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Abstract

With distributed programming it is possible to support cooperation among
users in a network, and to develop programs that run simultaneously on several
machines to enhance their availability and performance. This potential is even
more important nowadays where networks of workstations become an
increasingly attractive alternative to big mainframes for organizing businesses
and computing environments.

In this work, a system that promotes distributed programming in a network
of personal workstations is presented. It is implemented on top of an existing
operating system as a collection of modules that introduce new functionality in
an incremental fashion. The key idea of our approach is to view data items as
abstract objects coupled to abstract descriptions indicating how their content
can be written and read. This allows generic data transfer programs to be built
without a priori knowing the type of the data items that are to be transfered. As
an extension of this component, an asynchronous mechanism is developed for
exchanging arbitrarily complex messages over the network. At the application
level, sending and receiving of messages occur asynchronously to each other so
that a decoupling between the communicating processes is achieved. Finally,
using the provided primitives a component is built which supports
programming of extensible application objects that can be dynamically
installed, referenced, and collected over a network. Such objects are
automatically notified about incoming messages, thus they operate like special
state machines whose transitions are triggered by message events; this
technique is appropriate for capturing a wide range of distributed programs.

Due to its clean internal structure, the system presents itself as a set of well
separated, yet cooperating parts which can also be individually accessed by the
programmer. This allows for great flexibility in application development.
Furthermore, the system encourages a disciplined programming style and
guarantees type safety which we consider to be an important property of
development environments. Our implementation also demonstrates that the
proposed approach leads to acceptable performance at only a modest software
cost.



Kurzfassung

Mit verteiltem Programmieren ist es maoglich die Zusammenarbeit zwischen
Benutzern in einem Netzwerk zu unterstiitzen, und Programme zu entwickeln,
die gleichzeitig auf mehreren Machinen laufen, um ihre Verfligbarkeit und
Leistung zu erhdhen. Dieses Potential ist um so wichtiger heutzutage wo
Netzwerke von Arbeitsplatzrechnern eine immer attraktivere Alternative zu
Grossrechnern fiir die Organisation von Betrieben und Rechenumgebungen
werden.

In dieser Arbeit wird ein System, dass verteiltes Programmieren in einem
Netzwerk von Arbeitsplatzrechnern fordert vorgestellt. Es ist auf ein bestehendes
Betriebssystem, als eine Sammlung von Moduln, die inkrementel neue
Funktionalitat einfiihren, implementiert. Die zentrale Idee unseres Ansatzes ist
Daten als abstrakte Objekte zu betrachten, an denen abstrakte Beschreibungen
angekoppelt sind, die angeben wie ihr Inhalt geschrieben und gelesen werden
kann. Es ist somit moglich generische Programme zur Ubertragung von Daten
zu erstellen, ohne den Typ der Daten a priori zu wissen. Als Erweiterung dieser
Komponente, wird ein Mechanismus fiir den Austausch beliebig komplexer
Meldungen Uber ein Netzwerk entwickelt. Das Senden und Empfangen von
Meldungen werden auf der Applikationsebene asynchron zueinander
abgewickelt, so dass eine Entkopplung zwischen den kommunizierenden
Prozessen erreicht wird. Schliesslich, wird mit Hilfe der angebotenen Primitiven
eine Komponente gebaut, die das Programmieren von erweiterbaren
Applikations—Objekten unterstiitzt, die Uber ein Netzwerk installiert, referenziert
und entfernt werden konnen. Solche Objekte werden automatisch Uber
ankommenden Meldungen benachrichtigt, sie funktionieren daher wie
Zustandsautomaten deren Ubergdnge durch Meldugsereignissen angestossen
werden; diese Technik ist gut geeignet, um eine breiten Bereich von verteilten
Programmen abzudecken.

Wegen dessen klaren Struktur, prasentiert sich das System als eine Menge
von sauber getrennten, jedoch zusammenarbeitenden Teilen, die der
Programmierer auch einzeln zugreifen kann. Dies erlaubt grosse Flexibilitat
beim Entwurf von Applikationen. Ferner, fordert das System einen
disziplinierten Programmierstil und garantiert Typen—Sicherheit, was wir flr eine
wichtige  Eigenschaft von  Entwicklungsumgebungen halten.  Unsere
Implementation beweist auch, dass der vorgeschlagene Ansatz zu akzeptablen
Leistungen fiihrt, und dies bei einem bescheidenen Software—Aufwand.



Chapter1  Introduction and Overview

In contrast to conventional tools, computers are universal machines. The same
hardware can be used to support different tasks, even several of them
simultaneously, provided that the computer has been appropriately configured.
But computers have another property that reveals unprecedented possibilities:
computers can be connected together via communication networks so that
programs residing on different machines can cooperate with each other.

Distributed programming is a large step past the old-fashioned view of a
system in isolation, because it introduces the opportunity to perform tasks that
lie far beyond the capabilities of a single machine. Time consuming tasks can
be executed on idle processors, perhaps using several of them in parallel,
thereby accelerating processing and reducing the workload of interactively used
machines. It is also possible to distribute or replicate vital resources on multiple
machines to achieve availability despite hardware and software failures. The
network can also be exploited to support electronic interaction and sharing
between users.

What is even more important, is that distributed programming is not a
temporary trend whose importance is likely to diminish with the passage of
time. On the contrary, as computers are becoming equiped with faster
processors, more main memory, and abundant secondary storage, at a sinking
cost, networks consisting of loosely coupled personal workstations that can be
operated in isolation yet are capable of sophisticated cooperation over a
network will become increasingly attractive. Indeed, there is already a significant
trend towards downsizing from large mainframes to networks of smaller
machines.

There is no free lunch though. Distributed programs are inherently more
complex than non-distributed programs, and thus often far from easy to
implement. The additional complexity stems from the fact that a distributed



program, unlike a non—distributed program, is not "a" single program but
consists of several parts that reside on different machines which execute (and
fail) independently of each other. This makes communication and
synchronization in distributed programs awkward to implement. It also
introduces the possibility of having partial failures that must be dealt with to
achieve robustness. Consequently, distributed programming remains a rather
unattractive task unless sufficient support is provided so that these problems
can be addressed in a straightforward way.

Motivated by the great potential of cooperative processing in a network,
seeking for distributed programming support has been the focus of intensive
research since the early days of computing. However, a "best” way to achieve
this goal has not yet been found. In fact, the experience that has been acquired
so far with respect to central issues of distribution suggests that there are no
universal solutions. Not only does each computing environment serve its own
specific purposes, but there is also a great variety of distributed applications
with different goals and diverging semantics. It is therefore difficult to anticipate
the requirements of future applications, and support which is ideal for a certain
type of programs may turn out to be far less appropriate, or even totally
inapplicable for others.

This drastically reduces the worth of ready-to—use tools for producing
applications, and, by contrast, it underlines the importance of building new
customized services in a straightforward way based on simple primitives.
Hence, in this context it does not seem meaningful to invest much effort in
producing big and expensive pre—fabricated software blocks in the hope to
cover the needs of coming applications; instead, making the development of
application specific support services as easy as possible appears to be a better
choice. This leads us to the vision of a small system that acts as a kernel
providing only a few services which can be extended in a simple way, by
programming new components, to introduce new functionality. After all, even
for non-distributed systems promoting programming, rather than trying to
eliminate it, is a key step towards making the computer a truly capable and
flexible work bench, adaptable to the programmer's need. Given the manifold
of distributed applications, we strongly believe that this holds even more for
distributed programming.

The Hermes System

With the objective to investigate support for distributed programming
according to this principle, we implemented the Hermes system which is
described in this thesis. Hermes supports interprocess communication, and
remote installation of programs that can be invoked over the network
transparently, but lacks specialized application—oriented packages. The provided
primitives combine flexibility with high level functionality in a balanced way, so



that they can be directly used to program simple interactions over the network
in a simple way, and still serve as a foundation upon which more elaborate
support for specific application classes can be built.

Hermes is structured as a hierarchy of modules, each addressing a different
problem of distribution in an incremental fashion (figure 1). Despite the tight
coupling and interplay between the different components, the system consists
of three essentially distinct layers that can be individually accessed by the
programmers, depending on the requirements of the corresponding
applications.

advanced support & applications

Hermes system

remote application
objects | RObjs

message passing

general data
transfer

Concurrent Oberon system

Figure 1 module structure and functionality layers of the Hermes system

The kernel of our approach is a general framework that supports input and
output of arbitrarily complex data types. Due to the use of object-oriented
techniques, the transfer code of a data type is directly attached to its instances
so that it is possible to trigger transfer of a data object merely by holding a
reference to it. Moreover, the same transfer code of a data type can be used to
perform different transfers, for example to transfer instances thereof to and
from disk, or to send them over the network. Both features considerably
simplify the implementation of generic programs for transfering application
objects.

As an extension of this framework, a facility is implemented to support high
level data exchange between activities over the network. Communication is
supported via asynchronous message passing primitives with messages being
ordinary data types. In other words, applications can define their own messages



as arbitrarily complex data types with rich internal structure yet still send them
over the network as if they were single indivisible items. Data conversion and
transmission is transparent, and messages are delivered to the application in
their original form so that the contents of a message can be accessed directly
after it has been received from the network. This combines the flexibility of
message passing, in particular with respect to introducing parallelity, with the
high level data abstraction of other interprocess communication paradigms,
such as the remote procedure call.

The services of the message passing component are in turn used to
implement dynamic installation and invocation of application programs over
the network. Driven by the fact that a wide range of distributed programs such
as asynchronous protocols and general purpose servers can be viewed as event
driven machines with state that is preserved across invocations, support is given
in an object-oriented way via special objects, also called remote objects, that
can be invoked over the network by sending them messages. Remote objects
can be developed in a true object-oriented way, i.e. it is possible to extend the
behaviour of existing objects by augmenting their message handling capability
with additional code for processing new messages. There is also support for
introducing intra—object concurrency and sharing.

Hermes is written in the Oberon-2 programming language [Moessenboeck91]
which is an extension of the Oberon language [Wirth88]. It runs on top of the
Concurrent Oberon system [Lalis94], a special version of the original Oberon
system [Wirth89a] we have implemented for the Ceres1 and Ceres2 personal
workstations [Eberle87]. While Hermes is primarily conceived for supporting
distributed programming in the Oberon environment (and on Concurrent
Oberon), which undoubtedly affects its implementation, its key ideas and
overall design principle apply to other platforms as well.

Reading this Thesis

The rest of the thesis is organized in a bottom up fashion as follows. Chapter 1
describes the changes made to the standard Oberon system with respect to
concurrency and networking in order to make an implementation of our
approach practically feasible. In the subsequent chapters 2, 3, and 4, the
aforementioned layers of the Hermes system are introduced and their
implementation is discussed in detail. Chapter 5 presents a few applications
that have been implemented using Hermes. Finally, we summarize our work
and conclude. The code sizes of the individual components of our
implementation along with some performance data is given in the appendix.
Familiarity with the Oberon environment is assumed in this thesis; no detailed
knowledge is required though. For an introduction to the Oberon language and
system the reader is referred to the literature.



Chapter2  Extendingthe Oberon System

Our environment consists of networked Ceres personal computers that run the
Oberon operating system. Oberon is a single user, single process operating
system that was conceived both as a research vehicle for investigating the
concept of object-oriented development and as an efficient programming
platform for the Oberon and Oberon-2 programming languages to be used in
our institute as well as in lower division computer science courses at ETH
Zurich.

Although Oberon workstations are connected with each other via a local area
network, network support is limited. This chapter motivates and describes
changes and extensions made to the original system in order to increase its
potential with respect to networking and to provide the basic tools for
implementing distributed services. The new functionality is useful even if
viewed in isolation to the rest of our work, since it can be exploited to enhance
implementation of the existing network services significantly.

Introducing Concurrency

In contrast to systems that maintain a separate process and address space for
each window, in Oberon, windows are implemented as passive objects with the
capability of handling input events. Keyboard and mouse drivers are polled by a
single process called the central (or Oberon) loop, and when an event is
detected, a corresponding message is sent to the affected window with a call to
its event handling procedure which processes it and returns control to the
Oberon loop. The conventional method for executing code from the user
interface is via special procedures called commands that are invoked from
within the window handlers during message processing. When command
execution terminates control returns to the window handler that invoked the



command, and then back to the Oberon loop which continues to poll for input
events.

Although this model of control works well for interactive applications, because
handling of input events is essentially instantaneous and most commands
require little time, there are cases where it is not appropriate. For example, it is
inconvenient to implement a long computation as a command because its
execution will block the system until it is finished, perhaps for several minutes
or even hours. Also, there are applications which have to react to external
events that can occur practically anytime and where polling via explicitly
invoked commands is not acceptable. To accommodate such applications the
Oberon system offers a mechanism called tasks. Tasks are special procedures
that are invoked periodically from within the Oberon loop when all input
handling has been performed. In other words, tasks can be viewed as
commands that are executed repeatedly in the background without an explicit
user request as soon as the machine becomes idle.

But since tasks are part of the Oberon loop, their execution can be delayed
arbitrarily long by input handling and long running commands. This makes it
impossible to guarantee that a certain task will be executed within a reasonable
amount of time, which is vital for applications with real time constraints such
as network protocols. Another problem is that tasks, like commands, run until
they terminate. Thus to implement background processing that still allows
interactive use of the system, a long computation must be broken down into a
sequence of task invocations. The individual computation steps must execute
"long enough” but not "too long" because otherwise, either the task will block
the system, or processor time will be waisted mostly in control transfers.
However, thinking about how much time is needed to execute a particular
piece of code has little to do with the problem the programmer is actually
trying to solve. Such calculations are annoying, machine dependent, and even
impossible to make if execution time is a function of parameters that are not
known at implementation time. In addition, since tasks and the Oberon loop
are executed on the same stack, the intermediate state of a computation that
runs as a task must be explicitly saved each time before returning control to the
Oberon loop. This can be extremely cumbersome for programs that cannot be
modeled as simple state machines with fine grained state transitions.

Our experience with tasks showed that these limitations are indeed of practical
importance, and therefore we decided to develop a special version of the
Oberon system, called Concurrent Oberon, that is free of these problems. An
additional motivation for this development was the desire to employ Oberon,
which is currently used in lower division computer science courses at ETH, for
programming exercises in concurrent programming. Concurrent Oberon,
provides threads (lightweight processes that share memory) along with a
simple priority scheduler. Control of the processor is passed to different threads



transparently and without requiring the programmer to explicitly save state. The
scheduler recognizes three priority levels, and round robin scheduling is used to
allocate processor time among threads of equal priority provided there are no
available threads with higher priority.

Integrating concurrency in an elegant way into a system that is designed to be
sequential posed an interesting engineering problem. Complicated globally
shared data types are pervasive in Oberon, and applications are implemented
using the implicit assumption that a sequence of operations is executed
atomically, in other words it is often assumed that the state of an abstract data
type will not change between successive operations. Hence, the obvious
approach of adding synchronization to the operations of all abstract data types
in the system (e.g. using monitors) is insufficient.

For this reason, and since the "single process multi-tasking” model works
well for user driven applications, in Concurrent Oberon, the Oberon loop is a
special thread which, by convention, is responsible for processing all keyboard
and mouse events, controlling the screen and accessing globally shared data
structures related to input and display handling. As a consequence, concurrency
is transparent for ordinary Oberon programs that are executed from within the
Oberon loop, hence such programs can freely access global data types without
any explicit synchronization. Other threads may access such data structures only
in a controlled way to avoid inconsistencies.

This design provides the desired functionality without adding significant
complexity, and as an important practical matter, makes Concurrent Oberon
compatible with the standard system. Existing applications can be run on our
system without any modifications or recompilation. The only drawback of this
approach is that programs that are to be run as threads must be implemented
to explicitly synchronize with the Oberon loop when accessing /0O related data
types. We do not feel that this is a crucial restriction though, because
programming the required synchronization is not difficult, and we do not
expect background threads to interact with the display often.

Programming Primitives

In Concurrent Oberon, the new capabilities are introduced by means of an
additional module called Threads. This module provides procedures for creating
and destroying threads, and a set of operations that can be used to implement
synchronization tools (e.g. semaphores, monitors, signals). Module Threads
also provides the operations for synchronizing with the Oberon loop.

Thread Creation and Destruction

Threads are implemented as pointers to a thread descriptor containing a stack
and state information about the thread needed by the scheduler. Some of the



record fields are exported so that their values can be obtained in a simple and
efficient way. These fields must not be modified by the programmer.

DEFINITION Threads;

CONST
ready = 0; asleep = 1; suspended = 2; destroyed = 3; trapped = 4;
low = 0; norm = 1; high = 2;

TYPE
Thread = POINTER TO ThreadDesc;
ThreadDesc = RECORD
state, priority: SHORTINT;  (xread—onlyx)
incNo: LONGINT; (xread—onlyx)
END;

ThreadProc = PROCEDURE;
VAR cur: Thread;  (xcurrently executing threadx)

PROCEDURE Create (this: Thread; proc, trapproc: ThreadProc; wsp: LONGINT);
PROCEDURE Destroy (this: Thread);

Threads are initialized with calls to procedure Create. The procedure that is to
be executed as a thread and the size of the stack that will host the execution
must be supplied as parameters. Optionally, a procedure that will be invoked if
the thread experiences a run time error can be specified, giving programmers
the ability to perform cleanup actions. The specified thread descriptor may be
freshly allocated or can belong to a thread that has already terminated. To make
failure detection possible despite recycling of descriptors, thread descriptors
also have an incarnation number incNo that is incremented each time the
descriptor is re—used (the incarnation number of freshly allocated descriptors is
0). By default, threads are created with low priority and are suspended, i.e. must
be resumed explicitly to start execution.

Procedure Destroy is used to terminate the specified thread. Destruction
occurs instantly only if a thread invokes the operation on itself. Otherwise, the
specified thread is marked correspondingly and is destroyed as soon as it
receives control of the processor.

Parameters can be passed to a thread by using the type extension facility of the
Oberon language as shown for a thread that continuously increments a local
variable by an amount that is passed to it as a parameter:

TYPE
MyThread = POINTER TO MyThreadDesc;
MyThreadDesc = RECORD (Threads.ThreadDesc)
inc: LONGINT
END;



PROCEDURE MyProc;

VAR i: LONGINT;
BEGIN i :=0;

LOOP INC(i, Threads.cur(MyThread).inc) END
END MyProc;

PROCEDURE Start;

VAR t: MyThread;
BEGIN

NEW(1); t.inc := 100:

Threads.Create(t, MyProc, NIL, 128); Threads.Resume(t)
END Start;

New thread descriptor types are defined by augmenting the base descriptor
with new fields. Thread procedures access the additional fields of extended
descriptors using type guards on the global variable Threads.cur indicating the
currently executing thread.

Scheduling and Control Operations

Module Threads supports three different priority levels. At each priority level,
selection is round robin and a thread is considered for selection only if there are
no available threads of higher priority. Consequently, processing at a given
priority level remains unaffected even if there are many threads with lower
priority. This avoids performance degradation of high priority activities despite
the presence of other low priority threads.

While this selection strategy may lead to starvation of low priority threads,
this is not a problem if threads are assigned priorities in a disciplined way. In
Concurrent Oberon, the three priority levels are intended for urgent event
handling, interactive processing, and long computations, respectively. This
hierarchy makes starvation a desirable property, because, for example, it implies
that user commands are executed at their customary speed even if there are
several threads executing background computations, thereby avoiding the
timesharing effects of multi-user systems. If a thread cannot be clearly placed
into one of these three categories, then its priority can be changed with calls to
procedure SetPriority whenever this is required.

DEFINITION Threads;
PROCEDURE SetPriority (this: Thread; prio: SHORTINT);
PROCEDURE Suspend; (*processor is releasedx)

PROCEDURE Sleep (ticks: LONGINT);  (xprocessor is releasedx)
PROCEDURE Resume (this: Thread); (%processor is no releasedx)

PROCEDURE Pass; (xyield processorx)

Additional operations for changing the state of threads are provided. These can
be used to avoid busywaiting when a thread must wait for some conditions to
be met before it continues with its processing. The currently executing thread



can be suspended or put to sleep for some amount of time with calls to
Suspend and Sleep, respectively. In both cases, the state of the thread is changed
correspondingly, and the scheduler is called to pass control to another thread.
Threads are reverted to the ready state, if they are resumed with a call to
Resume, or, in case they have been put to sleep, when the specified amount of
time elapses. It is also possible to call the scheduler directly with a call to
procedure Pass. This does not change the state of the calling thread.

Rather than using a separate scheduler thread through which control is
switched among threads, the code for transfering control is executed directly
from within the thread that is releasing the processor. To keep selection
efficient, four separate lists are maintained, one for each priority level containing
threads that are ready to run, and one for blocked threads. For each of the
priority lists, a pointer denoting the next thread to receive control is used to
implement a round robin scheme. Hence, choosing the next thread requires
inspection of at most three pointers, which is fast and can be done in constant
time independently of the number of threads in the system.

Even though, conceptually, threads change lists when the corresponding
control operations are invoked, the lists are actually updated when the
scheduler is called. This obviates synchronizing the operations that change the
state of threads, which is particularly convenient if it is desirable to invoke such
operations from within interrupt handlers. Notably, defering list updates until
the next scheduling phase does not have any influence on the semantics, since
the actual positioning of a thread within these lists is relevant only for the
scheduling process.

Synchronization

In a shared memory system, concurrent access of data must be synchronized to
avoid inconsistencies. This is typically achieved by using semaphores
[Dijkstra72] or monitors [Hoare74]. It is also possible to combine these
methods, for example, Modula-3 [Nelson91] introduces locks that are
declared, acquired, and released like semaphores, but are automatically released
when a thread blocks on a condition within a critical section, and reacquired
when the thread is resumed. Other systems like CSP [Dijkstra68] and Ada
[DoD80] achieve synchronization through synchronous rendezvous schemes.
However, none of these approaches is clearly superior. While each one of them
is a direct means of modeling synchronization for a particular type of process
interaction, it can lead to cumbersome programs when it is applied to a
different situation.

Motivated by this observation, in Concurrent Oberon, synchronization is
supported by introducing the concept of atomic sections. Two operations
BeginAtomic and EndAtomic can be used to implement code whose execution
will not be preempted by transfering control to another thread. At the begining
of an atomic section, the executing thread is marked so that it will not be taken



control by force (interrupts are still serviced during execution of atomic
sections). Hence, no transparent control transfer occurs during execution of
atomic sections. It is nevertheless possible to release the processor by calling
the scheduler (directly or indirectly) via the provided control operations. Since
this does not unmark the thread, the remaining part of the atomic section will
be atomic when the thread which yielded the processor resumes execution. An
atomic section thus resembles a global monitor where atomicity can be
violated if control is explicitly given away.

DEFINITION Threads;

I
| PROCEDURE BeginAtomic;
| PROCEDURE EndAtomic;

To hinder threads from monopolizing the processor when subsequently
executing atomic sections, EndAtomic automatically yields the processor when
the thread has kept the processor past a given time limit. Properly nested
atomic BeginAtomic—EndAtomic pairs are also allowed, and in this case the
processor is potentially released only on the outhermost invocation of
EndAtomic.

Atomicity is intentionally introduced as an explicit concept that does not reveal
how the system actually transfers control among threads. This forces the
programmer to document atomicity requirements in a program and enhances
maintainability and portability since the implementation of concurrency may
vary without invalidating correctness of existing programs. This is in contrast to
less transparent approaches where the method for achieving concurrency is
publically known, and can be exploited by the programmer to hinder scheduler
invocations.

Atomic sections are not intended as an all purpose synchronization device,
but are to be used only for small critical sections. Tools for coarse grained
synchronization such as semaphores and monitors can be implemented by
using atomic sections in combination with the provided control procedures.
The available primitives can also be used to extend the system by introducing
other communication paradigms besides shared memory, such as message
passing [BrinchHansen70, Gehani86] or pipes [Presotto85].

Atomicity Semantics

Semantically, the BeginAtomic and EndAtomic operations are equivalent to
open and closed angle brackets "<..>" often used in the literature to denote
atomic sequences of operations. Although nesting can occur in practice, from a
formal point of view only the outhermost bracket—pair is relevant. Thus when
argueing about the correctness of a program, all inner atomic sections can be
ignored.



Procedures Suspend, and Sleep change the state of the calling thread and
invoke the scheduler in a single atomic action, whereas Pass simply calls the
scheduler. Although the exact effects of these operations differ, within atomic
sections these calls have the same effect with respect to atomicity, since they all
release the processor. They can therefore be substituted with a pair of angle
brackets and an empty statement inbetween "> skip <" to indicate violation of
atomicity.

These simple rules allow programmers to gain additional confidence in their
implementations by exploiting the advantages of more formal and abstract
descriptions. As an example, we show how the implementation of general
semaphores can be carried over to a more formal description of the P and V
operations by simple application of the given mappings:

concrete implementation abstract description
BeginAtomic; <
WHILE s = 0 DO suspend END; WHILE s = 0 DO > skip < END;
s:=s-1; s:=s-1;
EndAtomic; >
BeginAtomic;
s:=s+1; <s:=s5+1; >
IF waiting THEN resume any END;
EndAtomic;

Correctness is guaranteed, because evaluation of the loop condition embodying
the guard for decreasing the value of a semaphore, and execution of the
corresponding statement are done in a single atomic action. The processor is
released as long as the condition is not satisfied so that control is given to
other threads, and eventually to one that will increase the semaphore, thereby
establishing the awaited condition. This temporary violation of atomicity does
not affect correctness though, since the thread which is polling the
precondition will continue to execute atomically when it is given control again.
In fact, such while loops within atomic sections are equivalent to await
statements within angle brackets used in [Andrews91] to model
synchronization.

Global Synchronization (with the Oberon loop)

The decision to give the Oberon loop free access on 1/O related data types
largely obviates synchronization, because these data types are typically accessed
by window handlers, commands, and tasks, which are all executed from within
the Oberon loop. It is however possible that other threads also wish to access
the same data structures as the Oberon loop, for example to display output.
Since such concurrent accesses may cause arbitrary inconsistencies, it is
mandatory that threads explicitly synchronize with the Oberon loop when
executing critical operations that potentially interfere with the activities of



"ordinary” Oberon programs. A separate set of primitives is provided especially
for this purpose.

DEFINITION Threads;

TYPE
OberonActionProc = PROCEDURE (this: OberonAction);

OberonAction = POINTER TO OberonActionDesc;
OberonActionDesc = RECORD

body: OberonActionProc;  (xcode of action messagesx)
END;

PROCEDURE QueueQOberonAction (this: OberonAction);
PROCEDURE DoOberonActions;

PROCEDURE LockOberon;
PROCEDURE UnlockOberon;

The first method is based on a mutual exclusion scheme between the Oberon
loop and other threads using a lock maintained by module Threads. If critical
data structures are to be accessed from within a thread, procedure LockOberon
must be invoked prior to execution of the corresponding operations, and
UnlockOberon must be called afterwards to release the lock. Below, a thread
procedure that continuously prints a message on the system's log-viewer using
locking is shown:

PROCEDURE PrintMsg0;
VAR W: Texts.Writer;
BEGIN
Texts.OpenWriter(W);
LOOP
Texts.WriteString(W, "hello world"); Texts.WriteLn(W);
Threads.LockOberon;
Texts.Append(Oberon.Log, W.buf);
Threads.UnlockOberon
END
END PrintMsg0;

Acquiring the lock suspends the calling thread if the lock is already held by
another thread, and the thread is resumed when the lock becomes free.
Blocking is likely to happen when the machine is used interactively since in this
case the lock is held by the Oberon loop during most of the time. Nesting of
these commands is allowed so that code containing them can be executed
from within the Oberon loop as well as by another thread.

An alternative technique for accessing data types shared with the Oberon loop
is via asynchronous message passing using so called actions messages. This
requires more effort to implement than direct mutual exclusion but is more
appropriate when it is important that a thread triggers an operation without
blocking (e.g. displaying output when monitoring a network). The



implementation of a thread procedure that produces exactly the same output
as the above example using action messages instead of locking is given in the
following (we assume that the global variable W has been appropriately
initialized):
TYPE
PrintAction = POINTER TO PrintActionDesc;
PrintActionDesc = RECORD (Threads.OberonActionDesc)

s: ARRAY 32 OF CHAR
END;

PROCEDURE PrintProc (a: Threads.OberonAction);

BEGIN
Texts.WriteString(W, a(PrintAction).s); Texts.WriteLn(W);
Texts.Append(Oberon.Log, W.buf)

END PrintProc;

PROCEDURE PrintMsg1;
VAR a: PrintAction;
BEGIN
LOOP
NEW(a); a.body := PrintProc; a.s := "hello world";
Threads.QueueOberonAction(a)
END
END PrintMsg1;

The main idea of this approach is to put critical operations into special
OberonAction messages and place these messages into a a queue. This queue is
processed with calls to procedure DoOberonActions which removes the
messages deposited in the queue and executes the contained ActionProc
procedures. By convention, processing of the queue is done from within the
Oberon loop, asynchronously to the threads that queued the messages.
Parameter passing is implemented in the same way this is done for threads, i.e.
by extending the base message type with additional fields that are accessed by

type guards.

Integration of Concurrency into the Oberon System

Module Threads does provide the primitives for implementing concurrent
programs, but it is not entirely responsible for introducing concurrency in the
Oberon system. As shown in figure 1, full integration was achieved by
appropriately modifying existing modules of the Oberon system.

The new module versions use the previously described operations of module
Threads along with a few special systems programming tools (see below) to
make concurrency transparent for the rest of the Oberon modules and
applications. Specifically, low level synchronization, synchronization with the
Oberon loop, as well as preemption, time sharing, and the desired interplay
between interactive processing and background threads were achieved by



changing five components of the standard Oberon system.

System monitoring

Oberon global synchronization

rest of
system modules

timeouts, timesharing
preemption on input events

Input

scheduling policy
programming primitives

Threads

FileDir Files, Modules T synchronization

control transfer
stack management

Kernel

Figure1 module structure of Concurrent Oberon

The system's kernel was also augmented with support for multi-threaded
programming. These changes required less than 10 kilobytes of code, including
the Threads module. A detailed accounting of the newly introduced complexity
is given in the appendix.

Preemption, global synchronization, and monitoring

Although module Threads implements the scheduling policy, i.e. the algorithm
according to which the threads are selected for execution, it does not introduce
any transparent control transfer mechanism. Hence, to ensure that threads
which must react quickly to events are indeed given the processor, and this
sufficiently fast, it is mandatory to invoke the scheduler when the
corresponding events occur.

To guarantee prompt reaction to user input events, the priority of the Oberon
loop is set to normal and the scheduler called whenever keyboard and mouse
events are present (module Input). Reaction to keyboard input is instantaneous,
since the corresponding events are communicated to the system via interrupts
and thus direct preemption is possible. Mouse events are not detected as
quickly, because the mouse device is polled from within the timer interrupt
handler.

The timer interrupt handler is also used to trigger control transfer periodically.
This guarantees that processor time will be divided evenly among threads of
equal priority, which is especially important if a workstation is to be used to
perform several computations in parallel. Further, timer interrupts are used to



notify the scheduler about the passage of time with calls to a special procedure
called Tick that increments the internal time of module Threads and updates
the state of sleeping threads.

The Oberon loop (in module Oberon) has also been extended as follows. After
all input events have been processed, its priority is lowered, thereby giving low
priority threads a chance to execute. Notably, the Oberon loop cannot be
suspended when there are no input events present (as this would be natural to
do), because tasks must still be executed. With this scheme low priority threads
can nevertheless utilize cycles not needed for interactive processing without
affecting the response time of the interactive system. The new Oberon loop is
thus an extension of the old program:

LOOP

Threads.LockOberon;

WHILE keyboard or mouse events DO

notify affected viewer

END;

execute next task

Threads.DoOberonActions;

Threads.UnlockOberon;

Threads.SetPriority(Threads.cur, Threads.low)
END;

Additional changes are made to implement synchronization for globally shared
data types using the provided primitives. In other words, the Oberon loop
invokes LockOberon before commencing with input and task processing, and
UnlockOberon when there are no more input events. This guarantees that
programs executed from within the Oberon loop do not need to synchronize
when accessing global 1/0 related data types. The OberonAction actions
queued by threads are also processed from within the Oberon loop.

Finally, a few auxiliary commands are implemented (in module System) so that
threads can be monitored and destroyed interactively. There is a command for
opening a viewer that contains all running threads. For each thread, its
identification number, procedure and state are displayed. The available threads
are accessed via a special enumeration procedure Enumerate provided by
module Threads. Additional commands can be used to obtain a stack trace of a
thread or to selectively remove threads from the system.

Low-Level Synchronization and Stack Management

While it is meaningful to require that threads synchronize explicitly when
accessing globally shared data structures, this approach is inconvenient for
low-level objects such as files and modules, because the corresponding
accesses are hardly visible for the programmer. Therefore, synchronization in the
so called inner core modules was achieved by explicitly protecting critical code



that must not be executed concurrently.

In order to keep the system's innner core independent of the concrete
implementation of concurrency, so that it can serve as a common base for
different approaches, a direct import relationship between these modules and
the Threads module is avoided via an indirection. Two procedure variables /ock
and unlock defined in the kernel are used by modules Files and Modules to
achieve mutual exclusion for all critical sections. These variables initially contain
empty procedures and, at a later point in time, are overwritten by module
Threads with real synchronization operations (in our case BeginAtomic and
EndAtomic).

DEFINITION Kernel1;

CONST
0=norm; 1 =trap; 2 =int; (¥*mode codesx)

TYPE
Stack = POINTER TO StackDesc;
StackDesc = RECORD
mode: SHORTINT;  (xexecution modex)
inSVC: BOOLEAN;  (xinterrupted SVC code?; valid if mode >= 2x%)
END;

StackProc = PROCEDURE;

PROCEDURE NewStack (VAR stk: Stack; wsp: LONGINT);
PROCEDURE InitStack (stk: Stack; proc: StackProc);
PROCEDURE Transfer (stk: Stack);

PROCEDURE Current (VAR cur: Stack);

PROCEDURE StackState (stk: Stack; VAR fp, pc, used: LONGINT);

VAR lock, unlock: PROCEDURE; (xmutual exclusionx)

Module Kernel was also enriched with a rigorous stack management and
operations for initializing stacks and control switching. This support is
intentionally low level and tightly coupled with the compiler conventions for
transfering control in procedure calls. It serves only as a foundation upon which
models of multi-threading such as coroutines and threads with preemptive
scheduling can be built. (To avoid changing the interface of module Kernel
—this would make our system incompatible to the standard Oberon system- all
new definitions are exported by a stub module called Kernel1.)

Stack objects are allocated with calls to NewStack where the maximum stack
size must be passed as a parameter. Stacks are inserted into a list and are
automatically collected as soon as they are no longer referenced so that the
corresponding memory is returned to the system.

Initialization and control transfer procedures provide support for
implementing coroutines [Marlin80]. Procedure /nitStack arranges the contents
of the stack so that the specified procedure will be invoked when control is
transfered to the stack for the first time, but does not perform a context switch.



Control transfer is implemented by procedure Transfer that executes the
appropriate actions depending on the state of the current execution. This
information is recorded in the fields mode and inSVC of the current stack
descriptor. The first field indicates whether the execution is in normal, trap, or
interrupt mode. In the latter case, the second field can be used to determine if a
supervisor call has been interrupted.

To avoid copying when transfering control, each stack comes with its own
system stack region, hence switching control requires saving and reloading the
two stack pointer and the frame pointer registers. If transfer is invoked from
within an interrupt, then the general purpose and floating point registers are
also saved on the stack of the suspended execution before executing the
normal transfer code.

Additional changes to the kernel were modifications of the garbage collector to
mark pointers on all stacks. After the main mark phase, the stack list is
traversed, and for each stack the valid region between stack origin and stack
pointer is checked. Values that could possibly be pointers are put into an array
whose contents are eventually compared with the actual heap structure.
Marking occurs only if pointer candidates indeed turn out to be pointers, i.e. are
equal to addresses of unmarked objects.

To allow our implementation to be ported on machines which lack memory
management hardware (e.g. Ceres—3 workstation [Heeb91]), stacks are
allocated on the heap. An unpleasant consequence of this approach is that
stacks cannot be dynamically extended when their physical boundary is
reached, because the neighbouring memory locations may already be occupied
by other heap objects. Instead, the full size of a stack must be claimed already
at allocation time, thereby wasting memory if only a small potion thereof is
actually used. Stack overflow is detected through checks made on each
procedure call, and causes a run-time error. The corresponding instructions are
generated by the compiler (the hardware does not support stack overflow
checks) as part of the procedure entry protocol after the parameters have been
deposited on the stack. Each stack region comes with a safety reserve that can
be overwritten without any destructive effects so that delayed detection of
overflow does not seriously endanger robustness of the system.

Enhancing the Network Support of Oberon

In the standard Oberon system, the network plays a minor role. Oberon
workstations are completely autonomous, and the network is used merely to
implement a few remote services [Wirth89b]. Client programs are implemented
as commands that send a request over the network and remain blocked until
the server completes processing, or a timeout occurs. The corresponding server
parts are implemented in a single task that polls the network, processes



incoming requests, and sends the replies back. Since both commands and
tasks execute sequentially, during a client-server transaction, the processor on
both machines is exclusively used for the purpose of the current data transfer.

This fact is reflected by the design of the network driver that allows packets
that have been deposited into the system's network buffer to be inspected only
by a destructive operation. Consequently, it is impossible to determine the type
of a packet without actually removing it from the buffer which implies that
programs polling the network are likely to intercept unexpected packets by
accident, and —having no other choice— will have to discard them.

Due to this lack of provision for an interleaved use of the network, one
cannot operate different communication protocols in parallel or conduct several
conversations of the same protocol at the same time. Needless to say, this is
unacceptable for a concurrent environment, such as Concurrent Oberon, where
it is desired to have multiple threads using the network simultaneously. In fact,
this limitation is crucial even in the standard Oberon system, because it
contributes to the fragility of its network services. For example, a machine
which is already engaged in a network conversation reacts only to packets that
belong to this exchange, and thus during its entire duration does not respond
(or react) to packets sent by other clients. Also, installing two tasks that poll the
network on the same machine does not work, because they will receive —and
thus discard- each other's packets.

These inconveniences were eliminated by modifying the network device driver
so that the network can be used by several activities concurrently to each other.
This work is presented in this section.

The Notion of Protocols in the Network Driver

Since the network is to be used by several activities, it is a shared resource. But
unlike the disk or memory, it is also an active component that generates input
events without any explicit request of programs residing on the local machine.
In other words, the role of the network software is twofold. It must forward
data originating from different clients to the network, and it must separate
incoming data destined for different local clients. As opposed to the
multiplexing function which is realized simply by putting data on the wire,
demultiplexing can be achieved only if the notion of clients is explicitly
supported by the network software.

For this reason, the network driver was augmented with operations for
installing and removing Protocol objects which embody the reactive parts of
network clients that can be either applications or general purpose protocols.
Protocol descriptors contain a procedure variable that accepts a packet header
and a complete packet buffer (including the header) that must be initialized
with the code responsible for handling packets prior installation of the protocol
object.



DEFINITION SCCDiriver;

CONST
HSize = 10; MaxDataSize = 512; (xheader and data sizesx)
ProtoNotFnd = 96; (xreserved packet typex)
TYPE
Header = RECORD (xheader of Ceres networks)

END:
Buf = POINTER TO ARRAY 524 OF SYSTEM.BYTE;  (xdata begins at buf[HSize]x)
Handler = PROCEDURE (VAR head: Header; VAR buf: Buf);

Protocol = POINTER TO ProtocolDesc;
ProtocolDesc = RECORD
typel, typeH: SHORTINT;  (%type range; must be uniquex)
handle: Handler; (xpacket processing codex)
END;

PROCEDURE Install (p: Protocol); (xinstall (initialized) protocol objectx)
PROCEDURE Remove (p: Protocol);  (xremove protocol objectx)

PROCEDURE SendPacket (VAR h: Header; VAR data: ARRAY OF SYSTEM.BYTE);

Each protocol is also associated with a range of packet types, denoted by its
lowest and highest value, which is used by the device driver to determine the
protocol object responsible to which a packet must be delivered when it arrives
from the network. If no matching protocol object is found for a network packet,
a reply bearing the reserved packet type ProtoNotFnd is sent back to the
machine that generated the packet and passed to the corresponding protocol.
This allows applications to cleanly differentiate between unresponsive machines
and machines where the appropriate protocol objects have not been installed.

Protocol handlers can handle incoming data in two different ways. Received
data can be copied, or the entire buffer can be swapped with an empty one
(notice that the buffer is passed as a VAR parameter). Since the latter method
requires merely a few pointer assignments, it can be used to achieve efficient
forwarding of big data blocks across protocol borders. This is particularly
important if several protocol layers are stacked on each other as this is typically
the case for network architectures like the ARPA—net [McQuillan77] or the ISO
open systems interconnect architecture [Zimmermann80]. Moreover, this
approach allows buffer management to be introduced in a simple way at higher
layers of the system, because individual protocols may swap, copy, or ignore
incoming data according to their own policy.

Also, since buffers are assumed to be free when control returns to the
network driver, they are immediately recycled. This means that more than one
low level buffer is filled only if several packets arrive during packet processing.
Since this is quite improbable and given that packet processing is fast, the



resources of the network driver module can be kept very limited without risking
overflows.

Implementation in Concurrent Oberon

The asynchronous event of a packet arrival is communicated to the system via
interrupts. The dispatching mechanism executes as a high priority thread that
essentially extends the network interrupt handler which is only responsible for
reading incoming data into a packet buffer. Communication between the
interrupt routine and the dispatcher thread is implemented using a traditional
producer consumer scheme over a slotted ring of packet buffers:

interrupt handler dispatcher thread
read data into buffer LOOP
IF not full THEN await(non empty)
IF empty THEN resume dispatcher END get next full ring slot
insert buffer into free ring slot find protocol & call handler
END; END;

The dispatcher, in an endless loop, removes packets from the ring and uses
their type to find the corresponding entry in the protocol list. The packet is then
passed to its destination by invoking the handler procedure of the
corresponding protocol object, which processes the arrived packet and returns
control to the dispatcher. When there are no more available packets, the
dispatcher suspends itself. It is resumed again from within the network
interrupt handler as soon as a new packet arrives.

Notifying network clients via upcalls (figure 2) resembles the mechanism
used in the Oberon system to communicate input events to the target
windows.

protocol1

protocol0

SCCDriver - . — — —
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Figure 2 processing of arriving packets via upcalls

In this case, the scheme is used to perform packet processing which, as it has



already been noted [Clark85], naturally fits into the upcall approach.
Notification is indeed a very suitable method for implementing the reactive
parts of protocols, because it intuitively reflects their state machine-oriented
design. It also allows packet processing to be executed from within a single
thread of control, thereby reducing the number of competing threads in the
system without sacrificing responsiveness, since protocol handling is very fast
and it is unlikely that several packets will reach the machine at the same time.
Last but not least, acknowledgements to arriving packets can be generated
directly from within the dispatcher thread, thereby guaranteeing fast response
times, even though the machine may be heavily loaded. This does not only
enhance the reliability of monitoring facilities, but also eliminates end-to-end
synchronization between sending and receiving activities (threads), thereby
minimizing the network delay experienced by applications.

Another possibility would have been to let each network client have its own
thread polling for network packets and reacting to network events. This is
typically the case in process—oriented designs [Requa85, Fenart86]. However,
this overhead is unjustified if most clients are protocols with instantaneous
reaction to network events. It also complicates the implementation, because
elaborate synchronization and buffering is required to implement packet
distribution correctly in the presence of concurrent polling.

Summary

In this chapter, we have described modifications and extensions to the Oberon
system which provide the basic support for distributed programming. First of
all, concurrency was introduced by augmenting the system with a single
module which implements the essential programming primitives, and features a
simple synchronization method that can be used to implement arbitrary
customized synchronization and communication tools. To exploit concurrency
with respect to networking, a modified version of the network driver supports
simultaneous operation of multiple communication protocols. Unlike other
process—oriented approaches, an efficient single threaded approach is used to
distribute incoming network packets to their logical destinations. Also, fast
forwarding of data blocks and flexible buffer management policies are
supported by allowing application handlers to keep packet buffers. These
changes promote the functionality of the Oberon system to a level comparable
to that of other operating systems such as UNIX, yet without adding significant
complexity.



Chapter3 A General Data Transfer Facility

In this chapter, we introduce a general and extensible method for describing
input and output of complex data. The proposed method proposed allows
transfer operations of data types to be implemented without having to specify
the medium where data is written on or read from, the format which is used for
converting typed data such as integers and real numbers, or the method for
resolving references. These functions can be introduced at a later point in time,
even after the transfer code has been written. As a consequence, the same
transfer code can be used to achieve persistence, i.e. to write data on disk, and
to convey data through a communication channel. With our approach, it is also
possible to program generic data transfers for instances of arbitrary data types
even though their actual type is unknown at implementation time.

On Transfer of Data Structures

Transfer of complex data structures to and from disk is a typical operation for
programs that want to achieve fault tolerance, or simply to preserve data across
their executions to be used as input for other executions, even if the machine
has been turned off in between. The complexity of data transfer, also referred to
as externalization and internalization, depends on the kind of data that is
involved. Storage and retrieval of typed data such as integers and reals is simple,
because their values can be written and read directly as raw byte blocks.
Externalization becomes difficult, however, if a data object contains dynamic
structures. The reason is that pointers can be traced only in the context of their
original address space, and therefore their actual value is of no use if the
structure must be rebuilt in a different address space, or if the data transfer
must have copy semantics. With pointers it is also possible to have aliasing and
cycles, which complicates the transfer process even further.



Since the aforementioned problems have little to do with the fact that data is
stored in memory or on disk, it is not surprising that they are encountered again
in distributed systems where programs communicate data over a network; in
this case, externalization and internalization are also called marshalling and
unmarshalling, respectively. However, an important difference is that network
communication involves cooperation between two different processes residing
on different machines. This brings up the issue of robustness, because
machines fail independently of each other and failure of one communication
partner should not cause failure of the other. Further, the involved machines
may have different internal data formats and different compiler
implementations with the consequence that the values of standard data types
and of records cannot be transmitted using their internal memory
representation, but must be converted between the sender and the receiver.
Notably, the same problem exists even in disk—oriented transfers, if the writer's
environment may have different formatting conventions than the environment
where data is read. For example, a file containing the externalization of a data
structure may eventually be sent to another machine and used there as an
input, possibly for the same program.

Given the importance of data transfer in a system, it is desirable to support it in
a way that simplifies programming. The ideal solution would be to have a
general primitive that takes the address of an object and performs the transfer,
dealing with all necessary details without involving the programmer at all.
Unfortunately, this cannot be done in a satisfactory way.

A major problem when considering transfer of complex data is the lack of
extensive run—time type information about the contents of data items (records).
For example, in Oberon, the address of a heap object suffices to determine its
type, size, and the position of pointers inside it, but there is no information
about the position and type of the rest of its contents. Consequently, it is
impossible for a program to identify and handle the components of data
objects individually, and thus data must be treated as an unstructured byte
block. This approach is clearly insufficient though, because byte ordering and
data arrangement within records is not the same across all hardware platforms
and system implementations.

An additional difficultly is that the functionality and semantics of complex
data types cannot be derived simply by looking at their data representation.
Thus given the address of a data object, there is no way to train a program to
make a selective approach, and the programmer it is left with no choice but to
consider all components of a data type instance blindly. This is not always
appropriate, because for some data types special actions may be required to
preserve their semantic content or invariants. It is also likely that parts of a data
type are redundant, hence should be ignored at externalization to reduce the
amount of storage needed, and initialized according to the convention of the
implementation when the data type is internalized again.



Therefore, generality cannot be achieved without involving in the transfer
process the applications that implement the corresponding data objects. In
other words, the application must be given the means to provide the programs
that implement the data transfer with customized code that implements the
required actions and which is called when instances of private complex data
types are being externalized or internalized. The task of writing the
externalization and internalization code can be simplified by using tools that
generate this code automatically from a given data description or definition.
Notably, this kind of support is purely auxiliary, and installing the appropriate
code in the transfer programs still remains the programmer's responsibility.

But since the application is obliged to give the transfer code for its objects, it
is desirable to keep this code sufficiently abstract so that it becomes a general
applicable description of how data should be handled. Then, the same
externalization and internalization code of a data type can be used for different
kinds of transfers. It also becomes feasible to augment the system with
programs that subject existing data objects to new transfers, despite the fact
that the applications that define the corresponding data types have been
implemented before these programs came into existence.

The 10 Framework

According to these ideas, in Hermes, support for data transfer of complex data
types is given in form of a module called 10 (for input/output). Integration of
application specific actions that are to be executed in the externalization and
internalization process is achieved by introducing a special object type that has
a type—bound procedure for transferring its contents. Applications must define
their data types as an extensions of the base object type and implement the
corresponding transfer procedures to handle the data type's contents. In other
words, data items are modeled as intelligent objects with data transfer
capabilities.

Writing and reading of data is supported via an object—oriented framework
consisting of abstract carrier, formatter, and linearizer components with
procedures for handling bytes, typed data, and pointers to complex data items,
respectively. The provided types are merely the base types from which real
component implementations are derived. Hence, they serve as stubs whose
empty procedures can be used by the application to write the transfer code of
data objects without specifying the concrete type of the components that are
actually going to be used to handle the data. Binding of the code that
implements the individual components to the application code occurs
dynamically, at run time.

Functionally, each component presents itself as an abstract mechanism that
can be used to write and read data items. This allows components to be
arranged in a hierarchy according to the complexity of the data items they can



handle. In fact, module 10 explicitly introduces such a structuring by linking
these components through a "has a" relationship so that operations of
higher—level components can be implemented using the services of lower—level
components (figure 1).
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Figure 1 abstract data transfer components

Thus the linearizer, having the ability to handle pointers to data items, typed
data (via a formatter component), as well as bytes (via a carrier component), is
the right tool for transfering arbitrarily complex data structures.

Carriers

The data carrier where data is put in and retrieved from is modeled as an
abstract uni-directional stream of bytes that can be accessed via sequential
operations. This abstraction is introduced by defining a type called Carrier with
type—bound procedures Byte, and Bytes for handling single bytes and byte
blocks. The writing field of the carrier descriptor indicates the direction of the
carrier, i.e. whether these operations write or read data.

DEFINITION 1G;

TYPE

Carrier = POINTER TO CarrierDesc;

CarrierDesc = RECORD
writing: BOOLEAN,;
PROCEDURE (c: Carrier) Byte (VAR x: SYSTEM.BYTE);
PROCEDURE (c: Carrier) Bytes (VAR x: ARRAY OF SYSTEM.BYTE;

k: INTEGER);
PROCEDURE (c: Carrier) Synch ();
PROCEDURE (c: Carrier) Done (): BOOLEAN;
END;

PosCarrier = POINTER TO PosCarrierDesc;
PosCarrierDesc = RECORD (CarrierDesc)
PROCEDURE (c: PosCarrier) Pos (): LONGINT;
PROCEDURE (c: PosCarrier) Set (pos: LONGINT);
END;




Procedure Synch serves as a provision for allowing synchronization points to be
injected in the data stream. While data carrier implementations may leave this
procedure empty, it can be overwritten to put a special byte pattern in the
stream (when writing) and to check against this pattern (when reading), or to
implement a confirmation protocol when transfer occurs over a communication
channel. Checks of this kind are mandatory to detect failures that occur due to
inconsistencies between the code writing and the code reading data.

An additional procedure Done indicating the success or failure of the previous
operations is provided. Failures are possible due to synchronization errors or
failures of the medium, for example a network connection that can break down
any time. The ability to check the state of the carrier is indispensable for
tolerating errors when values received during internalization influence the
internalization process itself, since in this case failure of the data carrier to
deliver data correctly can affect robustness of the application. Below is is shown
how to implement (writing and) reading an array of bytes so that an error of the
carrier cannot cause an infinite loop. It is assumed that a special terminator
signals the end of the array.

i :=0; c.Byte(alil);

WHILE c.Done() & (a[i] # Terminator) DO
INC(i); c.Byte(alil)

END;

The notion of positionable carriers is introduced via a subtype of Carrier called
PosCarrier to describe special stream implementations that allow the insertion
and removal point to be re-adjusted. This is to encourage implementors of
carriers to choose the closest possible type as a base type for their
implementations, because it may be possible (and desirable) to exploit the
special properties of a carrier when programming the transfer code. The
additional functionality is declared via a procedure Set for repositioning the
carrier and a procedure Pos that returns its actual position, in numbers of bytes,
within the stream. Positionable carriers have similar functionality to riders, a
mechanism that is used in Oberon to access the contents of files, but are
defined in a more general way so that they can be used to describe any kind of
positionable stream.

Formatters

Handling of typed data is described via a Formatter type with procedures for
converting standard types of the Oberon programming language to and from a
sequence of bytes, respectively. Each formatter object also contains a carrier
object so that concrete formatting operations are coded using abstract carrier
operations. The direction of the formatter operations is determined by the
direction of the included carrier.



DEFINITION 10;

TYPE
Formatter = POINTER TO FormatterDesc;
FormatterDesc = RECORD
c: Carrier;
PROCEDURE (f: Formatter) Bool (VAR b: BOOLEAN);
PROCEDURE (f: Formatter) Char( VAR ch: CHAR);
PROCEDURE (f: Fomatter) Int (VAR i: INTEGER);

PROCEDURE (f: Formatter) Done (): BOOLEAN;
END;

Since formatting is a higher—level function than writing and reading bytes, the
fact that the data carrier operations have been executed successfully does not
imply that formatting has also succeeded. For this reason, the formatter has its
own procedure Done indicating the result of its operations, which can be used
to achieve robustness against failures in a similar way this is done for the
carrier.

This separation underlines the independence between the formatting process
and the process of storing and retrieving data, thereby allowing arbitrary
combinations thereof. If formatting functions were directly coupled to the data
carrier component, new versions of all existing formatting methods would have
to be produced for each new data carrier. Conversely, introducing a new
formatting convention would then result in updating and recompiling all
existing data carrier implementations.

Linearizers and Data Objects

In accordance to this pattern, a third type, the Linearizer, captures the task of
handling pointers. Hence, the linearizer must handle references, thereby
converting dynamic data structures into a linear form from which they can be
reconstructed again at a later point in time.

DEFINITION 1G;

TYPE
Linearizer = POINTER TO LinearizerDesc;
LinearizerDesc = RECORD
f: Formatter;
PROCEDURE (I: Linearizer) Obj (VAR o: Obj);
PROCEDURE (I: Linearizer) Done (): BOOLEAN;
END;

Obj = POINTERTO ObjDeSC;
ObjDeSC = RECORD
PROCEDURE (VAR o: ObjDesc) Transfer (I: Linearizer);
END;




Analogously to above, each linearizer object contains a formatter object, and
has a type—bound procedure Obj for writing and reading pointers to data items
depending on the direction of the carrier. Also, similar to carriers and
formatters, linearizers have a procedure Done yielding the result of the Obj
operation. Data items are modeled as objects of type Obj with a procedure
Transfer for externalizing and internalizing their contents using a linearizer.
Hence, the actual data transfer is performed by the application code, rather than
an automatic mechanism.

Even though the roles of a linearizer and a data object seem alike, the two
components serve entirely different purposes. The linearizer embodies the
context of a transfer as well as the mechanism that produces type information
(when writing) and uses it (when reading) to create object instances. On the
contrary, the transfer code of a data object is simply responsible for handling its
contents. The necessity of separating these tasks becomes most evident when
considering internalization, since in this case an object instance must already
be available in order to invoke the corresponding transfer code. Moreover, since
the linearizer component is passed from one object to another as a parameter
of the corresponding transfer procedures, the transfer state is preserved across
individual invocations of the application code so that externalization and
internalization decisions can be taken depending on it. As it will be shown in
the next section, carrying and consistently updating state is necessary to deal
with data structures with aliasing.

Programming Transferable Data Types

Implementation of the transfer procedures is straightforward and does not
complicate the structure of applications, because it can be put near the
corresponding type declarations isolated from the rest of the program. While it
would be possible to provide the users with a tool that generates code from a
given type definition, this is hardly required given the simplicity of this
programming task.

An application data type with externalization and internalization capability is
defined as an extension of the /0.0bjDesc type, and its transfer procedure is
programmed to handle the newly added fields. Record fields that are not
handled by the transfer procedure are not transfered. The descriptor fields need
not to be handled in the order they appear inside the record. As an example, we
show the implementation of a list element containing an integer and a pointer
to the next element, and extension thereof that has an additional boolean field:

TYPE
Elem = POINTER TO ElemDesc;
ElemDesc = RECORD (10.0ObjDesc)
nxt: 10.0bj; (xpointer to next list elementx)
key: LONGINT  (xkey of elementx)
END;



ExtElem = POINTER TO ExtElemDesc;
ExtElemDesc = RECORD (ElemDesc)
b: BOOLEAN
END;

PROCEDURE (VAR e: ElemDesc) Transfer (I: 10.Linearizer);

BEGIN
Lf.LInt(e.key); (xhandle long integer value by calling formatter procedurex)
|.Obj(e.nxt) (%handle object value by calling linearizer procedurex)
END Transfer;
PROCEDURE (VAR e: ExtElemDesc) Transfer (I: 10.Linearizer);
BEGIN
e.Transfer~(l);  (xhandle base type fields with supercallx)
|.f.Bool(e.b) (%handle boolean value by calling formatter procedurex)
END Transfer;

New data objects can be defined as extensions of existing objects, even if these
have been implemented as opaque data types. The contents of the base record
type can be handled via a supercall (indicated by 1), i.e. by invoking the transfer
procedure bound to the base type.

Since the linearizer procedure Obj expects an object pointer of type 10.0bj as a
reference parameter, it cannot be called with extended pointer types. Hence, if a
data structure contains pointers to extensions of the 10.0ObjDesc type, these
have to be handled by introducing an auxiliary variable of type 10.0bj. When
writing, the value of the pointer in question must be assigned to this variable
which can then be used to write the value of the pointer. Conversely, when
reading, the pointer value must first be obtained using the auxiliary variable,
and then assigned to the extended pointer via a type guard.

This inconvenience is caused by the strong type checking of Oberon that
requires pointer reference parameters to have the identical type as the formal
parameter. This problem could only be solved by introducing a universal pointer
type which is compatible with all possible pointer types. Although this type
essentially exists in Oberon (SYSTEM.PTR), the compiler handles reference
parameters of this type as OUT parameters, in fact, their original value is
overwritten with type information. This is clearly not appropriate when the
linearizer is externalizing a data type since in this case the pointer passed to the
Obj procedure is used as an IN parameter.

Default Component Implementations
While it is likely that data transfering applications will employ their own carrier

component to implement the transfer (e.g. a file for saving data on disk, or a
network connection for transmitting data from one machine to another), each



application will hardly require a customized formatting convention, or an own
method for resolving references. With this motivation, module 10 also provides
default formatter and linearizer implementations to simplify programming of
data transfering applications.

The Default Formatter

The default formatter arranges data according to the internal format of the
Ceres workstation. In other words, its implementation on the Ceres simply
handles typed data as byte blocks and does not perform any conversions.
Implementations for other hardware platforms may need to swap bytes in order
to achieve compatibility.

Even though formatters are responsible for handling typed data on top of a
stream of uninterpreted bytes, in order to reduce the amount of data produced
the default implementation does not tag the produced data. Considering the
fact that the most commonly used typed items of the Oberon programming
language consist of only 2—4 bytes, this yields significant savings (figure 2).

.. £SInt(1); fLInt(1); ..

stream without tags stream with tags

1 1 0 |0 |O sint| 1 | lint| 1 0 |0 |O

Figure 2 tagged vs. non-tagged output

A consequence of not using tags is that when reading it cannot be checked
whether the incoming data actually corresponds to the items that are to be
read. For example, it is possible to read a long integer first, and then a short
integer out of the non—tagged stream of figure 2, despite the fact that this data
was produced by writing a short integer followed by a long integer. Since the
application can guarantee correctness by ensuring that the producer and
consumer programs are implemented symmetrically, which is trivial given that
in most cases the same code can be used both for writing and reading a data
type, this limitation is not problematic. In fact, even with tags, errors at the
application level cannot be detected, because it is still possible to swap the
values of two data items of the same type if they are read in the reverse order
they are written.

The Default Linearizer
Analogously to the default formatter, the default linearizer implements the Obj

operation to linearize and delinearize pointers to data objects. Besides
generating the type information that is required to create instances of data



objects at internalization, the implementation handles aliasing and cycles. Also,
motivated by the fact that type information is typically several bytes long, a
simple mechanism is used to avoid replicating information that has already
been generated during a transfer.

The primary task of the linearizer, namely to produce type information and use
it to generate object instances at internalization, is accomplished by using the
meta—-programming facilities of the Oberon system. At externalization, a handle
to the type of the data object is retrieved and used to write the corresponding
module and type name on the data stream. This type information is used at
internalization, first to obtain a handle to the corresponding module, then to get
a handle corresponding to the right type, and finally to create an empty object
instance.

Although complex data structures can consists of numerous nodes, typically
these are instances of only a few different data types. For this reason, the same
type information is never written twice during the transfer process, and known
types are referenced via shorter identifiers. This is achieved by maintaining a
type cache as follows:

write type info read type info & create instance
t := Types.TypeOf(obj); read type identifier
search in type cache IF new THEN
IF found THEN search for type handle in cache
write type identifier ELSE
ELSE read mod and type names
write new identifier m := Modules.ThisMod(mod);
write t.mod and t.type names t:= Types.This(m, type);
insert type handle t in cache insert type handle t in cache
END; END;

Types.NewObj(obj, t);

When writing, the contents of the cache are checked before producing type
information to determine whether this data has already been written. If this is
not the case, the type is given a unique identification number, it is inserted in
the cache, and its identifier is written along with the type information. If the
type is found in the cache, only its identification is written. Type identifiers are
obtained by increasing a sequence number so that, at internalization, the value
of a received identifier directly indicates whether the type is new. If this is
indeed so, the type information is read and a type handle is created, else the
appropriate type handle is retrieved by searching the type cache.

Once the type information corresponding to an object is written, or an empty
instance of a data object is created, externalization, respectively internalization
is continued by handling the object's contents with a call to its transfer
procedure. To reduce the probability of having undetected inconsistencies in
the transfer code of the application objects, the Synch procedure of the carrier



is called before and after invoking the transfer procedure of an object. Provided
that the actual carrier implementation has not left this procedure empty, this
approach catches all programming errors whose effect is that the amount of
data produced is not equal to the amount of data consumed.

When externalizing (and internalizing) data structures with aliasing, i.e. with
objects that are reachable via several paths, the application code will encounter
the shared objects more than once via repeated calls to the Obj procedure of
the linearizer. However, shared objects should be externalized (and internalized)
exactly once and aliasing must be reestablished in its original form when the
data structure is reconstructed again. For this purpose, an object list is
maintained in a similar way this is done for the type cache:

externalize object internalize object
search in object list read object identifier
IF found THEN IF new THEN
write object identifier find object in list
ELSE ELSE
write new object identifier
write type info read type info & create obj instance
insert object in list insert object in list
c.Synch(); obj.Transfer(l); c.Synch() c.Synch(); obj.Transfer(l); c.Synch()
END; END;

Transfer of object's contents is done only once for each object, when it is
encountered for the first time. Cycles are automatically handled, because
objects are inserted in the list prior to writing their contents so that recursive
references to these objects are resolved correctly.

The object list and the type cache are reset with a call to procedure Reset;
initialization of the type cache occurs only if this is explicitly specified. The
object list must be initialized before each externalization and internalization. By
contrast, the type cache can be preserved across several transfers which is
useful if an application must transfer a set of objects rather than one data
object. Using the same type cache for transfering different data structures
strongly binds them together, because failure to internalize a single object will
hinder internalization of the rest.

An example

To illustrate the way these mechanisms work, an example of a dynamic
inhomogeneous structure using the previously introduced list data types and a
pictorial representation of its externalization is given in figure 3.

Since the structure is traversed recursively using the application code to trace
references, data objects are externalized in a nested fashion, i.e. the third data
object is enclosed within the second, which in turn is enclosed within the root
of the structure (for readability, the points within the data stream where the



Synch procedure of the carrier is called are marked with the character "@").

List.ElemDesc List.ExtElemDesc

root nxt nxt —|— | nxt
key 5 key 15 key 20
bT bF

1 1 List ElemDesc@ 5| 2 2 List ExtElemDesc@ 153 2 @ 20|1 F@ T @ @

oid tid key nxt b

oid tid type info key nxt ‘ b

oid tid  type info key nxt
Figure 3 an inhomogeneous ring structure and its externalization

Despite their complexity, linearizations are systematically unraveled as the
nodes of the data structures are created and initialized driven by the
internalization code.

Failures

Obviously, having the application involved in the transfer process implies that
the application code is mandatory for reconstructing a data structure. This is a
problem if an attempt is made to reconstruct a data structure when one or
several application modules that implement some of its nodes are not available.
In Oberon, this is indeed possible, because applications may use (and thus
transfer) objects of unknown type which are implemented in modules that are
higher in the module hierarchy. Another failure possibility are synchronization
errors that occur if the code that reads data is incompatible with the code that
produced it.

If a failure occurs during internalization, then reconstruction of the data
structure is aborted and the state of the linearizer is set accordingly so that
further calls to procedure Done will return FALSE. In principle, for the special
case where an object instance cannot be created due to missing application
code, it would be possible to set the corresponding pointer to NIL and ignoring



the object data. This automatic repairing mechanism is questionable, because it
becomes impossible to differentiate between genuine and artificial NIL pointers.
Also, a partially reconstructed data structure is of little use unless the
application anticipates such errors.

In the latter case, where critical objects, whose code may be missing at
internalization, are known in advance, the application programmer can handle
failures in a simple way. The critical objects have to be separated from the main
data structure, and transfered using a fresh transfer context so that
internalization failures are contained and do not affect internalization of the
main data structure. Further, it must be guaranteed that data produced by
externalizing critical objects can be skipped in case internalization of the critical
objects fail (figure 4).

length externalization of critical objects

externalization of main data structure
Figure 4 externalization with critical objects

This is particularly easy to achieve if the data carrier used to transfer the main
data structure is a positionable carrier, because then the same carrier can be
used to externalize the critical objects. The length of the externalization can be
back—patched by repositioning the carrier. If a normal carrier is used instead,
the critical objects have to be externalized on another medium (e.g. a file) and
the length along with the data of the critical externalization must be copied on
the main carrier.

Critical objects that share other objects must be transfered within the same
transfer context, otherwise the aliasing information is lost and a proper
reconstruction of the data structure is not possible. This limitation has proved
to be of little practical importance since separate transfer contexts are
intentionally used to handle parts of the data structure that are independent of
each other and thus can be reconstructed atomically without affecting the main
internalization process. Hence, aliasing across different transfer contexts is not
very meaningful.

Related Work

The CLU language adopts a similar approach to ours for converting values of
abstract types into intermediate representations [Herlihy82], where special
encoding and decoding procedures must be supplied by the programmer for
each data type. However, in CLU these procedures are used especially for



putting values of data types into messages which are then sent over the
network and used at the destination to reconstruct the data type. This feature is
built in the language itself, and thus different methods of formatting, and
transfer cannot be added in a simple way. In addition, CLU is not
object-oriented, i.e. variables cannot hold objects of extended types. This
considerably simplifies implementation of the conversion code, because the
types of dynamic objects contained in data types are known already at
implementation time. Since programs cannot possibly hold objects of unknown
type, there are also no failures due to missing code.

Modula-3 also has a special mechanism named “pickles” to marshal and
unmarshal complex data [Kalsow88]. The produced data can be stored on disk
or used directly as input for other programs. However, pickling involves
non-sequential accesses to the input and output streams and is therefore
unsuitable for use with network protocols. Also, in contrast to our approach,
marshalling is automatic, i.e. references are traversed using available run-time
information, and values that are not pointers are put in a pickle "as is", hence
data is handled using directly its internal memory representation. It is possible
to install code that introduces customized handling, but unlike in our system
this is an exception rather than the rule.

Contributions related to the problem of marshalling data structures have also
been made by remote procedure call systems (RPC) [Bershad87, Birell84]. RPC
systems support marshalling via special tools called stub generators that
generate the data transfer and communication code automatically from a given
specification or interface definition. In some cases, the programmer may
influence marshalling either by installing custom—made transfer procedures that
are invoked during externalization and internalization process, or by feeding the
generators with code fragments that are patched into the produced code. The
data conversion strategy is typically built in the code generators so that data
conversion can be implemented using in-line code, rather than procedure calls.
However, this means that the data format used cannot be changed without
modification of the generator program.

The Sun external data representation library (XDR) [Sun90] also supports
conversion of data structures into a fixed machine independent representation
and vice versa. Although XDR is primarily used by Sun's RPC system as a
protocol for transmitting parameters, it is possible to write and read data using
different steam implementations. Similar to our approach, the direction of the
transfer can be specified when creating a stream, and the transfer procedures
for complex data structures must be implemented by the programmer.
However, the transfer code can be generated automatically using special tools.
An important difference is that when using XDR the transfer code must be
provided as a parameter when starting externalization, with the consequence
that the data objects to be handled must be known a priori, when
implementing the program that performs the transfer. Also, internalization
simply produces a pointer whose type cannot be determined or verified, hence



typing errors remain virtually undetected.

Finally, our work has great similarities with other object-oriented systems like
DB++ [Schmidt89], ETHOS [Szyperski92], and Oberon-3 [Gutknecht93], since
in these systems data items are also implemented as objects with transfer
procedures. DB++ and Oberon-3 focus on object persistence and thus are
strictly file—oriented. In addition, these systems arrange persistent objects in
collections that can be stored and read using special operations; hence, the unit
of persistence is a collection not a single object. On the other hand, the ETHOS
system provides a similar framework as ours, but objects have separate
externalization and internalization procedures. Also, ETHOS restricts transfer of
structures for positionable streams only, and there is no provision for
supporting different formatting methods. Our design has also been an
inspiration for Oberon—-PVM [Bougnion94], that extends the PVM package to
support object-oriented distributed programming in Oberon, and uses virtually
the same approach to transfer data over a network.

Summary

We have presented a framework for describing transfer of complex data
structures. Our approach can be viewed as a generalization of known methods
that are integrated in remote procedure call mechanisms or are part of
persistent object systems. Namely, in our system it is possible to combine
arbitrary carrier, formatter and linearizer components with each other, and to
develop such components independently of the applications that implement
data objects. Also, the ability to externalize data structures directly on
non—positionable streams eliminates copying and allows data objects to be
directly transfered over communication channels with bounded buffering
capability such as network transport protocols. Finally, due to the
object-oriented design of our system, and the provision for checking
consistency of the application code, generic transfer programs can be
implemented in a type safe and robust way even though the actual type of the
data objects that will be passed as parameters to these programs is not known
at system implementation time.
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Chapter4  The Message Passing Facility

This chapter describes a facility that supports interprocess communication via
message passing primitives. Messages are conventional data types with
structured contents, yet still can be exchanged over the network as if they were
indivisible data items. Marshalling, data transmission, and unmarshalling occur
transparently to the application in a type-safe way. As a consequence,
conversion and consistency checks at the application level are completely
eliminated, and the content of a message can be directly accessed as soon as it
is received. Messages are sent to special queues, called mailboxes, that are
uniquely identified throughout the entire system. Communication is
asynchronous, meaning that the sender continues execution after sending a
message and needs not to wait until the message is received or processed.
Failure notification is supported via special messages that are sent to the sender
when a transmission fails. There is also support for monitoring mailboxes in
order to detect failures that occur during message processing. Data about the
performance of our implementation can be found in the appendix.

Towards an Abstract Message Model

Interprocess communication is one of the key elements of multi-process
systems, since it provides the means for data exchange between processes
despite the fact that they may reside in separate address spaces. This is even
more important in distributed systems where processes are located on different
machines and therefore must cooperate over a network.

Message passing is a particularly convenient communication paradigm,
because it embodies a model of interaction between processes that naturally
fits into a distributed programming environment. Describing communication in
form of message exchanges automatically decouples execution of the



cooperating processes which is of outmost importance in a distributed system
[Liskov86]. Indeed, parallelism is not only an inherent feature of distributed
protocols that involve cooperations among several nodes in the system, but is
also indispensable for enhancing efficiency of computations that can be
performed concurrently. Also, message passing is a flexible approach, because
its primitives can be combined without much effort to implement synchronous
communication patterns that are typical for traditional client-server
architectures.

However, message based communication in its most primitive form, as it is
implemented by the network hardware, has profound limitations. Since
network packets are small, large application message must be divided into
several packets which must be sent in the correct order over the network and
reassembled again at the destination. Moreover, transmission at the hardware
level is only done in a best effort basis, and thus it cannot be guaranteed that
data will indeed arrive at its destination. Last but not least, while the ability to
send and receive byte blocks (packets) is the essence of interprocess
communication, in practice, higher data abstractions are required, because
programs are written in high level languages and use typed and structured data
items.

In other words, only a high level message abstraction can make message
passing truly attractive for implementing conversations at the application level.
The introduction of "long" messages that are transparently cut into and
assembled from several network packets, respectively, is definitely a step in this
direction, but does not relieve the programmer from having to convert data into
messages and vice versa. We believe that it is appropriate to allow application
messages to be defined just like ordinary data types, and thus be arbitrarily
complex objects whose contents can be accessed directly without any need for
conversion. The network should consequently present itself as a special
medium with the ability to handle such abstract messages in a single piece, i.e.
to reliably convey them between sender and receiver while preserving their
internal structure. Analogous mechanisms should be provided to communicate
violation of this abstraction to the application, for example when the underlying
network software fails to transmit data to its destination.

The Communication Primitives

Module Msgs implements communication in this spirit. It provides
asynchronous message passing primitives that can be used to exchange entire
data structures over the network. In addition, there is support for monitoring
destinations to detect failures. The key to the implementation of this
communication facility is that messages are defined as transferable data items



with corresponding transfer procedures (see chapter 3). Thus message
transmission is a special case of the previously described externalization and
internalization scheme, for the case where data is sent over the network.

Mailboxes

Messages are not sent directly to application threads, instead they are deposited
in special queues called mailboxes. Mailboxes serve as communication
end-points identifying programs that cooperate with each other over a network,
and are identified via addresses that are unique for the entire network and
remain valid over shutdowns and crashes. This allows applications to detect
failures reliably even if monitoring is slow compared to the time needed to
restart the system. It also means that addresses can be reused after a shutdown
which is especially useful for persistent programs that are restarted when the
machine is turned on, and where it is desirable to use a single address for their
entire lifetime.

DEFINITION Msgs;

TYPE
Adr = RECORD
netadr: SHORTINT;
mbxno: LONGINT
END;

Mbx = POINTER TO MbxDesc;
MbxDesc = RECORD

adr: Adr; (xread—onlyx)
avl: LONGINT  (xread—onlyx)
END;

PROCEDURE Open (mbx: Mbx; mbxno: LONGINT);
PROCEDURE Close (mbx: Mbx);

A mailbox address consists of the network address of the machine where the
mailbox resides and a mailbox number that identifies the mailbox within the
address space of the host machine. Mailbox numbers are obtained by
incrementing a 32-bit sequence number that is kept in stable storage to
preserve its value despite failures. This guarantees uniqueness of mailbox
addresses, since network addresses are unique and mailbox numbers are never
duplicated.

To register a mailbox in the system's directory, a mailbox is opened with a
call to procedure Open that accepts a mailbox number as a parameter. If the
specified mailbox number is equal to O, then a new mailbox number is
generated, otherwise the mailbox address is initialized using this value. The
address of the mailbox is recorded in the adr field of its descriptor. The mailbox
numbers assigned to mailbox addresses by the system are always positive.
Negative values are reserved for system services that must be publically



accessible; they must be distributed by an administrator and specified on
mailbox creation. When a mailbox is not needed anymore, it is explicitly
disposed by procedure Close. Mailbox descriptors also contain an av/ field
indicating the number of messages held by the mailbox which is initially set to
0 when the mailbox is opened.

Sending and Receiving Messages

Transmission of messages is triggered by the Send operation that accepts a
message and the address of the destination mailbox as parameters. Sending is
non-blocking in the sense that the sender does not wait until the message
arrives at or is retrieved from the destination mailbox, but continues execution
after the message has been successfully transmitted over the network. This
decoupling between sender and receiver allows concurrency to be introduced in
a natural and straightforward way without requiring application programmers to
create a separate thread for each individual message transmission.

DEFINITION Msgs;

TYPE
Msg = POINTER TO MsgDesc;
MsgDesc = RECORD (10.0ObjDesc)
nfyadr: Adr  (%address to which error message should be sentx)
END;

NotifyProc = PROCEDURE (mbx: Mbx);
PROCEDURE Send (VAR dst: Adr; msg: Msg);

PROCEDURE Receive (mbx: Mbx; VAR msg: Msg);
PROCEDURE InstallMsgNotifier (mbx: Mbx; notifier: NotifyProc; prio: SHORTINT);

The specified mailbox address is used to contact the corresponding host and to
locate the destination mailbox. Messages arriving from the network are inserted
in mailboxes in the order they are received. Our implementation guarantees that
messages sent by the same application (thread) to the same mailbox will be
placed in the mailbox queue in the order the were sent. Messages that originate
from different activities are not ordered.

Messages that have been placed in a mailbox can be retrieved with calls to
procedure Receive. This operation returns the first message of the mailbox
queue. If the queue is empty, the caller is blocked until a message is deposited
in the mailbox. Checking the number of available messages prior to attempting
to withdraw a message allows blocking to be avoided.

Programming with messages is strongly event—oriented, i.e. when receiving a
message, its type is used to decide which actions to take next:



Receive(mbx, msg);
IF msg IS MyMsgTypeO THEN
handle messages of type MyMsgType0
ELSIF msg IS MyMsgTypel THEN
handle messages of type MyMsgType1
ELSE
handle other messages
END;

This is particularly appropriate for describing distributed programs such as
asynchronous algorithms or general purpose servers. Since messages are
instances of conventional data types, their actual type can be determined by a
type test. This scheme relies solely on the runtime support of the Oberon
programming language and therefore it is not possible to have programming
errors that are due to incorrect management of type information at the
application level. Also, the fact that messages are structured items whose
contents are directly accessible simplifies the application, because there is no
need to extract data out of messages via special sequential access operations.

To enhance flexibility, an additional procedure InstallMsgNotifier is provided that
can be used to associate a mailbox with a procedure which is invoked as soon
as the mailbox becomes non-empty. Invocation occurs immediately if the
mailbox already contains messages when this operation is called. The notifier
procedure is invoked from within a thread that is created especially for this
purpose and whose priority can be specified when installing the procedure.
Notification occurs only once, for the first message that is deposited in the
mailbox, hence if repeated notification is desired, the notifier procedure must
be re—installed. This feature allows applications to be implemented in a pure
event—oriented way without the need to maintain a thread solely for the
purpose of polling the mailbox.

Failure Detection

Although the communication abstraction offered to the programmer is that of a
network which reliably conveys messages to their destinations, message
transmission and delivery may not be accomplished due to failures that cannot
be repaired by the underlying communication software. These include node
crashes or failure to create a message instance at the destination machine. It is
also possible that a message cannot be delivered to the application, because it
was sent to an address for which no registered mailbox exists.

To inform the application about such failures, messages contain a special
nfyadr field containing a mailbox address. This address is used by the
communication facility to notify the application when failures occur by sending
it special error messages. If no notification is desired, then this address must be
set equal to nulladr. Error messages are extensions of the base message type
and come with an additional field indicating the cause of the failure while their



nfyadr field is initialized to contain the mailbox address specified as a
destination in the failed transmission.

DEFINITION Msgs;

CONST
NetErr =1; ConfigErr = 2; MbxErr = 3; IOErr = 4;  (xerror codesx)

TYPE
ErrMsg = POINTER TO ErrMsgDesc;
ErrMsgDesc = RECORD (MsgDesc)
err: SHORTINT  (xerror codex)
END;

Mon = POINTER TO MonDesc;
MonDesc = RECORD

dst: Adr; (%destination to be monitoredx)

secs: LONGINT;  (xpolling periodx)

msg: Msg (*monitor message; nfyadr must be properly setx)
END;

VAR nulladr: Adr;

PROCEDURE StartMon (mon: Mon);
PROCEDURE StopMon (mon: Mon);

For simplicity, we differentiate only between four types of failures. A network
error is returned if the remote partner fails to respond to successive
communication attempts, in which case the machine is presumably turned off
or has crashed. Configuration errors indicate that module Msgs is not loaded
on the corresponding destinations, whereas a mailbox error is raised if the
specified mailbox address is invalid. Finally, an input/output error denotes
failure of the destination to internalize a message, either due to missing
application modules, or because there are inconsistencies between the
externalization and internalization code.

This provision, however, suffices only if a failure coincides with transmission of
an application message, hence failures that occur at later points in time, after
the message has been successfully deposited in the specified mailbox, remain
undetected. While the application can, in principle, assume a failure by the lack
of an expected reply, the response time to application messages may vary
significantly and is therefore difficult to predict. As opposed to this technique,
failure detection can be achieved in a reliable way by sending monitoring
messages to the desired destination, so that in case of failure the application
will be automatically notified by the communication system as described
above.

The task of sending messages essentially for the purpose of determining
liveness of a destination is supported by introducing special monitor objects.
Before starting a monitor object via procedure StartMon, its descriptor must be
initialized with the address to be monitored, a monitoring message that will be



sent periodically to the specified address, and the time (in seconds) that must
elapse between two successive monitoring attempts. If a failure is indeed
detected, the application is sent a corresponding notification message. Monitor
objects must be explicitly stopped with a call to procedure StopMon when the
state of the remote activity becomes of no interest.

Notifying the application in form of messages nicely integrates failure detection
in the message—oriented communication paradigm. Also, even though failures
and thus generation of notification messages occurs asynchronously to the
application, handling of failures can be done synchronously to the application
activity and in the same style as for ordinary messages.

Notably, it would have been possible to directly communicate failures to the
application by augmenting the Send operation with an additional result
parameter. The disadvantage of this scheme is that the sender must remain
blocked throughout the entire transmission process and until the message is
deposited into the destination mailbox, which unnecessarily restricts the
implementation precluding asynchronous approaches. In addition, this would
lead to having two different failure handling styles, one for failures occuring
during message transmission, and one for failures detected by monitors.

Message Transmission

For each machine pair, message transmission is performed by two cooperating
threads, one devoted to sending and one to receiving data over the network.
The sending thread resides on the machine of the application that invoked the
Send operation and the receiver on the machine of the destination mailbox.
Both the sender and the receiver threads use the default linearizer and formatter
implementations of module IO described in chapter 3 to implement message
transfer. A transport protocol that reliably conveys data over the network serves
as a data carrier coupling the two threads in a producer—-consumer fashion. In
other words, the message is externalized directly on the network by the sender
while the receiver uses the incoming data to reconstruct an exact copy of the
message at the destination.

The Network Carrier Protocol

The abstraction of a reliable uni—directional byte stream is implemented in
module NetCarriers as a special protocol on top of the network device driver. A
stream is essentially a communication channel coupling a sender and a receiver
in a producer—consumer fashion. Each stream end is conceptually associated
with a pointer indicating the location of the next byte to be inserted or
retrieved, depending on whether the carrier is a sender or receiver. The pointer
is advanced —but never decreased- by the corresponding access operations.



Hence, neither the sender nor the receiver may go backwards on a network
stream. Transmission is reliable, i.e. it succeeds unless the machine of a carrier
fails in which case the state of the other carrier is set accordingly to indicate
this failure and to suppress further access operations.

The sending and receiving ends of a network stream are both implemented
as extensions of the base carrier type and allow the stream to be accessed via
their Byte and Bytes procedures. In other words, the sender uses the sending
carrier to directly externalize a data object on the network and the receiver uses
the corresponding receiving carrier to pick up incoming data and reconstruct an
exact copy thereof at the destination.

DEFINITION NetCarriers;

CONST
RespErr = —1; Ok = O; PeerErr = 1; SynchErr = 2; ProtoErr = 3;

TYPE
Carrier = POINTER TO CarrierDesc;
CarrierDesc = RECORD (10.CarrierDesc)
port: INTEGER; (xread—onlyx)
END:;

NotifyProc = PROCEDURE (c: Carrier);

PROCEDURE InitSender (c: Carrier; adr: SHORTINT; port: INTEGER);
PROCEDURE InitReceiver (c: Carrier; port: INTEGER);

PROCEDURE Purge (c: Carrier);

PROCEDURE InstallTPhaseNotifier (c: Carrier; notify: NotifyProc);
PROCEDURE TPhaseSynch (c: Carrier; VAR res: SHORTINT);

Since network streams are intended for hosting transfer of data objects
according to the scheme presented in chapter 3, data travelling on network
streams are not only produced by the (presumably correct) communication
software, but also by application code implementing the transfer procedures of
the corresponding data objects. For this reason, there is support for detecting
and tolerating synchronization failures. Network carriers implement the Synch
procedure so that synchronization errors due to inconsistencies between the
externalization and the internalization code are detected. No special actions are
needed if an object instance cannot be created at the destination machine
since this immediately results in a synchronization error. Synchronization errors
lead to a graceful termination of the corresponding transfer so that the stream
can be used for further transfers after such a failure.

Creating and Purging Carriers
Before data transfer can commence, a sending and a receiving carrier is

initialized with calls to procedures InitSender and InitReceiver, respectively.
Binding between the two carrier ends and thus establishment of a stream is



achieved by the use of identification numbers called ports. When initializing a
receiver carrier, the port number under which the stream is to be registered may
be directly supplied. If the specified number is equal to O, a free port number is
chosen by the system. Both operations are non-blocking and simply initialize
the internal state variables of the carrier and register it so that it can be reached
via the network.

Binding does not involve any packet transmissions at all. This is in contrast to
3-way handshake protocols [Tomlinson75] which are typically employed by
other transport implementations (e.g. TCP [Cerf74]) to select the initial
sequence numbers of a transport session. Our implementation avoids packet
delivery problems by the use of unique stream identifiers and sequence
numbers indicating the amount of data packets that have been sent in a given
stream. A bind request is therefore implicitly present whenever a data packet is
received with a new stream identifier and a sequence number equal to a default
value (in our implementation 0), and thus is generated when the first data
packet is sent over the network.

When a carrier is not needed anymore, it is destroyed with a call to procedure
Purge in order to inform the local protocol software -but not the
communication partner— that the corresponding stream shall not be used for
further data exchanges. Purged carrier descriptors are kept registered for a while
so that packets generated by the other stream end can be replied to
appropriately (last acknowledgement problem). In other connection—oriented
approaches [Sunshine78], closing results in communication over the network
and changes the state of the protocol descriptor at the remote machine. Since
applications —and our implementation in particular— use high level protocols to
ensure that conversations are terminated in a synchronized way, this is not
necessary.

Transmission and Flow Control

Once a stream is established, data can be transfered using the Byte and Bytes
operations. The writing carrier puts data directly into a packet buffer that is sent
over the network when it becomes full. Reliability is achieved via a
stop—and-wait protocol, which means that successful receipt of data is
acknowledged on a per—packet basis, and that the sender remains blocked
until the acknowledgement arrives. Adopting a window protocol that allows the
sender to continue execution concurrently to data transmission (and
acknowledgement) [Tanenbaum81] was not considered necessary, because
local area networks have small round-trip delays and there is at most one
transient packet at a time. Also, in our system, acknowledgements are
generated very fast, because the reactive part of the protocol software is invoked
directly from within the network dispatcher which is activated as soon as
packets arrive. Unlike the receiver—driven protocol employed in the network



services of the Oberon system, this scheme achieves decoupling of the sender
and receiver. This is essential for obtaining throughput in a concurrent system,
because the receiving thread may be delayed due to local load and there is also
a large variance in the time between packet transmissions.

Decoupling between the threads communicating over a stream is further
supported by allowing several packets to be buffered at the receiver before
suspending the sender. Destination buffering is particularly helpful if several
data packets may be produced by the sender while the receiver does not have
control of the processor [Sunshine76]. Such bursts are even more likely to
occur in local area networks where round-trip delays are typically small
compared to the process scheduling intervals. A typical situation where the
sender profits from this support is shown in figure 1.
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Figure 1 decoupling between sender and receiver threads

Buffering is kept simple and efficient. The receiving carrier maintains a list of
free packet buffers which are subsequently swapped with data packets arriving
from the network when the protocol software is notified from within the
network dispatcher (see chapter 1). Occupied buffers become free again as data
is gradually consumed by the receiving end of the stream. Since data is directly
retrieved from the received packet buffers, copying is completely eliminated.

To suppress transmission of packets that cannot be accepted due to lack of
space at the receiver, acknowledgements sent back to the sender to confirm
receipt of a data packet also carry information indicating the number of packets
the sender may produce without causing an overflow. When data is produced
at a faster rate than it is consumed, this information is used to block the sender
in advance, before it produces a packet that must be ignored. The sender is
unblocked again by the receiver when free buffers are created. The thread receiving data
over a stream blocks too when there are no occupied buffers left. In both cases,
the blocked threads periodically send monitoring packets to the remote



machine and transfer is aborted if several consecutive monitoring attempts are
left without reply.

Transfer Phases and Synchronization

To tolerate synchronization failures, transfer over a network stream is divided
into so called transfer phases. Each transfer phase carries a piece of data while
its boundaries serve as firewalls isolating it from the rest of the data conveyed
over the stream. Hence, the data of a transfer phase is either successfully
processed or ignored without affecting processing of the data following it.
Transfer phases are thus ideal for hosting transfer of data objects that do not
belong together (in our case different messages).

To differentiate between packets corresponding to different transfer phases,
each data packet bears a transfer phase number indicating the transfer it
belongs to. This information is mainly used by the receiver in order to discard
data packets belonging to a transfer phase when a synchronization error occurs.
The end of a transfer phase and the begining of the next one are
communicated to the protocol software with calls to procedure TPhaseSynch
which increases the carrier's internal transfer phase number. The state of the
carrier with respect to the terminated transfer phase is recorded in parameter res
and it is automatically reset in case a synchronization error has occured. If,
however, transfer fails due to other reasons, the carrier is purged and may not
be reused for additional data transfer.

When sending, the end of a transfer phase results in flushing the contents of
the output buffer so that data of different transfer phases are not placed in the
same packet. This is essential for correctly resetting the receiving carrier if it
experiences a synchronization error so that it can commence reading data of
the next transfer phase. The last data packet of a transfer phase is marked to
detect synchronization errors when the receiver attempts to read more data that
actually produced. Due to this support, robustness against synchronization
failures is achieved without introducing any end-to-end communication
between the cooperating partners.

At the receiver, when a transfer phase ends, a check is made to determine
whether there are any unprocessed data left. If this is indeed the case, then a
synchronization error has occured and all occupied buffers belonging to the
failed transfer phase are set free. Arriving packets that belong to a failed transfer
phase are rejected and the sender is notified as to abort the current transfer.
Data packets of new transfer phases are always accepted. Thus the sender may
start a new transfer phase despite the fact that the receiver has not finished
processing the data of the last one. This overlapping is semantically acceptable
because the receiver can still detect and overcome synchronization errors, and
desirable since it decouples the sender from the receiver.



To enhance flexibility, a special operation InstallTPhaseNotifier is offered that
allows a notification procedure to be installed in a receiving carrier. This
procedure is invoked from within the protocol software to trigger application
specific processing at the begining of a new transfer phase. If a notification is
desired for each individual transfer phase, then this procedure must be invoked
at the end of each transfer phase. With this feature, a fresh receiving carrier may
be created as soon as an already initialized carrier is bound to a stream so that
there is no risk of missing incoming binding requests. This provision also
eliminates the need to always have an idle receiver thread waiting for binding
requests to arrive, since the notification procedure can be used to create a
thread at exactly the required moment.

Network carriers also implement the Synch operation of the base carrier type to
perform additional checking. When writing, this operation injects a tag into the
stream, and when reading, the retrieved value is compared to this tag. If a
mismatch occurs, a synchronization error is present and the state of the carrier
is set accordingly. The current version uses a tag consisting of two identical byte
values and implements byte stuffing to guarantee that the tag will not be
re-produced by the application so that synchronization errors are reliably
detected. If the application sends a byte that is equal to the value used for the
tag, a filler byte with a different value is subsequently written in the stream.
Analogously, when the application reads a byte that is equal to the byte used to
form the tag, the next byte is removed from the stream. If it not equal to the
filler byte, then a synchronization error has occured. According to our
measurements, this filtering increases the cost of the carrier operations about
5-10%; given the reliability achieved with this approach, we believe that this
performance penalty is justified.

Transfer Environments

The network carrier transport protocol is the foundation upon which message
transfer is based. When the Hermes system is loaded, a single receiving carrier
is installed at the local machine to intercept incoming transmission requests.
Also, a notification procedure is installed, programmed to create a receiver
thread responsible for servicing the carrier as soon as a corresponding stream is
established, and to initialize a new receiver carrier for intercepting new bind
requests. The sending thread and the corresponding carrier are created by the
applications that wish to send a message, and the first data packet produced by
the sender automatically results in establishment of a stream and in creation of
a corresponding receiver thread at the remote machine. For brevity, a network
stream and the associated sending and receiving threads are referred to as a
transfer environment.

Once a transfer environment is initialized, both the sender and receiver threads



use the default formatter and linearizer implementations to perform the
message transfer. In other words, the sender externalizes and the receiver
internalizes the message with a call to the Obj procedure of the linearizer
component. Transfer is terminated by completing the corresponding transfer
phase, thereby allowing for synchronization checks to be performed:

sender thread receiver thread

|.Obj(msg); |.Obj(msg);

resume application end transfer phase

end transfer phase IF done THEN queue & notify ELSE error END;

On the destination machine, depending on the state of the transfer phase, the
receiver either creates a notification message or queues the message at the
destination mailbox and notifies the application using the notifier procedure
installed in it, if any. In the current implementation, notification of the
application is achieved by creating a thread that invokes the notification
procedure of the corresponding mailbox. To avoid creating a new thread for
each new call, notifier threads are not destroyed as soon as the corresponding
notification call terminates, but are kept in a pool to host additional calls.
While, in principle, a direct notification from within the communication thread
is possible, this would make the communication system vulnerable to delays
occuring due to extensive application processing. Also, given the flow control
mechanism we adopt, the latter approach would introduce the possibility of
deadlock if applications used the notification mechanism to send messages.

On the sender side, the application remains blocked during externalization
and is resumed before the internal buffers of the transport protocol are flushed.
This guarantees that the contents of messages will not be modified after they
have been forwarded to the communication subsystem while avoiding copying
the message to system buffers. Eliminating buffering enhances efficiency
(copying is a well known disease of network protocols and operating systems)
and allows our system to be implemented with a moderate amount of memory
resources. In fact, even for arbitrarily long messages the only memory used for
sending and receiving a message are the internal packet buffers of the
underlying communication protocol.

Despite the fact that the application remains bound to the sending thread
during data transmission, it still is largely decoupled from the receiving thread
performing the internalization due to the implementation of network carriers.
As a consequence, the sending thread can perform data transfer even if the
receiving thread is temporarily delayed perhaps due to other computations
residing on the same machine, or is still busy internalizing the last message sent
to it. Blocking occurs only if the protocol at the destination machine is unable
to accept incoming packets due to slow processing of the receiver thread. In
fact, if the sender and receiver are comparably fast, a considerable degree of
parallelity is achieved for long messages that span over several packets, because
internalization is performed hand in hand with externalization, at full transfer



speed, and message reconstruction is completed essentially at the moment the
sender transmits the last data packet. Small delays occuring during the transfer
are ironed out by the destination buffering mechanism. Notably, transmission is
non-blocking when message data can be hosted within a single network
packet, since then the application is resumed before data is sent over the
network and continues execution concurrently to data transmission.

Motivated by the fact that the startup and initialization costs of a transfer
environment are comparable to the time required to send a message over the
network, it is attempted to amortize transfer environments over several message
transmissions. For this reason, transfer environments are not destroyed as soon
as the corresponding data transmission completes, but are kept in a pool so
that they can be reused for transferring additional messages.

The pool of passive transfer environments is searched when applications wish
to send a message, and new transfer environments are created only if a
matching environment for the desired destination is not found. Our
implementation guarantees that a single transfer environment is created for
each remote machine. Applications that wish to send messages using a transfer
environment that is already active put their messages in a queue and are
suspended until message transmission has been completed. Notably, this
scheme guarantees FIFO ordering of messages between application—mailbox
pairs, because messages sent by the same application (thread) to the same
mailbox are transmitted by the same transfer environment in the order they
were handed to the communication system.

Since eager creation of transfer environments can easily result in having
several transfer environments that remain idle after hosting a few message
transmissions, transfer environments are automatically collected if they have not
been used for some time (the current version has a timeout of 30 seconds). To
avoid race conditions between the sender and receiver, the sender explicitly
signals destruction of a transfer environment to the receiver via an empty
transfer phase containing a single byte before purging the carrier and destroying
itself. Upon receipt of this signal, the carrier and the receiving thread on the
remote machine are immediately destroyed.

Related Work

The Mach system [Accetta86] also supports communication between processes
via asynchronous message passing, according to a scheme that was originally
implemented in the Accent network operating system [Fitzgerald86, Rashid81].
However, this facility is low-level and language independent so that it is more a
foundation upon which language specific support can be implemented, rather
than a communication facility to be used directly by applications. Messages
therefore simply consist of unstructured byte buffers and data conversion is left



to be implemented by the clients of the system.

Often, message—oriented support is provided in the form of arbitrarily long
messages that are sent reliably over the network, in a single piece. One
approach is to implement long messages as a chain of buffers that are
transparently accessed via special input and output operations [Szyperski90,
Weck90]. Another possibility is to let the application provide the buffer chain
directly [Linton86]. However, while this abstraction addresses the problem of
putting long data items into messages, in both cases the application
programmer must still pack data into and unpack data out of messages,
respectively.

Asynchronous message passing with so called "active” messages is also used
to support communication in multiprocessor machines [Eicken92]. Active
messages contain at their header the address of an application-specific handler
that is immediately executed as soon as the head of a message arrives at its
destination to fetch the (rest of) the message out of the network. As opposed
to the transfer procedure of Hermes message though, the handler is only
responsible for reconstructing the message at the destination, and thus the
buffers containing the message data must be explicitly constructed by the
sender. The handler of an active message also implements the task of passing
the message to the corresponding computation ongoing at the destination
machine. Consequently, there is no receive operation and the application in
notified about a message event directly from within the handler of that
message. This allows applications to integrate message arrival in their
computations in a flexible way. In Hermes, a similar effect can be achieved by
using the provided notification mechanism.

Message passing is also used to implement synchronous communication with
the ultimate objective to serve as a transport protocol for implementing remote
procedure calls. A typical example is the V distributed system [Cheriton84]
which supports interprocess communication in a blocking request-response
fashion. In other words, after a process has sent a message, it does not
continue execution (as in our system), but waits for a corresponding reply to
arrive from the destination. Further, there is no support for high level data types,
and messages are of fixed size. Transfer of large data items that cannot be
placed in a single packet must be transfered via a special block—transfer
operation that writes and reads entire memory segments over the network.

A refined version of this communication scheme is supported by the versatile
message transaction protocol (VMTP) [Cheriton86]. Message transactions
consist of a request and the receipt of the corresponding reply. As in the V
system, messages are unstructured and of limited length, but in this version a
message may be bigger than a network packet. VMTP maintains stable
transaction records (objects similar to mailboxes) that retain their meaning
across several message exchanges and that can be re-used to perform several
high level conversations. However, separate descriptors are created for each



client at the server machine. Also, clients remain blocked during a message
transaction, and thus may have only one outstanding exchange at a time. On
the contrary, in our system, a server may use the same mailbox to serve all
clients, and a client may issue several requests one after the other so that
remote processing is performed in parallel.

Another communication paradigm which actively supports data exchange in a
programmer friendly fashion —typically unparalleled by most message based
work- is the remote procedure call [Bershad87, Birell84]. The main feature of
RPC systems is that they come with strong marshalling support so that the
application can use remote procedures as if they were local. The code needed
to implement binding, data conversion and transfer is typically produced by
special tools called stub generators. However, stub generators typically require
interfaces and data type definitions to be written in a special description
language. In addition, even though RPC system typically support quite a few
built-in data types, some implementations come with restrictions. For example,
in Matchmaker [Jones86], a system built on top of the Mach operating system,
pointers are not traced and thus it is not possible to send dynamic data
structures over the network. While our system does not come with automatic
generators, a single notation is used to write programs and there are no
limitations with respect to transfer of data types. We also expect that the task of
implementing a tool for generating transfer code in our system would be
considerably simpler than that of writing a typical stub generator.

Since the remote procedure call was originally conceived as the exact copy of
the local procedure call, most implementations support communication in a
strict request-response pattern. Hence, the caller is blocked until remote
processing completes and the results are sent back. For this reason, systems
that focus on interactions where it is desirable to achieve parallelity have
adopted a special type of remote procedure calls, often referred to as
asynchronous remote procedure calls, or promises [Arbenz94, Liskov88]. As
opposed to remote procedure calls, asynchronous remote procedure calls
return immediately, and a calling program is blocked only if it attempts to read
the result of a call that has not yet terminated. To allow for more parallelity, in
some cases it is possible to block on a set of results in order to obtain the one
that is computed first. However, introducing asynchrony through a tool that is
traditionally used to model synchronous cooperation, seems somewhat
confusing. This is especially so, since programming with asynchronous
procedure calls is quite different than with ordinary procedures; asynchronous
calls are namely placed very early in the program text, possibly several lines
before their results are actually needed. As a consequence, fully exploiting the
potential of this mechanism leads to message-oriented program designs,
which speaks in favour of a message based approach.

A somewhat generic disadvantage of procedure—oriented communication is



that programs performing long computations cannot pass incremental results
to their clients, and thus computations must be broken up into pieces. Also, the
throughput of a synchronous remote procedure call system cannot be improved
by aggregation of several sequential calls, because a call must complete before
the next one may be started. The same problem exists in asynchronous RPC
systems that do not support ordering of concurrent calls. Remote pipes or
channels [Gifford88] are an approach towards addressing these problems more
effectively. Channels allow a process to issue a series of calls one after the other
without having to wait for the server to complete processing. Calls are executed
in the order they were issued and it is possible to synchronize, i.e. to wait for
the last call to terminate. Asynchronous message passing offers comparable
flexibility to this approach, since a client may send several requests before
starting to collect the results. It also allows server programs to communicate
intermediate results of a computations to their clients in a very simple way.

Unlike all mentioned communication methods that are built for supporting
communication across distinct address spaces, another paradigm, called
distributed shared memory [Fleisch89, Li88], is used to simulate a conventional
shared memory environment on top of distributed system. But while distributed
shared memory is appropriate for parallel computations with a high degree of
sharing, it is not convenient for implementing fault tolerance, because the
location of data is transparent for the programmer with the consequence that
any part of the shared address space may suddenly become unreachable due to
machine crashes. In addition, implementations of this scheme rely on the ability
of the hardware to detect memory faults, which makes them inappropriate for
systems with no memory management hardware. Last but not least, since data
exchange is page—oriented, data conversion is hindered because the type and
the location of data items within a page cannot usually be determined at run
time.

Summary

A message passing facility was presented. In contrast to other message based
systems, our implementation allows instances of arbitrarily complex data types
that may even contain dynamic data structures to be exchanged over a network
using simple communication primitives. Comparable support for transfering
complex data is found in remote procedure call systems, but we achieve this
functionality without the use of special description languages and complex
tools for generating code. Instead, the applications that implement the
messages also provide the code for their transfer in a type safe way, a feature
that enhances flexibility yet hardly complicates programming. Message
transmission is efficient, because the sender marshals data onto the network



without any intermediate buffering, and at the receiver data is retrieved directly
from within arriving packet buffers. Due to the adopted flow control
mechanism, it also possible to transmit arbitrarily long messages using
bounded buffers (at the network protocol level). Since we support decoupling
between message passing activities, parallelity can be introduced at the
application level without the need to explicitly create threads for each data
exchange. Synchronous communication can still be achieved in a simple way,
by sending messages and blocking until a corresponding reply is received.
Finally, error notification occurs via sending error messages to the application,
an approach that allows failures to be handled by the application in the same
style as conventional messages.



Chapter 5 Remote Objects

In this chapter, we present a facility of the Hermes system that supports remote
installation, invocation, and removal of application components called remote
objects. Remote objects can be allocated over the network and are referenced
via references. References to remote objects can be copied to achieve sharing,
and a remote object is removed when all of its references have vanished. The
system automatically detects crashes and garbage collects orphan objects.
Remote objects can be invoked transparently over the network by sending them
messages. Message events are notified to the corresponding object as soon as
they occur with calls to a message handling procedure that implements the
behaviour of the object. Remote objects are programmed in a true
object-oriented way, i.e. additional functionality can be introduced by refining
existing object implementations. Message handling is by default sequential, but
intra—object concurrency can be introduced at arbitrary places within the
message handling code to achieve parallelity.

An Event-Oriented Execution Model

In a distributed environment, the ability to install and remove program parts
over the network from within other programs is of great importance, because it
allows applications to incrementally occupy machines in the network
depending on their processing and reliability requirements. A typical example
where this flexibility is desirable is a program that distributes or replicates
computations using idle machines to enhance performance and availability.

The functionality which will be required of components of distributed
programs varies considerably. On the one hand, components may be active
programs that perform a certain task on behalf of the application that initiated
them, and on the other hand it is also possible that they implement a passive



resource which can be accessed over the network. From a more abstract point,
however, there is no substantial difference between these two extremes. An
activity performing a computation can be viewed as a passive object that has
been invoked and thus contains a thread executing the corresponding request,
while a resource may be viewed as a server process that remains suspended
waiting for incoming service requests to arrive. It is therefore appropriate to
capture both types of functionality using a single abstraction.

We have done this by adopting an event-oriented model. Components of
distributed programs are implemented as encapsulated entities, called remote
objects, associated with a mailbox whose address serves as an identification for
the corresponding object. A remote object is primarily passive; it becomes
active as soon as a message is deposited into its mailbox, and reverts to its
passive  mode when message processing completes. Notably, with this
approach, the only difference between embodying an activity and a passive
resource is that the former type of objects will typically remain active for a
longer time than the latter. A remote object can be arbitrarily complex though,
in particular it may contain additional threads that execute concurrently to
message processing.

The behaviour of remote objects is captured by a type-bound handler
procedure that is invoked when a message arrives from the network and is
placed in the object's mailbox. Thus the handler of remote objects is
programmed in an event-oriented way, with events being message arrivals.
Since the handler is a type-bound procedure, it can access data local to the
object instance that received the message, and the modifications made to the
object's state are preserved after the corresponding handler invocation
terminates. In other words, remote objects essentially are state machines whose
transitions are triggered by messages arriving from the network. This design
achieves persistence of state across invocations in a natural way, in contrast to
RPC systems where special “static" data declarations must be inserted in the
interface description of a service to accomplish a similar effect. It also allows
several instances of the same type to be placed in the same address space
without interfering with each other. Finally, it becomes possible to develop
remote objects incrementally, because existing object implementations can be
extended by adding both new state and novel message processing capability.

Installation

Remote objects can be installed over the network via calls to procedure Install.
The machine where the instance is to be allocated as well as the object's type,
consisting of the corresponding module and type names, are supplied as
parameters. Invocation of this procedure results in sending an installation
request containing specified type information to the object server of the target



machine. On the remote machine, the request is processed and a reply is sent
back, thereby unblocking the caller.

DEFINITION RODbjs;
CONST

Ok = 0; NetErr = 1; TypeErr = 2; ModErr = 3; KeyErr = 4;
ProtErr = 5; CheckErr = 6; ConfigErr = 7; RefErr = 8;

TYPE
Ref = RECORD
adr: Msgs.Adr
END;

PROCEDURE Install (target: SHORTINT; mod, type: ARRAY 32 OF CHAR,;
VAR ref: Ref; VAR res: SHORTINT);
PROCEDURE Fingerprint (mod: ARRAY OF CHAR; id: LONGINT);

As opposed to conventional objects that are allocated locally, creation of a
remote object may fail due to several reasons. Besides being unable to
communicate with the target machine, the machine may be protected, the
specified type information may be invalid, or there may be inconsistencies
between the local and the remote module versions. In fact, it may not even be
possible to load the required modules, either due to key mismatches, or
because the corresponding object files are not available on the machine.
Loading a module and generation of an object instance do not need to be
implemented explicitly since these services are already provided by the Oberon
system.

If installation succeeds, a reference containing the mailbox address and the
type of the allocated object is returned. This address is used to communicate
with the object using the primitives described in the previous chapter. Hence,
communication with remote objects is message—oriented and asynchronous,
which allows client programs to resume operation after sending a request to a
remote object and pick up the corresponding results, if any, whenever this is
appropriate.

Version Checking

In Hermes, installation may fail despite the fact that the required modules have
been successfully loaded on the destination machine due to a special check
that determines compatibility between the code residing on the machine that
invokes the Install operation and the code available on the destination
machine. In a distributed system where several instances of the same module
may interact with each other, this is necessary to guarantee that the code
driving the cooperation is the same on each of the involved machines. This is
even more so in our system since the transfer code of messages is provided by
the application and a perfect symmetry between the externalization and
internalization code is required to accomplish message transfer.



Compatibility in this spirit, however, cannot be checked by comparing
interfaces as this is done in a non-distributed system, because different
implementations of a module can have exactly the same interface. Instead, a
thorough way of determining whether two instances of the same module are
equal to each other is needed. To achieve this, we suggest that each module
exports a parameterless procedure named "Fingerprint” that invokes procedure
Fingerprint with the module name and a version identifier as parameters. We
also demand that a module’s fingerprinting procedure invokes the fingerprinting
procedures of all imported modules. Hence, under the assumption that
programmers correctly implement the fingerprinting procedures of their
modules to indicate version changes, a fingerprint of a complete module
hierarchy can be obtained by invoking the fingerprinting procedure of the
topmost module. Our implementation does exactly this for both the caller and
callee environments and compares the resulting fingerprints to determine
compatibility. If a mismatch occurs, then the corresponding installation attempt
is aborted and an error result denoting this failure is returned to the application.

Introduction of this mechanism was motivated by the fact that the Oberon
system allows the address of any exported parameterless procedure to be
retrieved using only its name. In a system that lacks this service, checking in this
fashion is considerably more difficult to implement. Another —and perhaps
better— solution would be to change the compiler so that it automatically
produces fingerprints for each module which would uniquely identify its version
in a machine—independent way. This could be achieved by using a module's
source text to compute a signature, in a similar way this is done to generate
keys for interface descriptions. Of course, a single universal coding algorithm
would have to be employed by all compilers to ensure that checking can be
performed across different platforms.

Sharing and Garbage Collection

Once a remote object is successfully installed and a reference to it is obtained,
special operations can be used to achieve sharing and garbage collection of
remote objects. Additional references to a remote object are obtained with calls
to procedure CopyRef that takes a reference as a parameter and produces a new
one, provided that the object type denoted by the specified module and type
names is assignment compatible to the type of the object pointed by the
reference which is being copied.

DEFINITION RODbjs;

VAR cpy: Ref; VAR res: SHORTINT);

I
| PROCEDURE CopyRef (cpy: Ref; mod, type: ARRAY OF CHAR;
|
| PROCEDURE PurgeRef (VAR ref: Ref);



Therefore, the CopyRef operation can be viewed as the analogue of the pointer
assignment for conventional heap objects. Copying across machine boundaries
is achieved by transfering the original reference over the network and using it as
a prototype for the CopyRef operation at the remote machine. In other words,
transfering a reference over the network does not create a new reference on the
destination machine, but simply gives the receiver the information needed to
contact the remote object. References are disposed of via procedure PurgeRef.
Remote objects are removed from the system when all corresponding
references are destroyed.

These operations conceptually implement a reference counting scheme. The
reference count of an object is initially set to 1 when the object is successfully
created, and is incremented as new references are produced by copying.
Conversely, the reference count of an object is decremented each time a
corresponding reference is purged, and the object is removed when its
reference count becomes equal to 0. Node crashes are automatically detected
by the system, and references residing on failed machines are considered
invalid, i.e. the reference count of the corresponding objects is decreased.

With these primitives, applications can implement sharing according to the
following rule: reference variables must never be assigned values directly, and
the prototype of a CopyRef operation may not be purged before the operation
completes. Sharing errors at the application programs lead to object collection
which is detected when trying to obtain a copy of a reference to that object.
Collection is achieved by purging references when they are no longer needed. In
contrast to sharing errors, failure to purge a reference is not detected, and the
corresponding object remains allocated until the machine where the orphan
references reside is switched off. While automatic collection of references
would considerably simplify programming, unfortunately, our system does not
support this. The reason for this limitation is that, in Oberon, applications
cannot determine whether an object —-be it a record on a stack or a heap
object- becomes unreachable so that they can take special correcting actions.
Other systems such as ETHOS [Szyperski92] and Modula-3 [Nelson91] provide
support for this kind of notification, and thus are ideal platforms for
implementing this functionality.

A Formal Specification

Garbage collection in our system can be described more formally via five
properties P1-P5 as shown below. We define the expression alive to be equal
to 1 if the specified machine is alive, otherwise 0. Analogously, installed equals
to 1 only if the object was installed by that machine. Finally, the terms nCPY and
nPRG denote the number of (successfully completed) CopyRef and PurgeRef
operations invoked by a machine. The terms RefCount and UsedRefs indicate the
number of references recorded by the system and the number of references



used by the application, respectively.
System

invariant P1: ¥ m: RefCount(m) = alive(m)x (installed(m) + nCPY(m) — nPRG(m))
invariant P2: (+ m : RefCount(m)) > 0 = object not collected
progress P3: (+ m : RefCount(m)) = 0 - object collected

Application

invariant P4: UsedRefs(m) <= installed(m) + nCPY(m) — nPRG(m)  (xsharingx)
invariant P5: UsedRefs(m) >= installed(m) + nCPY(m) — nPRG(m) (xcollectionx)

According to the first property P1, our system guarantees that the reference
information of an object with respect to any machine is consistently updated
according to the operations that machine has issued, provided that it has not
failed. It is also guaranteed that an object is not collected as long as at least
one operational machine still references it (P2). The progress property P3 is
used to express the fact that an object will eventually be collected if at some
point in time all of its references disappear, either as a result of successive
PurgeRef operations or due to machine crashes. In other words, once the
reference count of an object becomes 0, it is no longer possible to increment it
and to avoid collection.

From the above specification it is clear that our system does not implement
sharing and collection, but only provides the tools that can be used to achieve
this. This is reflected by the last two invariants which must be preserved by the
application programs. Invariant P4 indicates that sharing is achieved as long as
the application has not purged references it actually needs, while P5 states that
object collection will not take place unless all of the corresponding references
have been purged. Notably, the conjunction of P4 and P5 (i.e. maintaining strict
equality in both cases) implies that reference information is updated
consistently with the application needs, and thus is the specification of an
application that implements the functionality of automatic garbage collection.

Implementation

Reference information of remote objects residing on a machine is recorded in
form of a list containing one entry for each individual reference. Each list entry
contains a physical reference to a local object and also holds the mailbox
address of the object server of the machine where the corresponding remote
reference resides. The reference list implicitly implements the object’s reference
counts, hence it is augmented with a new entry when a reference is copied, and
entries are removed as references are purged. Obviously, a remote object is
collected as soon as there is no associated entry in the list. The entries of the
list are also used to monitor the machines where references to remote objects
reside. In case of failure, the effects of a purge operation are simulated, thereby
leading to removal of the corresponding entries. Since the object servers of



machines get a new mailbox number when a machine reboots, race conditions
due to slow monitoring and fast restarts are completely avoided. Machines that
reboot simply appear as new machines so that failures are always reliably
detected without invalidating any new reference information.

The list is updated by sending reference messages with information indicating
the actions that must be done each time a reference is copied or purged. The
CopyRef operation sends a message carrying the mailbox address of the local
object server and awaits a reply confirming that the message has been
processed. Purging generates a message with the analogous information, so
that the entry corresponding to the destroyed reference can be removed from
the list.

Waiting for reply when copying a reference ensures that a copy operation
followed by a purge operation on the reference that served as a prototype will
indeed produce the expected result. A non-blocking implementation of the
CopyRef operation, would allow the calling thread to continue execution and
possibly trigger execution of the purge operation, before the reference count of
the object is actually updated (figure 1).

application object updates

Install(r0) -_
‘ {o.ref =1}

CopyRef(r0, r1)

PurgeRef(r0)
‘ {o.ref = 0} (%object is removedx)

?? (xobject does not existx)
Figure 1 effects of a non-blocking CopyRef implementation

Hence, it would be possible for the message of the purge operation to reach
the object before the message of the copy operation, because the causal
ordering of events at the application level is not necessarily preserved over the
network.

The ability to copy references, even if the cooperating activities reside on
different machines, allows sharing to be introduced in a simple way. Of course,
our approach is still less programmer friendly compared with automatic
garbage collection one finds in non—distributed systems.

However, replicating this functionality in a distributed system seems
unnecessary, because usually there is no complex sharing of objects in
distributed applications. Even in highly parallel systems where computations



consist of several activities sharing many fine—grained data items, the required
resources are known at startup time, thereby making even a centralized
resource management possible.

Distributed garbage collection is also undesirable due to the complexity and
communication overhead of the algorithms needed to solve this problem in an
incremental fashion [Schelvis89]. Needless to say, synchronous approaches
adopted in non-distributed systems cannot be considered, since bringing a
complete distributed system into a halt in order to identify garbage is not
realistic. Simpler versions of asynchronous schemes have also been proposed
[Birell93b], but they cannot handle cycles that span over several machines. As a
consequence, cycles must be avoided, or have to be broken up explicitly by the
programmer, a limitation that complicates, rather than simplifies programming.

Implementing Remote Objects

As already indicated, remote objects are abstract entities with a mailbox and
message processing capability, implemented as a type—bound procedure that is
invoked when messages arrive at the object's mailbox.

DEFINITION RODbjs;

TYPE
Obj = POINTERTO ObjDeSC;
ObjDeSC = RECORD
adr: Msgs.Adr;
PROCEDURE (o: Obj) Handle (msg: Msgs.Msg);
END;

To support extensibility, the handler accepts the received message directly as a
parameter, rather than being a parameterless procedure that must be
programmed to retrieve a message from the object's mailbox. The latter
approach would make it impossible for handlers to be called in a nested
fashion to process the same message instance, because each handler
invocation would retrieve (and process) a different message. On the contrary,
our approach allows this, and consequently promotes an object-oriented
development.

New remote object types with application specific state are defined as
extensions of existing object implementations (including the base
implementation) using the type extension facility of the Oberon language.
Increased functionality may be introduced via new message types which are
processed by the new object handler:

PROCEDURE (o: NewObj) Handle (msg: Hermes.Msg);
BEGIN
IF msg IS NewMsgTypeO THEN
handle message of type NewMsgTypeO
ELSIF msg IS NewMsgTypel THEN



handle message of type NewMsgType'
ELSE
o.Handler(msg) (xinvoke code of base implementationx)
END
END Handle;

The actions to be executed can be selected depending on the actual type of the
received message via type tests. Unknown messages, or messages defined by
the base implementation can be processed via supercalls (indicated by a "+"
after the procedure name) to preserve its behaviour and invariants. The base
type behaviour can be augmented by performing additional actions before and
after a supercall; no supercall is required if the base type behaviour is to be
overwritten. Notably, this event-oriented technique is similar to the way Oberon
viewers (windows) are programmed to react to input events in an extensible
way.

Since remote objects encapsulate complex components that can be active and
contain data structures which must be set up explicitly when a remote object is
created, it may be necessary to perform application specific initialization
actions. Analogously, when a remote object is removed from the system, in
general it is not sufficient to reclaim the memory occupied by it, but additional
cleanup operations may be required depending on the type and the state of the
object, such as destruction of threads performing internal tasks, or notification
of other components.

DEFINITION RObjs;
TYPE
InitMsg = POINTER TO InitMsgDesc;
InitMsgDesc = RECORD (Msgs.MsgDesc) END;

RmvMsg = POINTER TO RmvDesc;
RmvMsgDesc = RECORD (Msgs.MsgDesc) END;

For this reason, special initialization and removal messages (/nitMsg and
RmvMsg) are sent to remote objects when they are installed and collected,
respectively. Remote object handlers can thus be programmed to execute the
appropriate actions upon receipt of these messages. Base type processing for
these messages can be refined but may not be overwritten.

An Example

As an example, a token that is acquired (and released) over the network to
achieve synchronization between cooperating programs can be implemented as
a remote object. Communication between clients and a token object is done
via three messages. A request message containing the identification of the
requester is used to issue an acquisition request. If the token is free or when it
is relased by its current owner, a grant message is sent to the program that



requested the token. Hence, clients requesting a token may either block until
their request is granted, or continue execution and periodically check to see
whether a corresponding grant message has arrived. Finally, the token is
released by sending a release message.

The information that is required to decide whether to grant a token request
can be stored in a FIFO queue containing the request messages sent by the
individual client programs. When the token is first created, its request queue
must be initialized and the owner of the token must be set appropriately to
indicate that the token is free. A simple solution is to let the first entry of the
queue denote the actual token holder so that no additional state is needed to
record this information. Once the token object is initialized, it can start
processing request and release messages (the corresponding definitions are
omitted):

TYPE
Token = TokenDesc;
TokenDesc = RECORD (RObjs.ObjDesc)
reqQ: FIFO queue of Msgs.Adr
END;

PROCEDURE (t: Token) Handle (msg: Msgs.Msg);
BEGIN
IF msg IS RObjs.InitMsg THEN
initialize t.reqQ
ELSIF msg IS ReqMsg THEN
insert request in reqQ
IF Head(t.reqQ).adr = msg.nfyadr THEN send grant message END
ELSIF msg IS RIsMsg THEN
remove head of t.reqQ
IF NotEmpty(t.reqQ) THEN send grant message END
END
END Handle;

When the object receives a request, it inserts it into the request queue, and if
the queue was originally empty, it notifies the requester by sending it a grant
message. On receipt of a release message, the object removes the head of the
queue and if the queue still is non—empty a grant message is sent to the client
program that issued the request in the head of the queue.

A possible extension of this simple implementation is a smarter token object
that tolerates failures of its clients. Robustness can be achieved by monitoring
the token holder so that the token object is notified via an error message if the
program that holds the token fails prior to relasing the token (for simplicity we
assume that the mailbox address of clients can be used for monitoring
purposes):

TYPE
RToken = RTokenDesc;
RTokenDesc = RECORD (TokenDesc) END;



PROCEDURE (t: RToken) Handle (msg: Msgs.Msg);
BEGIN
IF msg IS ReqMsg THEN
t.Handler(msg); (xsupercallx)
IF Head(t.reqQ).adr = msg.nfyadr THEN start monitoring owner END
ELSIF msg IS RIsMsg THEN
stop monitoring owner
t.Handler(msg); (xsupercallx)
IF NotEmpty(t.reqQ) THEN start monitoring owner END
ELSIF msg IS Msgs.ErrMsg THEN
IF NotEmpty(t.reqQ) & Head(t.reqQ).adr = msg.nfyadr THEN
simulate reception of a matching release message
END
ELSE t.Handler(msg)
END
END Handle;

This can be achieved by programming the handler of the extended token to
monitor the actual token holder, and to switch monitoring targets when the
token is passed to another program. No extra code is needed to manage the
request queue since this is already done by the base implementation. It is,
however, necessary to trigger base type processing via supercalls.

Handler Execution

The handler procedure of a remote object is invoked as soon as a message
arrives at its mailbox. When the handler executes to completion, the mailbox of
the object is inspected again, and if it contains another message, the handler is
called again to process it. Hence, message events are notified to remote objects
one after the other by subsequent handler invocations.

Frequently, one wants to be able to continue to react to message events
while a computation triggered by the previously received message continues.
Although blocking can be avoided by creating a thread to host time consuming
processing, we provide high level support for introducing intra—object
concurrency, tailored for this situation.

DEFINITION RODbjs;

I
| PROCEDURE Decouple (o: Obj);
| PROCEDURE Couple (o: Obj);

When message handling involves a time consuming computation, it is possible
to achieve concurrency with a call to procedure Decouple. This operation
informs the system that the object's handler should be invoked when a new
message arrives at the object's mailbox, despite the fact that there is already an
ongoing handler execution corresponding to this object. In other words,
decoupling a handler invocation allows it to run concurrently to invocations
triggered by message events occuring during its execution (figure 2).
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Figure 2 intra—object concurrency

The fact that a handler execution has been decoupled does not necessarily
imply that it is desirable to let it run asynchronously to other handler calls until
completion. On the contrary, decoupled executions may need to access the
object's variables consistently, or it may be desired to revert back to the
sequential execution mode after performing the time consuming part of
message processing. Synchronization in this spirit is implemented by operation
Couple which re—integrates a decoupled handler call in the sequential execution
model (figure 2). After coupling completes and the caller is resumed, it is
guaranteed that there are no other coupled handler calls associated to the
corresponding object. A re-coupled call appears as if it had never been
decoupled, i.e. no new handler calls are allowed —even if new messages arrive—
until it terminates or is decoupled again. Consequently, a remote object can
have several decoupled handler calls and at most one coupled handler call
associated to it.

This execution model can be conceptually described by associating an object
with a binary semaphore that is decreased before its handler is called and
relased afterwards. Then, the Decouple and Couple operations are simply
described as operations that increase and decrease this semaphore:

thread hosting call

P(s); decouple
coupled := TRUE; IF coupled THEN coupled := FALSE; V(s) END;
IF mailbox non-empty THEN

remove msg from mailbox

call handler couple
END; IF ~coupled THEN coupled := TRUE; P(s) END;
IF coupled THEN V(s) END;

In practice, thread creation is suppressed if a coupled execution is already
associated with a remote object. To achieve this, each object has a thread
variable, called main, containing the thread that is currently hosting the coupled



handler call of this objects, if any. The value of this variable also indicates
whether a new handler call should be made when a message arrives at the
mailbox of the remote object. Obviously, main is initially set to NIL. Each
remote object also has a FIFO queue containing the threads of handler
executions waiting to be re—coupled. When the object is created, the coupling
queue is empty. Also, a notification procedure is installed at the object's
mailbox, which sets main equal to the currently executing thread and calls the
object's handler if main is NIL or simply returns otherwise. The decouple
operation, depending on whether the coupling queue is empty, either resumes
the first thread waiting to be re-coupled, or resets main to NIL and re—installs
the notification procedure in the object's mailbox so that a new handler
execution is created when messages arrive at the object's mailbox. Coupling of
a thread is done in an analogous way. If main is equal to NIL, thereby indicating
that there is no coupled execution associated to the object at the moment,
main is set equal to the currently executing thread. Otherwise, the thread is
placed in the coupling queue and is suspended. When a coupled handler call
terminates, the effects of a decouple operation are simulated to update the
object's state consistently.

Resource Control

Although the threads hosting the handler execution run with low priority, and
thus the presence of active remote objects is transparent for the users of
workstations, remote objects are not free of cost because they consume both
processor time and memory of their host. Hence, a user may want to prohibit
installation of remote objects on his/her workstation. What makes the need for
control even more important, is that remote objects may be faulty. This is
critical, because apart from the strong type checking of the Oberon language
which guarantees that programs do not overwrite arbitrary memory locations,
there is no other protection mechanism for containing errors. Specifically, due
to the lack of a differentiated resource management, the amount of memory
and disk space consumed by programs cannot be controlled, and thus a
workstation hosting remote objects can potentially run out of these resources.

Since our environment consists of personal workstations and there is no
central system administrator, the right to enable and to disable installation is
given to the individual users via corresponding commands.

DEFINITION RODbjs;

PROCEDURE Protect;
PROCEDURE Unprotect;

PROCEDURE ShowObjs;
PROCEDURE Destroy;




Allowing a workstation to be used as a host for remote objects is just a
temporary concession, rather than a commitment. This not only means that an
enabled workstation can be disabled again; it also implies that installed objects
are not untouchable, but may be removed explicitly by the user of their host
workstation. Access to remote objects is achieved by maintaining a directory of
all installed objects, which can be inspected by the user to gain overview of the
situation on the local machine and to selectively remove individual objects.

Enabling and disabling a workstation are local operations. As a consequence,
finding an available workstation requires searching the network unless this
information is provided in another way. It would also be possible to augment
our system by introducing a registration service for available machines, as done
in the Butler system [Nichols87]. Enabled workstations could then announce
themselves to a server that would be contacted by programs to retrieve the
addresses of machines where network objects can be installed.

Related Work

Our implementation adopts essentially the same event-oriented programming
model as the XNet system [Lalis91] which was a result of previous work.
However, in XNet, messages contain a request and a result part, and thus
communication resembles that of an RPC based system where clients send a
request and remain blocked until the corresponding reply arrives. While this
allows to achieve the illusion of locality even stronger than in the current
implementation, it also introduces the need for stub objects at the sender as
well as at the remote machine, and has the disadvantages of
procedure—oriented communication.

The Modula-3 network objects system [Birell93a] is closely related to our
work, but introduces an additional layer on top of a message-oriented
communication scheme, to achieve procedure—oriented communication. This
allows network objects to be implemented and invoked in the same style as
local objects. However, elaborate compiler support is needed to achieve this
effect: for each user—defined type the compiler generates two stub-objects
internally used by the system, a so called surrogate type and a server dispatcher.
Instances of surrogate types serve as network references as well as
representatives for the "real” objects, and transparently forward the procedure
calls made to them over the network. The dispatcher is responsible for
unpacking received request messages and invoking the corresponding object
methods. It is placed on the same machine as the network object, and is
invoked when request messages arrive over the network. Unlike our approach
where references must be copied to achieve sharing, surrogate objects can be
handled like ordinary pointers and are collected automatically. However, the
implementation relies on the ability of the local garbage collector to provide



notification when a local application object is collected. Network objects are
automatically removed when all corresponding surrogate objects are collected
by the local garbage collector, but the implementation fails to deal with cycles.

The Eden system [Almes85] also adopts a similar model for structuring
distributed applications, via special active objects called ejects. Ejects cannot be
extended, i.e. it is not possible to refine the behaviour of an existing eject
implementation. A procedural interface is used for communicating with ejects,
and a compiler automatically generates code for data conversion and
transmission.  Nonetheless,  programmers are  presented with a
message-oriented model, since ejects must be explicitly instructed to receive
and process messages using the compiler generated primitives. In our case, the
programmer does not have to create processes explicitly, and messages can be
processed directly from within the object handler without requiring any
unpacking.

Our approach can also be compared to the concept of guardians which are
used in Argus [Liskov87] for encapsulating co-located resources. The main
difference is that guardians are invoked through procedures, rather than
messages and are strongly transaction oriented, i.e. it is possible to preserve the
state of the guardian despite machine crashes. A separate thread is created to
run each call and a computation must be run as an action to guarantee that it
will not be affected by other operations running concurrently to it
Synchronization is achieved via so called atomic objects [Weihl85] with write
and read operations that are used to perform locking. No synchronization is
required in our system because messages sent to the same network objects are
processed sequentially, unless the programmer explicitly introduces intra—object
concurrency.

The object model is also used in systems that focus especially on parallel
programming, and thus support fine—grained encapsulation and mobility. A
typical example is the Emerald system [Black86] where all entities are
implemented as mobile network objects. Programs may move objects over the
network to reduce communication costs. To enhance efficiency, the compiler
chooses among different implementations for each object depending on the
way it is accessed, and objects that are guaranteed to remain local are invoked
directly via normal calls. Another approach is chosen in Amber [Chase89]
where objects automatically move on the node of the activity that invokes them
and remain there until another remote invocation occurs. The location of an
object is determined through an entry in its reference descriptor which is
replicated at the same memory location on all nodes as the object moves
through the entire system. As an optimization, immutable objects are fully
replicated and thus never need to migrate. An object can also be attached to
other objects, thereby creating structures that move together in a single piece
and remain co-located. Our programming model is less flexible, since we do
not aim at supporting fine grained mobility of objects over the network.



Summary

We have introduced a facility that allows arbitrarily complex application
components to be installed and invoked over the network. An object-oriented
model was chosen to support implementation of such components,
independently of whether they are passive or active entities. While we adopt an
event driven execution model by letting remote objects react to messages, most
other systems combine object-orientation with remote procedure calls. As a
consequence, in these systems, objects residing on remote machines must be
represented by stubs so that the clients can access them transparently. Since we
promote a message based interaction between activities residing on different
machines, the need for stubs is completely eliminated. This makes our system
considerably simpler, because elaborate tools or special compiler support is not
required. Moreover, since message passing is asynchronous, decoupling
between remote objects and their clients can be achieved in a simple way. With
remote procedures (or methods), clients must introduce parallelism by explicitly
creating threads for each time consuming call, and server objects cannot
communicate results to clients incrementally. Also, in other work, intra—object
concurrency is supported by creating a separate thread for each call, and
synchronization between concurrently executing invocations must be explicitly
programmed via semaphores, or some other device. In our implementation,
message handling activities can simply switch from sequential to concurrent
execution and vice versa, a feature which can be used to achieve comparable
effects yet with less programming effort. Finally, we support object sharing via
reference counting primitives, rather than via attempting to simulate a
non—distributed garbage collection environment. Given the limitations or the
complexity of other approaches, we believe that this is a well balanced
trade—off between simplicity and functionality.



Chapter6  Applications

Test and prototype versions of our system have been used to develop
non-trivial distributed programs in the Oberon environment. Different classes
of applications were investigated to apply the implemented primitives in various
situations, and to evaluate our system in a better way. It was indeed a pleasant
surprise to see that once the interactions among program components and the
corresponding algorithms were clearly understood, programming turned out to
be straightforward. Often, applications were implemented in prototyping speed
and -astonishingly— almost no debugging was required. This is especially
encouraging since this work was partly done by students with little or no
experience in distributed systems.

In this chapter, two applications are presented: a reliable broadcast protocol
that guarantees total ordering, and a facility for distributing and replicating time
consuming computations over idle machines. Since out intention is merely to
give an overview of how this functionality was achieved, we do not elaborate
with low-level details but focus on the most interesting parts of the
implementations.

Reliable and Totally Ordered Broadcasting

Broadcasts, i.e. transmission of messages to a group of machines or programs is
a special type of communication that is typically used in distributed systems to
coordinate processing among a set of replicated resources or processes.
Broadcasting is said to be causal if messages are delivered to the application
while preserving causality of message events. Put in other words, a causal
broadcasting facility guarantees that if a member receives message m1 and then
broadcasts message m2 to the group, group members will receive m1 before
m2. It also guarantees that if a member sends message m1 followed by m2,



then these messages will be delivered to the group members in the order they
were sent. An even stricter form of delivery is total ordering which preserves
causality and where causally unrelated messages are also delivered in the same
order. Letting all group members see the identical message history allows
arbitration decisions to be taken by each member in a consistent way without
any further communication. Moreover, group members can update their local
state in exactly the same way, going through the same transitions, which
simplifies programming if a group implements a replicated resource. Finally,
reliability means that a message sent to a group is eventually delivered to all
living group members.

A protocol that supports atomic and total broadcasting within a group of
cooperating programs, is implemented on top of the message passing system
of Hermes. Our implementation can be viewed as a simplification of more
general schemes [Chang84]. It is also similar to the protocol used in the Orca
system [Kaashoek89] to guarantee consistency among object replicas. In
addition, we support group changes so that activities may dynamically join and
leave a group. Members that fail, are automatically removed from the group,
and a group disappears when it becomes empty.

A Sketch of the Algorithm

Identical ordering of messages within a group is achieved by relaying messages
through a distinguished member, called the sequencer, that forwards them to
all group members (figure 1). Since the Hermes message passing facility
preserves FIFO ordering, messages are received by all members in the order
messages are received and broadcasted by the sequencer.

O—__
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Figure 1 sequencer based broadcasting

This method also preserves causality, because if a member sends a message m'
as a reaction to a delivered message m, it is impossible for m' to be
broadcasted before m, because m has already been received (and broadcast) by
the sequencer. Notably, messages generated by the same member cannot



possibly overtake each other and are also broadcast in the correct order. In
other words, the protocol can be described using three actions:

Application
send m: send message MbrMsg[m] to sequencer
Protocol
receive MbrMsg[m]: broadcast message SeqMsg[m] to all members

receive SeqMsg[m]: deliver m to application

This informal description not only captures the essence of this protocol, but
also identifies its weakness with respect to failures. Namely, it shows that
failure of a non-sequencer member is trivial to tolerate, because it does not
affect operation of the protocol. However, if the sequencer fails, the protocol is
blocked since messages sent to it will not be propagated to the group. While
this problem can be solved by choosing another member as a new sequencer,
this is not sufficient if the sequencer has failed in the midst of a broadcast
action, because then some messages may have reached only a part of the
group, or no members at all. Hence, the atomicity of incomplete broadcasts
must be established before allowing the new sequencer to handle new
messages.

Handling Sequencer Failures

In order to be able to retransmit messages in case of a sequencer failure, at
each group member, messages received from the sequencer are kept in a queue
until it is known that they have been received by all members. A second queue
is maintained for messages originating from the members themselves, since
they must also be retransmitted in case the sequencer failed before initiating
the corresponding broadcast actions. When the sequencer fails, an election
protocol is run to select as new sequencer the machine which has received the
most messages from the old sequencer, with ties broken by using the
identification of group members.

An election is started when a member detects failure of the sequencer. The
member creates an election message containing its own identification and its
local sequence number denoting the last message received from the old
sequencer, and sends it traveling around a virtual ring formed by the operational
group members. Upon receipt of an election message, a member switches to
election mode, if it has not already done this, and forwards the message to its
"next” neighbour only if the originator of the message is better qualified to
become sequencer. To tolerate failures that occur during an election phase,
each member monitors its neighbour (according to the ring formation), and
retransmits its election message to the next neighbour if a crash is detected.

A member becomes sequencer if it receives its own election message. In this



case, it retransmits the messages the old sequencer failed to broadcast to all
members (if any) and broadcasts a message with its identification announcing
termination of the election phase. Upon receipt of this message, all members
retransmit their own messages which have been sent to the old sequencer but
have not been broadcasted at all, and resume normal operation.

Joining and Leaving Groups

Members that wish to join a group, send a corresponding request to a group
member and wait for a confirmation. The member receiving the request
forwards it to the sequencer, just like any ordinary message, which in turn
broadcasts it to the group. However, the confirmation is sent to the new
member after all existing members have explicitly acknowledged receipt of the
join message. This guarantees that the new member will not cause any
inconsistencies if an election is started concurrently to the joining process. Any
messages other than the confirmation received by the joining member are
actively rejected and the member retries its join attempt. Rejections are treated
as failures, i.e. the corresponding entry is removed from the group membership
directory.

Leaving a group simply requires sending a leave message to the sequencer. If
the sequencer is to leave the group, a fast election is simulated by randomly
selecting a group member and sending it a leave message. As a result, the
group member broadcasts an election termination message bearing its
identification and becomes sequencer. Failures occuring during leave phases do
not require special handling since they are adequately handled by the
conventional failure detection and correction mechanisms.

Implementation

The reactive character of this highly asynchronous protocol naturally fits into
the message based communication of Hermes, since protocol events arriving
from the network can be naturally implemented as messages that trigger
protocol processing. Protocol state at each member is encapsulated within a
descriptor that is updated each time events occur. Events are protocol messages
arriving from the network, some of which may contain application messages
that are to be forwarded to the application.

Each protocol descriptor contains a mailbox that is used for the network
communication with the group; the mailbox address serves as an identification
for the member holding the descriptor. Protocol handling is implemented as a
message handling procedure which takes actions depending on the type of the
received messages:

PROCEDURE Handle (p: Protocol; msg: Msgs.Msg);
BEGIN
IF msg IS SeqMsg THEN  (xfor all membersx)



put message into queue and deliver corresponding application message
ELSIF msg IS MbrMsg THEN  (xonly for sequencerx)
broadcast message to group members
ELSIF msg IS ElectMsg THEN  (xall members except sequencerx)
IF new election THEN start new election END;
IF msg "better” than own election message THEN forward msg END
ELSIF msg IS Msgs.ErrMsg THEN
IF sequencer failure THEN start new election
ELSIF election & neighbour failure THEN send election message to new neighbour
ELSIF ~election THEN broadcast failure message
END
END
END Handle;

The protocol handler is invoked from within a notification procedure installed
in the descriptor's mailbox so that reaction to protocol events occurs as soon as
the corresponding messages arrive from the network and asynchronously to the
application using the protocol.

Messages to be broadcast to the group must be passed to the corresponding

protocol descriptor with calls to procedure Queue that forwards them to the
sequencer.

DEFINITION Groups;

TYPE
Msg = POINTER TO MsgDesc;
MsgDesc = RECORD (Hermes.MsgDesc) END;

JoinMsg = POINTER TO JoinMsgDesc;
JoinMsgDesc = RECORD (MsgDesc)
who: Msgs.Adr  (xaddress of memberx)
END;

LeaveMsg = POINTER TO LeaveMsgDesc;
LeaveMsgDesc = RECORD (MsgDesc)
who: Msgs.Adr  (xaddress of memberx)
END;

Protocol = POINTER TO ProtocolDesc;
ProtocolDesc = RECORD
adr: Msgs.Adr;
PROCEDURE (p: Protocol) Deliver (msg: Msg);
PROCEDURE (p: Protocol) TransferState (I: 10.Linearizer);
END;

PROCEDURE Init (p: Protocol);
PROCEDURE Join (p: Protocol; contact: Msgs.Adr);
PROCEDURE Leave (p: Protocol);

PROCEDURE Queue (p: Protocol; msg: Msg);



Conversely, messages that are broadcast by the sequencer are passed from the
protocol handler to the application by invoking the type-bound procedure
Deliver which must be overwritten according to the application requirements to
integrate arriving messages into the application program.

Groups can change dynamically as new members are introduced and existing
members leave the group. Applications can instruct their protocol instances to
initiate the actions required to join or to leave a group via calls to procedures
Join and Leave, respectively. When joining, an address of a group member is
required to establish communication with the group. Joining succeeds if this
member can be contacted successfully and does not fail during the process. If
the specified address is equal to the mailbox address of the own protocol
object, then a new group is created with the initiator as a single member. The
protocol communicates join and leave events to the application by generating
special messages JoinMsg and LeaveMsg bearing the identity of the
corresponding member. For symmetry, join and leave messages are also
generated for the own events, and signal the success (or failure) of the
corresponding join and leave actions. Join and leave messages are totally
ordered, i.e. are delivered in the same order to all group members, thereby
allowing all members to maintain a consistent view of the group.

Once a member has received its own join message, it can start sending and
receiving messages within the group, and is a candidate for assuming the role
of the sequencer. However, if initialization of newly added members depends
on the actual state of the group, then further actions must be performed at the
application level before a new member becomes fully operational. To relieve the
application from having to employ an additional protocol, this task is supported
by introducing a state transfer mechanism in the form of a type-bound
procedure TransferState. State transfer is invoked from within the protocol
handler and occurs between the sequencer and the new member before the
new member is sent its join message. Hence, when a new member receives its
own join message it is guaranteed that its state has already been appropriately
initialized.

An Example

This protocol has been used to implement a distributed editor that organizes
the users editing a shared document in a group. Each participant maintains a
local copy of the document that is used to read data without performing any
communication over the network. Synchronization of write operations is
achieved using a token based scheme. Only the user holding the token has the
right to modify the document and changes made to the document are
asynchronously communicated to the local copies. The token must be
requested and released explicitly via corresponding operations, hence a request
to acquire the token is granted only when the token is released by its current



holder.

Token management is implemented in a decentralized manner, by
maintaining a list of token acquisition requests at each group member. A
member holds the token if its request is the first element in its own local
queue. To allow each individual member to make this check in isolation and in
a consistent way, token requests and relases are sent to the group as total
broadcasts, and the protocol descriptor to which the request queue is bound is
updated correspondingly as messages arrive from the network:

TYPE
MyProtocol = POINTER TO MyProtocolDesc;
MyProtocolDesc = RECORD (Groups.ProtocolDesc)
reqQ: FIFO queue of requests
END;

PROCEDURE Request (p: MyProtocol);

VAR req: ReqMsg;
BEGIN NEW(req); req.adr := p.adr; Groups.Queue(p, req)
END Request;

PROCEDURE Release (VAR p: MyProtocol);

VAR rls: RIsMsg;
BEGIN NEW(rls); rls.adr := p.adr; Groups.Queue(p, rls)
END Release;

PROCEDURE (p: MyProtocol) Deliver (msg: Groups.Msg);
BEGIN
IF msg IS ReqMsg THEN
insert entry [msg(ReqgMsg).adr] in p.reqQ
IF Head(p.req).adr = msg(ReqMsg).adr THEN start monitoring holder END
ELSIF msg IS RIsMsg THEN
remove entry msg(RIsMsg).adr] from p.reqQ
IF holder changed THEN stop monitoring holder
IF NotEmpty(p.reqQ) THEN start monitoring holder END
END
ELSIF msg IS Msgs.ErrMsg THEN
simulate release operation

END
END Deliver;

Since the group protocol guarantees total ordering, a release message will never
overtake a corresponding request message, and concurrent requests for the
token will be communicated to the application in the same order at all
members. Even though copies may be updated with some delay, all list copies
will eventually go through the same state changes, which suffices to guarantee
that token ownership will be determined correctly. When a member leaves the
group or fails, the list is searched to remove corresponding requests. If this
member happens to be the actual token holder, then the token is automatically
released and the next request is granted. The state transfer mechanism is
exploited to initialize the request list of new members as they join a group.



Support for Remote Computations

Sometimes time consuming computations can be divided into sub—tasks that
can be executed in parallel. In this case, the network can be used to perform
each of these tasks using separate machines to accelerate processing. But even
if it is not possible to distribute a computation, execution time can be
decreased if it is shipped to a machine that is idle and has a faster processor
than the local machine. In the latter type of computation, it may also be
desirable to make a computation fault-tolerant so that it does not need to be
restarted from scratch after a failure.

As a small step towards supporting these tasks, we developed a scheduler
that distributes a list of jobs over a group of virtual processing elements.
Processors may be dynamically added and removed without halting the
computation process. For simplicity, it is assumed that no communication
between the processing elements is required. This service is similar to the the
Marionette system [Sullivan89] developed to support execution of parallel
programs in a master—slave fashion. While fault tolerance can be achieved by
cutting a computation into sub-computations, or by replicating the
computation on multiple machines [Cooper85] hoping that one will carry the
computation to its end, robustness against failures is further supported via
checkpointing. In other words, the intermediate state of each processor
computing a job can be periodically saved and used to restart the job if a failure
indeed occurs.

Abstract Processing Elements

The processors used to perform the computations are modeled as abstract
objects that accept a job and produce the corresponding results. Since it must
be possible to dynamically instantiate processors on remote machines when
the computation is started and destroy them after the computation terminates,
processors are implemented as remote objects.

DEFINITION RComps;

TYPE
JobMsg = POINTER TO JobMsgDesc;
JobMsgDesc = RECORD (Msgs.MsgDesc)
sadr: Msgs.Adr  (xaddress of schedulerx)
END;

ResultMsg = POINTER TO ResultMsgDesc;
ResultMsgDesc = RECORD (Msgs.MsgDesc)
padr: Msgs.Adr;  (xaddress of processorx)
j:Job (%state used to restart in case of failurex)
END;

Processor = POINTER TO ProcessorDesc;
ProcessorDesc = RECORD (RObjs.ObjDesc) END;




Jobs are defined as abstract messages of type JobMsg which serves as a base
type for defining the job messages of the application hosting
computation-specific data. Similarly, a type ResultMsg is used to introduce
messages containing the intermediate results of a processor computing a job.
Result messages also contain a job message serving as a point from which the
original job can be restarted in case the processor fails. Hence, for a processor
that receives a job, there is no difference between starting a job from scratch
and using a checkpoint as a starting point. Job processing is presumed to be
completed when a result with no job message is received.

Notably, unlike in systems that associate a separate address space with each
activity and can therefore take a snapshot of the entire address space including
stack and processor registers, checkpoints must be explicitly created by the
processor elements. However, our approach supports customized, and thus
potentially very efficient checkpointing.

A Simple Scheduling Model

Provided that a computation can be divided into jobs that can be executed in
isolation, the process of performing such a computation in parallel can be
formulated as a sequence of five main steps: (0) install and initialize the
processors, (1) divide the computation into jobs, (2) distribute the jobs over the
available processors, (3) collect the results, and (4) combine them to obtain the
final result. But although this already achieves better parallelism compared to a
purely sequential job execution, arranging these steps according to this strict
order may be too restrictive.

For example, it may be desirable to commence processing before the
computation has been fully subdivided into jobs, or to support installation of
new processors even in the midst of a computation, so that additional
machines can be involved in the computation as they become available.
Moreover, for certain applications it may be worth handling results as soon as
they arrive from the network to perform part of the merging process in parallel
to job processing. This flexibility is easily achieved if scheduling is described as
a set of isolated actions that can be executed in any interleaved way:

AddJob(j): RegisterJob(j);
IF IdleProcFound(p) THEN Send(p, j) END;

AddProcessor(p): RegisterProc(p);
IF IdleJobFound(j) THEN Send(p, j) END;

receive ResultMsg[id]: FindProcessor&Job(id, p, j); Removelob(j);
IF IdleJobFound(j) THEN Send(p, j) END;

receive ErrMsglid]: FindProcessor&Job(id, p, j); RemoveProc(p);
IF IdleProcFound(p) THEN Send(p, j) END;



Failure handling is also easy to integrate in such an action—oriented approach,
in fact, receiving an error message indicating that a processor failed is the exact
inverse of receiving a result, i.e. the failed processor is removed, and a new
processor is sought for to which the job can be sent.

The Scheduler

The state of the scheduling process is encapsulated into a scheduler object that
has a mailbox and communicates with the processors to coordinates
distribution. Messages arriving from the network are handled according to the
above scheme from within a notification procedure that is installed in the
scheduler's mailbox.

DEFINITION RComps;

TYPE

Scheduler = POINTER TO SchedulerDesc;

SchedulerDesc = RECORD
PROCEDURE (s: Scheduler) JobSent (netAdr: SHORTINT; jid: LONGINT);
PROCEDURE (s: Scheduler) GotResult (netAdr: SHORTINT; jid: LONGINT;

r: ResultMsg);

PROCEDURE (s: Scheduler) Failed (netAdr: SHORTINT);

END;

PROCEDURE AddProcessor (s: Scheduler; netAdr: SHORTINT);
PROCEDURE RemoveProcessor (s: Scheduler; netAdr: SHORTINT);
PROCEDURE AddJob (s: Scheduler; job: JobMsg);

PROCEDURE Initialize (s: Scheduler; mod, type: ARRAY 32 OF CHAR);
PROCEDURE Destroy (s: Scheduler);

In order for the application to follow the scheduling process, internal events
such as job assignments, receipt of checkpoints, and failures are communicated
to the application by invoking corresponding type-bound procedures. These
procedures can be used to display monitoring output about the computation,
perhaps even to take correcting actions. For example, failing servers could be
automatically replaced with new ones. In particular, the application must
implement the GotResult procedure to process results as they are being
produced by the processors.

Scheduler objects must be initialized with a call to procedure Initialize. At
initialization, the type of the application processor objects must be specified so
that this information need not to be passed each time the application installs a
new processor. When a computation completes, the scheduler must be
destroyed via Destroy to remove the installed processor objects. Actions such as
adding a processor, or a job are triggered by the application via conventional
procedure calls AddProcessor and AddJob, respectively. It is also possible to
remove a processor with a call to procedure RemoveProcessor. Even though the
application may add and receive processors at will, the existence of multiple



processors is transparent, because coordination and data exchange with the
processor group is implemented completely within the scheduler object (figure
2).
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Figure 2 interaction between scheduler and application

Hence, the scheduler can be viewed as a super server whose performance and
fault-tolerance can be adjusted dynamically. Robustness against failures can be
achieved in three different ways, by dividing a computation into smaller parts
that are performed in parallel, by replicating the same computation on several
processors, and finally by using a single active processor with checkpointing.
The provided operations can also be used to implement migration, i.e. to move
a computation over to another machine even if there is no failure. To achieve
this, it is merely required to remove the processor currently performing the
computation and add a new processor on another machine.

An Example

An application that profits from this support is a Mandelbrot program that
reads a set of coordinates and draws the corresponding Mandelbrot set on a
viewer. Modification of the program was particularly simple, because a
Mandelbrot computation can be divided into smaller sub—computations that
can be executed fully in parallel. Since the time required for this computations
cannot be determined simply by looking at the values of the input parameters,
load balancing is achieved by producing more jobs than available machines.
Hence, as soon as a processor finishes its computation and sends its result
back, another job is sent to it, and thus a computation is hardly delayed by
machines that are either slow or receive a computation intensive job. Failures
are also handled automatically, since jobs of failed processors are re-scheduled
using available ones.

Only a minor programing effort was required to obtain the processor objects
that actually perform the computation. The original program was formulated as
a procedure ComputeMandel so that it can be invoked from within the object
handler, and was slightly altered to store the calculated values as a file, instead
of drawing pixels on the screen:



TYPE
MandelProc = POINTER TO MandelProcDesc;
MandelProcDesc = RECORD (RComps.ProcessorDesc) END;

PROCEDURE (mp: MandelProc) Handle (msg: Msgs.Msg);
VAR F: Files.File;
BEGIN
IF msg IS JobMsg THEN
RObjs.Decouple(mp);
ComputeMandel(msg(JobMsg).pars, F);
send F back to scheduler
RODbjs.Couple(mp)
ELSE mp.Handler(msg)
END
END Handle;

To avoid blocking when computing a job, the processor object decouples the
corresponding handler call before commencing computation. When processing
terminates, the file is put into a result message and sent back to the scheduler.
The GotResult procedure of the scheduler object is programmed to directly
output incoming data at the appropriate location on the screen. The rest of the
type-bound procedures are used to print short messages on a log viewer
associated to the scheduler, thereby informing the user about the progress of
the computation.

Summary

A few non-trivial applications that were developed using the Hermes system
have been described. They serve as characteristic examples of how services can
be introduced on top of our system in a straightforward way. Compared to
services realized in other environments, we believe that we have achieved
satisfactory functionality at only a modest cost. Although these tools are
designed for completely different application areas, their implementation
profited significantly from the asynchronous and event-oriented design of
Hermes.



Chapter7  Conclusions

We described a system developed to support distributed programming in the
Oberon environment. Based on a general framework for externalizing and
internalizing complex data, a communication facility was built that allows
applications to exchange entire data structures over the network as if they were
indivisible data items using asynchronous message passing primitives. An
additional component is implemented to support implementation of
application components which are to be installed over the network at run time,
using an event-oriented approach that allows application components to be
made extensible.

With these few services we believe that we have succeeded in providing
powerful and intuitive abstractions that promote the development of distributed
programs. The ease with which several non-trivial applications were
implemented using the available primitives strongly supports our thesis,
especially since programming has partly been done by students with little
experience in distributed programming.

With object-oriented techniques it was possible to isolate important problems
of distribution and address them in a structured and generic way. Services
could thus be enriched at a later time by adding refined processing elements
without any modification or recompilation. This approach not only proved to be
convenient for introducing application specific behaviour but also enhanced the
internal structuring of our system. In fact, extensibility turned out to be the key
for addressing the problem of complex data transfer in a simple and most
flexible way without requiring elaborate automatic support, thereby setting the
corner—stone of our communication facility.

The decision to adopt a message—oriented model for supporting
communication between activities affected the design of our system and its
applications in a significant way. Using messages, rather than procedures, as a



communication unit obviates the employment of stub—objects for achieving
transparency, and consequently makes stub generators superfluous.
Furthermore, asynchronous message passing is indeed an attractive alternative
to synchronous models, because it naturally achieves decoupling between caller
and callee which is often desired in distributed applications, and promotes
event—oriented structuring of software, which we have found to be appropriate
for a wide range of applications. It has also been demonstrated that message
passing can be combined with strong support for marshalling data so that the
application programs are completely relieved from data conversion and transfer
problems. On the contrary, applications can use messages as conventional data
types and new messages can be defined as extensions of existing message
types to achieve program extensibility.

Through the compactness of our implementation (less than 20K in all) we
have shown that support for distributed programming can be built at only a
moderate software cost so that it can be installed on small computers,
traditionally used only for single—user tasks. Even in the Oberon system which
excels by its efficiency and economic design, powerful and flexible services
were implemented without boosting complexity. As networks of personal
workstations become a popular way of organizing computing environments, we
strongly believe that support along these lines will be important for future
software development.

The Oberon programming environment served as a good and robust foundation
for our project. Strong typing and run-time checking allowed programming
errors to be reliably detected, thereby eliminating cumbersome debugging. Also,
it was this features that made it practically feasible to build a multi-threaded
system that is robust against index and pointer errors yet without containing
each activity in a separate address space as this is done in systems with unsafe
languages. Moreover, the advanced support for dynamic loading and
meta—-programming considerably simplified our implementation; in other
platforms this functionality would have had to be introduced explicitly,
presumably at a substantial software cost.

In our opinion, the only important drawback of the Oberon system is the lack
of support for true background processing and timely response to events which
unnecessarily limits its potential. While we do not consider our attempt to
introduce concurrency in Oberon as the ultimate solution to these problems, it
is an indication that the desired functionality can be achieved without making
the system complicated; we sincerely hope that this work will serve as a starting
point for further development in this direction. In the course of our project, we
found object finilization and code fingerprinting to be important. Both services
can be implemented in Oberon without much effort. Our implementation
would also have benefited from a mechanism for controlling the use of heap
and disk in the system. Namely, with such a support one can guarantee that the
resources needed to operate the local applications of a workstation will not be



used by remote activities, which would further encourage users to have
installation of remote objects enabled even if they are currently using their
machines.
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Appendix  System Size and Performance Figures

To give the reader a rough idea about the complexity of our implementation, a
few data about its size and performance is shown in the following. For clarity,
the Hermes system is considered separately from the Concurrent Oberon
system. We also have attempted to conduct our measurements so that the
performance and overhead of each component can be identified in a simple
way. Performance figures are given for Ceres—2 workstations with a NS32000
processors.

The Concurrent Oberon System
Although the Oberon system has conceived as a strictly sequential system, the

amount of code that was added to it to implement multitasking is relatively
small (table 1).

Module | old version | new version | increase abs. | increase rel.
Kernel 3200 5100 1900 60%
Files 6700 7200 500 8%
Modules 3500 3700 200 6%
Threads - 3800 3800

Input 900 1100 200 22%
Oberon 5500 5600 100 2%
System 10800 13400 2600 24%
Oberon (raw) 110800 120100 9300 8%

Table 1 software complexity of the Concurrent Oberon system



The total software cost amounts about 10 kilobytes. Notably, the
implementation of threads and the scheduler amounts only for about 1/3 of
the total costs. A substantial part of the newly introduced code is used to
modify the garbage collector to trace pointers deposited on stacks (module
Kernel) and to provide the user with a set of auxiliary commands for monitoring
the threads available in the system (module System). All in all, the code size of
the system increased by 8% of the original Oberon system which amounts
about 110 kilobytes in its simplest form (i.e. including only its default text
editor).

The run time cost of the introduced multitasking facility is analyzed below.
Table 2 shows the overhead of a null call to the scheduler and a context switch
as experienced from a user program. Times are given in microseconds.

operation [E

scheduler call (no switch) 26-46
scheduler call (context switch) | 40-60

raw context switch 14
saving registers +15

Table 2 context switching costs

By comparing these figures it can be seem that actual switching (i.e. coroutine
transfer) requires about 14 microseconds. An additional penalty of
approximately 15 microseconds must be paid if the general purpose and
floating point registers are saved, which is the case when the scheduler is
invoked from within an interrupt routine. The displayed values include an
overhead of about 10 microseconds for accessing the current stack variable of
the kernel via a supervisor call; if the interface of module Kernel were changed
to export this variable, it would be possible to completely eliminate this cost.

The variance of about 20 microseconds in the data given above was obtained
by inserting dummy instructions in the scheduler code, or by repositioning of
the scheduling procedure within the Threads module. Since none of these
changes affected the code that was actually executed during our
measurements, we assume that these differences in performance are due to
caching and code alignment effects. Our code in its original form (as it is used
in Concurrent Oberon) consumes around 40 and 54 microseconds for a null
scheduler call and a context switch, respectively.

To put the cost of multitasking into a better perspective, we conducted the
following experiment: we let one thread increment a local integer variable for a
given time, and then compared it to the sum of the integer values generated by
10 threads executing in parallel for the same amount of time. According to the
observed results, the 10 competing threads together achieved 99% of the value



produced by the single thread, which indicates that timesharing is relatively cost
efficient in our system.

The Hermes System
As already explained, Hermes consists of several modules that gradually

introduce new functionality in the system. The size of the individual modules
and the total size of the Hermes system are displayed in table 3.

component | size | increase abs. |increase rel.
Concurrent Oberon (raw) | 120100

10 3600

NetCarriers 4000

Msgs 4200

RODbjs 6000

Hermes Total 17800 15%
NOP2 Compiler 122700 100%
Kepler Graphics 68700 57%

Table 3 size of the Hermes modules

The third column shows the relative increase with respect to the Concurrent
Oberon system. For comparison, we also give the size of the Oberon-2
compiler and the size of a graphics editor.

To analyze the costs of message transmission, which is the main
communication operation in our system, we have measured the time spent to
transfer a message for the case where the destination mailbox is located on a
remote machine. The message transfer time as viewed by the application was
obtained by sending several messages one after the other and dividing the total
delay by the number of messages sent. Notably, this is only a conservative
estimation of the time needed to send a message, since when sending the next
message the application is blocked until the last one has been acknowledged,
which is typically not the case in a single message transmission. Measurements
were made between two Ceres—2 workstations connected by a phone—net with
a raw transfer rate of 250 kilobits per second. At the time we conducted our
experiments, the network was lightly loaded.

Table 4 displays the corresponding results in microseconds both for an empty
message and a message containing 10 four-byte integer numbers. To visualize
how the total transfer cost is distributed among the various components of our
system, we give the delay due to message externalization, and the time required



to send data over the network. The former is approximated by measuring the
time needed to transfer a message in a memory buffer. The network overhead is
estimated as the sum of the time for sending a data packet and an
acknowledgement over the wire. We include the acknowledgement processing
in our calculation, because program execution at the sender is effectively
delayed by the time it takes the network interrupt handler to read the incoming
acknowledgement into a packet buffer (we assume that the time needed to
read data from the network is comparable to the time needed to send it).

| empty msg | 10 int msg | contribution

message externalization 540 740 12%
network 3100 4500 65-75%
application delay 4700 6000

Table 4 time spent for sending a message

According to our results, the network time amounts for almost 70% of the
message transfer cost, while approximately 12% of the total time is spent to
externalize the message into a packet buffer. The remaining 18% of the costs
are due to protocol processing, synchronization, and context switching.

For a rough comparison, a recently developed remote object system
[Birell93a] running on Digital workstations equiped with MIPS 3000 processors
and a 100 megabit network is about 10000 lines of Modula-3 code. Its remote
procedure call facility which features comparable marshalling support to our
implementation requires around 3300 microseconds for a null call and 3400
microseconds for a ten—integer call. Admitedly, a remote procedure call is more
expensive than a message transfer, because the acknowledgment confirming
receipt of the data packet is not sent as soon as the packet is received, but is
generated —-with some delay- from within the server program to which the
request is sent. In our system, such a request-reply cooperation requires a
complete exchange, and thus should come at approximately the double cost of
a single message transfer (i.e. around 10000 and 12000 microseconds,
respectively). Nevertheless, given the small size of our system (approximately
1300 lines of Oberon code), the moderate speed of our hardware and the fact
that our system has not been designed especially for supporting synchronous
communication, we believe that the achieved performance is acceptable.
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