTEGER);
Modified to test if the displayFlag variable is set.

36

e PROCEDURE Depth#*(X: INTEGER): INTEGER;
Since the I0Svr only supports 16 colour modes, this function will only return a value
of 4 indicating a depth of 16 colours (4 bits per pixel).

Procedures Added: Please note that the following procedures were taken from the Display
module as implemented in the previous port.

e PROCEDURE MapDisplay;
Maps the physical display memory unto a virtual address

e PROCEDURE ReleaseDisplay;
e PROCEDURE RegainDisplay;

e PROCEDURE OpenDisplay;
Effectively switches from text to graphics mode

e PROCEDURE CloseDisplay;
Close the graphics display and switch back to text mode

Main Initialization and General Information: Modified to include the initialization
code required by Gneiss. This was taken ’As is’ from the previous port.

Future Ports: Limited amount of changes foreseen. During the current port, Native 2.3.2
became available. As a simple exercise the new driver was adapted to the current port to
investigate how quickly it could be accomplished. It took less than 3 minutes with only 5
lines of code being added or modified.

5.10 HDSL.Mod

Port Direction: Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.

Future Ports: No major changes foreseen.

5.11 Disk.Mod

Port Direction: Gneiss to Native.
System: Stand-alone.
Global Variables Modified:

e map :POINTER TO ARRAY OF LONGINT
Changes in the OP2 compiler prompted this modification. Memory for map is allocated
using the NEW(p,n) statement instead of SYSTEM.NEW.

Procedures Added:

e PROCEDURE Availablex*() :LONGINT;
Returns amount of available disk space.

e PROCEDURE Marked*(sec :LONGINT) :BOOLEAN;

37

e PROCEDURE Size*() :LONGINT;
Returns the size of the local disk in terms of sectors.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.12 Files.Mod

Port Direction: Gneiss to Native. Native to Gneiss
System: Stand-alone.
Global Variables Added:

e PathCharx* :Char;
Brought over from the FileDir module in order to be consistent with CFS.

Procedures Added:

e PROCEDURE Copy(source, dest, size :LONGINT);
This procedure is for internal use only and facilitates a fast, low level copying function.

Procedures Modified:

e PROCEDURE Register(f :File);
The procedure body was replaced with the Native implementation.

e PROCEDURE Copy(source, dest, size :LONGINT);
This procedure is for internal use only and facilitates a fast, low level copying function.

e PROCEDURE CleanUp*(f :SYSTEM.PTR);
Under the previous port, CleanUp was installed as a GCnotifier, but since noti-
fiers are no longer used, CleanUp is installed using the Kernel.RegisterObj pro-
cedure. In order to stop the garbage collector from collecting the root file handle,
Kernel.DisableTracing is used.

Main Initialization and General Information: Under the previous port, variables of
type File was implemented using type LONGINT. It has been replaced with type File in the
current port. Also note that the Files module still uses 1K sectors and not 2K sectors as is
the case under Native Oberon. Future Ports: No major changes foreseen.

5.13 Files.Mod (CFS)

Port Direction: Gneiss to Native.
System: CFS.
Global Variables Added:

e PathCharx* :Char;
Moved from the FileDir module as CFS does not contain a FileDir module.

Procedures Added:

e PROCEDURE Copy(source, dest, size :LONGINT);
Refer to Section 5.12

38

Procedures Modified:

e PROCEDURE CleanUp*(f :SYSTEM.PTR) ;
Refer to Section 5.12

e PROCEDURE FileSvrCall(Operation :LONGINT...);
Buf is now an extended type of Core.BasicHeader due to inconsistencies found with
the compiler under the previous port. If the type is not extended, SYSTEM.VAL will
not update the values of the fields of the extended record correctly under Native.

e PROCEDURE GetName(F :File; VAR name :ARRAY OF CHAR);

Main Initialization and General Information: Refer to Section 5.12.
Future Ports: No major changes foreseen.

5.14 CFS.Mod

Port Direction: Gneiss to Native.
System: CFS.
Procedures Modified:

e PROCEDURE SvrCall(Operation :LONGINT...);
Buf is now an extended type of Core.BasicHeader due to inconsistencies found with
the compiler under the previous port. If the type is not extended, SYSTEM.VAL will
not update the values of the fields of the extended record correctly under Native.

Main Initialization and General Information: Longint’s replaced with File pointers.
Still uses 1K sectors, not 2K as under Native. Added disable tracing code. Modified to use
the default viewer system installed instead of the System module viewers.

Future Ports: No major changes foreseen.

5.15 FileDir.Mod

Port Direction: Gneiss to Native.
System: Stand-alone.
Global Variables Removed:

e PathChar* :Char;
Removed to be consistent with CFS which does not contain the FileDir module.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.16 Input.Mod

Port Direction: Gneiss to Native.
System: CFS and Stand-alone.
Procedures Added:

e PROCEDURE KeyState(VAR keys :SET);
Empty stub implemented to maintain compatibility with Native

39

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.17 Buffers.Mod

Port Direction: Gneiss to Native.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.18 Modules.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.19 Viewers.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.20 Fonts.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.21 Reals.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.22 MenuViewers.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

40

No modifications required.

No modifications required.

No modifications required.

No modifications required.

No modifications required.

No modifications required.

Only recom-

Only recom-

Only recom-

Only recom-

Only recom-

Only recom-

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.23 Objects.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.24 Texts.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.25 TextFrames.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.26 Fonts.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.27 FPA.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.

Main Initialization and General Information:

pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

5.28 Oberon.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.
Global Variables Added:

41

No modifications required.

No modifications required.

No modifications required.

No modifications required.

No modifications required.

No modifications required.

Only recom-

Only recom-

Only recom-

Only recom-

Only recom-

Only recom-

e ioport :IPC.Port
Procedures Added:

e PROCEDURE SetPalette;
Performs the actual palette switch.

e PROCEDURE Redraw;
This procedure was brought in from Gneiss and is responsible for refreshing the display.

e PROCEDURE SetTimer (ms :LONGINT;

This procedure was brought in from Gneiss. It is used to reschedule the main loop in
Oberon.

e PROCEDURE Loop*;
Redraw is now called upon receiving a signal from the Display module. If there is
any network input available, the related handler for the NetTask will be called. The
procedure was also modified so that an idle loop would be allowed to be rescheduled by
Gneiss.

Procedures Modified:
e PROCEDURE ResetPalette;

Main Initialization and General Information: Added NetTask for possible future ex-
pansion and compatibility with Gneiss implementation of previous port.
Future Ports: No major changes foreseen.

5.29 System.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone.
Global Variables Added:

e pos :INTEGER;

e pat :ARRAY 32 OF CHAR;
Procedures Modified:

e PROCEDURE List*(name :ARRAY OF CHAR; time, date, size :LONGINT;
VAR cont :BOOLEAN);
Native code replaced with Gneiss code of previous port.

e PROCEDURE Directoryx*;
Native code replaced with Gneiss code of previous port.

e PROCEDURE Watchx;
Removed code that reports any disk related information.

e PROCEDURE Trap*(error,fp,pc, page :LONGINT);
Refer to Section 2.1.3.

Main Initialization and General Information: No modifications required. Only recom-
pile with the OP2 Compiler.
Future Ports: No major changes foreseen.

42

5.30 Edit.Mod

Port Direction: Native to Gneiss.

System: CFS and Stand-alone.

Main Initialization and General Information: This module required modifications un-
der CFS due to the way the the filesystem routines are implemented. No modifications were
made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

5.31 Strings.Mod

Port Direction: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: All code relating to the FileDir module
was removed for the CFS as the FileDir module does not exist under CFS. No modifications
were made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

5.32 NamePlates.Mod

Port Direction: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: All code relating to the FileDir module
was removed under CFS as the FileDir module does not exist under CFS. No modifications
were made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

5.33 TextDocs.Mod

Port Direction: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: This module required modifications un-
der CFS due to the way the the filesystem routines are implemented. No modifications were
made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

5.34 PanelDocs.Mod

Port Direction: Native to Gneiss.

System: CFS and Stand-alone. Gadgets related module

Main Initialization and General Information: This module required modifications un-
der CFS due to the way the the filesystem routines are implemented. No modifications were
made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

5.35 Directories.Mod

Port Direction: Native to Gneiss.
System: CFS and Stand-alone. Gadgets related module

43

Main Initialization and General Information: All code relating to the FileDir module
was removed for the CFS as the FileDir module does not exist under CFS. No modifications
were made for the Stand-alone implementation.

Future Ports: No major changes foreseen.

6 Future Work

This section tries to give suggestions for future work that might be attempted under the
current port.

e Extending the I0Svr to include support for certain SVGA chip sets in order to allow
Gadgets to work in a higher resolution or the possible replacement of the IOSvr by a
new display mechanism.

e Modifying the networking support offered by Native Oberon in order to extend the
Gadgets environment to allow the inclusion of modules that provide email and web
based services, to do so under Gneiss.

e A detailed study to determine if Gneiss kernel development under the current port
would proof to be a viable option to consider.

e Updating the Scope debugging tool designed by de Villiers de Wet to comply with the
new object code format. As release 2.3.3 introduced yet another object file format, the
authors suggest waiting until the stable release 2.3.4 is available before attempting this.

References

[1] N. Wirth and J. Gutknecht. Project Oberon — The design and implementation of an
Operating system and compiler. Addison-Wesley, 1991.

[2] E. Esterhuyse. The Caching File Server (CFS): CacheSVR v1.2a — A Technical Report.
Technical Report, 1999.

[3] http://www.oberon.ethz.ch/native/Tech.html - Technical notes regarding the current
Oberon release in HTML format.

44

A Source Listings

A.1 Locating Garbage Collection Errors

(* pmuller 13.02.95/13.11.95
jeloff 20.1.99 modified to work under Gneiss x*)

MODULE TGC;

IMPORT
Kernel,Trace,SYSTEM;

PROCEDURE Check(p: LONGINT) ;
VAR
b: POINTER TO ARRAY 10000000 OF LONGINT;
s: LONGINT;
inside: BOOLEAN;
BEGIN
Kernel.GC; (* this will put p~ on the free list if GC is broken *)
inside := FALSE;
LOOP
s := Kernel.LargestAvailable();
IF s <= 500 THEN EXIT END; (* 500 < 4000 *)
DEC(s,32); (* allow space for type descriptor added by SYSTEM.NEW *)
SYSTEM.NEW(SYSTEM. VAL (SYSTEM.PTR,b),s);
IF (p >= SYSTEM.VAL(LONGINT,b)) & (p < SYSTEM.VAL(LONGINT,b)+s) THEN
inside := TRUE;
EXIT
END
END;
IF inside THEN
Trace.String("Inside! Error found."); Trace.Ln
ELSE
Trace.String("Not inside. Error not found."); Trace.Ln
END;
Kernel.GC
END Check;

PROCEDURE Insidelx*;

VAR

p: POINTER TO ARRAY 4000 OF CHAR;
BEGIN

NEW(p); p~ := "quite safe";

Check (SYSTEM. VAL (LONGINT,p));
Trace.String("p is "); Trace.String(p~);
Trace.Ln

END Insidel;

45

PROCEDURE Inside2*;
VAR
p: POINTER TO ARRAY 4000 OF CHAR;
BEGIN
SYSTEM.NEW (SYSTEM. VAL (SYSTEM.PTR,p) ,4000); p~ := "quite safe";
Check (SYSTEM. VAL (LONGINT,p)) ;
Trace.String("p is "); Trace.String(p~);
END Inside2;

BEGIN
Insidel;
Inside?2;
Kernel .Exit (0)
END TGC.

Compiler.Compile \s TGC.Mod~

BootLinker.Link tgc
\new Kernel.NewRec \sysnew Kernel.NewSys \newarr Kernel.NewArr
\newsysarr Kernel.NewSysArr
\list Kernel.modules
\integrate 20000000H
IPC GStrings VMSL ExpSL RandomNumbers Trace DmaSL Kernel tgc ~

The test module TGC conducts a very general test of the garbage collector. If the test
worked correctly, one should see the messages p is quite safe and Not inside. Error
not found. The absence of any one of these messages indicates that there are still errors in
the garbage collector.

A.2 The Decoder Module

MODULE Test;
PROCEDURE Sum(x,y :INTEGER) :INTEGER;
BEGIN

RETURN x+y
END Sum;

PROCEDURE Go*;

VAR

X,y,z :INTEGER;
BEGIN

x := 50; y :=25; z := Sum(x,y)
END Go;

46

End Test.

PROCEDURE Sum

0007H:
0008H:
OOOAH:
OOOEH:
0012H:
0015H:
0018H:
001AH:
001BH:
OO1EH:
0020H:

55

8B EC
66 | 8B
66| 8B
66 | 8B
66103
8B Eb5
5D

C2 08
6A 03
cC

5D 0C
55 08
C3
Cc2

00

push
mov
mov
mov
mov
add
mov
pop
ret
push
int

ebp
ebp,esp
bx,12[ebp]
dx,8[ebp]
ax,bx
ax,dx
esp,ebp
ebp

w w o

47

