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Résumeé

L'évolution incessante du matériel informatique permet la construction d'ordi-
nateurs toujours plus performants. Parallélement, de nouveaux concepts et de
nouvelles techniques de programmation deviennent nécessaires afin de maitri-
ser la complexité grandissante des logiciels. L'une de ces techniques, la
compilation séparée de modules, a fait ses preuves en Modula-2 et en Obéron,
entre autres langages de programmation fortement typés.

Le module, qui est a la fois I'unité structurelle et l'unité de compilation des
programmes, est interchangeable sans affecter les autres modules d'un systeme.
Toutefois, si l'interface du nouveau module est différente de 'ancienne, les
modules clients de cette interface modifiée doivent étre recompilés afin de
maintenir la cohérence du systéme. L'éditeur de liens vérifie habituellement que
la clef réelle de chaque interface importée est identique a la clef attendue par le
client, une différence indiquant une incohérence. Ce modele simple et efficace
n'est pas trés souple, puisqu'une légére modification d'interface, telle l'insertion
d'une nouvelle procédure, par exemple, peut provoquer de nombreuses recom-
pilations inutiles.

Cette these présente deux nouveaux modeéles de vérification fine de cohé-
rence, ainsi que leur mise en oeuvre. Ces modéles permettent l'extension
d'interfaces de modules compilés séparément sans qu'une recompilation des
clients ne soit nécessaire, ce qui est particuliérement utile dans des systémes
avec chargement dynamique, ou les clients d'une bibliothéque de modules ne
sont pas forcément connus lors de la révision ou de l'extension de cette
bibliothéque. L'édition d'interface sans conséquence ne se limite pas a des
extensions, puisque la modification d'un aricle existant n'invalide pas les
clients n'utilisant pas cet article. Et méme s'ils |'utilisent d'une maniére encore
compatible aprés modification, une recompilation n'est pas plus indispensable.

Ces techniques ont été implantées dans le Systeme Obéron, mais elles ne
sont spécifiques ni au Langage, ni au Systétme Obéron, et pourraient étre
appliquées a n'importe quel systtme de programmation modulaire pour en
améliorer la sécurité, la flexibilité, ou tous les deux a la fois. De plus, ces
techniques ne se présentent pas au programmeur sous forme d'outils dont
I'utilisation reste facultative, mais elles sont entiérement intégrées au compi-
lateur ainsi qu'au chargeur de modules. La sécurité ne doit pas étre offerte en
option.



Abstract

As continuous evolution in hardware results in more powerful computers, new
programming techniques and concepts must be developed to master the
consequently increasing software complexity. Separate compilation of modules
is such a technique that has proven valuable in Modula-2 and in Oberon,
among other strongly-typed programming languages.

The module is both the structural unit and the compilation unit of pro-
grams. Replacing a module by a new one does not affect the rest of the system,
provided that the module interface has not changed. Otherwise, client modules
of the modified interface have to be recompiled to maintain system consis-
tency. The last opportunity to detect an inconsistency is when modules are
linked to form an executable unit. The check usually consists in comparing, for
each imported interface, the expected key of that interface, as known at
compilation time of the client, with the key of the effectively supplied interface.
A mismatch indicates an inconsistency. This model is simple and efficient, but
not very flexible. Indeed, a minor modification of an interface, such as the
insertion of a new procedure, can trigger many unnecessary recompilations.

This thesis presents two new models for fine-grained consistency checking
and their implementation. These models allow the interface of separately
compiled modules to be extended without requiring a recompilation of client
modules. This is particularly valuable in systems with dynamic loading, where
the clients of a library are not known when the library is revised or extended.
Interface editing that does not require client recompilation is not restricted to
extensions, since the modification of an existing item does not invalidate
clients not using this particular item. Even if they use it in a way that is
upward-compatible with the modification, they still do not need a recom-
pilation.

" These techniques have been implemented in the Oberon System, but they
are neither specific to the Oberon Language nor to the Oberon System. They
can be applied to any modular programming system in order to improve its
safety, its flexibility, or both. Furthermore, these techniques are not available to
the programmer as a separate tool whose use remains optional, but have been
fully and transparently integrated into the compiler and module loader. Safety
must not be optional.



Chapter 1

Introduction

As long as computers have existed, programming techniques have evolved. The
first machines were programmed by setting a few dozen switches in adequate
positions or by plugging some cables into the right connectors. Nowadays,
software systems consist of thousands or even millions of bytes of code. Of
course, the performance attained by old and current computers, as well as the
kind of problems solved by them, cannot be compared.

In the computer pioneers’ time, the whole difficulty resided in constructing
the machine. Its programming was almost a trivial task that did not need
special attention. The storage capacity was so low that only very simple
algorithms and small amounts of data could fit into the program and data
stores. The evolution of hardware made it necessary to develop software
techniques. Since then, computer programming has become a science of its
own.

Today, so much effort is invested in programming that software packages
often survive several hardware generations. This does not mean that computer
construction has become a trivial task. Computer architecture and computer
programming are now largely two independent sciences evolving almost separa-
tely and are not intertwined as in the past. One does not need to know how a
computer is built to be able to program it. Programming languages have created
a level of abstraction between software and the underlying hardware. There is
no longer a oneto-one correspondence between program statements and
machine instructions.

Constant improvements in data storage capacity and processing speed make
it possible to solve more and more complex problems. Consequently, more
complex algorithms and data structures are needed. The role of the software
engineer is to master this increasing complexity. He can model a problem by a
simpler one, with a very similar behavior. He can also break the problem into
several smaller problems easier to solve, and then put the results together
("divide et impera” technique). In practice, the structure of the program reflects
this stepwise refinement at several levels: the program consists of modules,
modules of procedures, and procedures of statements.



Declarations and Statements

A module defines and refers to different kinds of objects: constants, variables,
types and procedures. A constant is a named value that cannot be changed
during the execution of the module. A variable is a named container that can
hold one value at a time. However, different values may be assigned to a variable
during the same execution. A type is associated with every constant or variable.
The type denotes the kind of value an object can have. It restricts the
manipulation of the object to some applicable operations specific to that type.
There are predefined types like integer, character, or boolean, and user-defined
types like pointers, arrays, or records. Procedures describe sequences of opera-
tions applied to objects. They may take expressions of constants and variables
as input parameters and yield result values. The operations, also called state-
ments, are executed when the procedure is called. A procedure may also be
assigned as a value to a variable. It is executed when the variable is referenced.

Before an object can be used, it has to be declared. The declaration provides
the object with a name for subsequent references to the object, and with a
type, which defines the nature of the object and its applicable manipulations. A
local declaration appears in the block of a procedure, opening the scope of the
declared object. The scope stretches from the point of the declaration to the
end of the procedure, and corresponds to the domain where the object is valid
and visible, and therefore accessible by statements or further declarations. A
scope also extends to locally (internally) declared procedures. However, it may
be masked by a declaration of an equally named object, in which case
subsequent appearances of the name always refer to the object of the inner-
most scope.

Scopes extend to the inside, but not to the outside: an object declared in a
local procedure cannot be accessed from within the enclosing procedure.
Objects local to a procedure are instantiated when the procedure is entered and
removed when the procedure retums. If they have to survive across several calls
of the procedure, they must be declared at least in the same block where the
procedure is declared or in some enclosing block.

Declarations appearing in the module block are global, in contrast to local
ones found in procedures. Sometimes, the term scope is employed with a
slightly different meaning: the Jocal scope of a procedure designates the visibility
range of local declarations in the procedure block. Global declarations follow
the same scope rules as local declarations, and allow global objects to be
visible in every procedure of the module and in the module body itself, but not
outside of the module.



The interface of the module actually breaks these rules in a controlled way,
making selected global objects visible and accessible to partner modules.

Modules and Interfaces

The concept of module or package is present in many modem programming
languages like Ada [1], Mesa [2], Modula-2 (3], Modula-3 [4], and Oberon [5,
6]. The module is not just a container for a collection of objects; it-has several
purposes.

The enlarged picture of a car will not be very useful to understand its
functioning. A detailed list of the parts the car is made of will not help either. It
would be more appropriate to study the subsystems of the car separately, like
the chassis, the engine, the electric system, and so on. It is then important to
understand how these systems relate to each other. Their interactions define
the global behavior of the car.

Similarly, software systems are sometimes very difficult to understand, and
hence to implement, because they consist of many interacting components.
The programmer has to identify these components and to specify the inter-
actions between them by defining an interface for each of them. The module is
then the implementation of the component's interface and accordingly the
structural unit of the stepwise refinement process.

Interfaces play a central role in the design of a software system. They
represent an abstraction by giving a simplified view of the module to the
outside. Implementation details are not relevant to the clients of the interface.
The driver does not need to know how a car engine is built in order to press on
the accelerator. The module and its interface implement the concept of data
abstraction and code abstraction.

It is sometimes desirable to explicitly hide information in order to protect
this information. An ill-intentioned or ignorant client might invalidate program
invariants by directly manipulating visible data structures. It is preferable to
restrict access to sensitive information through a set of functions that can
maintain invariants by rejecting unauthorized operations. Similarly, a security
mechanism usually prevents the driver from engaging the reverse gear while the
car is still moving, which may damage the gearbox otherwise. Modules assure
data integrity and protection using data encapsulation and information hiding.

Interfaces also make it possible for a team to work on the same program.
Each programmer is responsible for the implementation of one or several
modules, the interfaces of which are defined at the beginning of the project. In
this way, implementers can work independently of each other, using the



interface as a contract. Modules being in development can rely on interfaces of
other modules not yet implemented. The car constructor does not have to wait
for the chassis to be built before designing the engine. He just has to plan the
exact position of the bolts and the nuts that will fix the engine onto the chassis.
Therefore, interfaces serve as protocol between programmers and help to
coordinate larger software projects.

One does not have to reinvent the wheel each time a new car is built.
Different programs may use the same algorithms or the same look-and-feel
features. Writing a user interface of an application often consists of calling the
right routines from a graphical library in the right order. Libraries make their
resources available to applications based on them, contrary to closed programs
that can only be executed as they are, incapable of sharing parts of themselves
with similar applications. Libraries are implemented as a collection of modules,
where each module can be used by different clients. The module is the unit of
reusability.

It is not necessary to buy a new car after a tire blows out. Changing the tire
or the wheel usually solves the problem. One just has to be careful to replace it
with a compatible model. Parts of software systems can also be changed
without redesigning the whole system. Modules can be partially modified
without affecting other modules in the system. They can also be completely
replaced by a new implementation of the same interface. Modules are the unit
of compilation and unit of replacement.

A module is described by a text that is comprehensible for a person, but that
cannot be executed in that form by the computer. Processors expect executable
machine code, which is hardly readable for a human. This is why several forms
of the same module are necessary. The programmer writes a module in a
high-level programming language, which is machine-independent, and then
uses a compiler to translate it to a sequence of machine-dependent binary
instructions. The textual form is named the source text (or source file), and the
translated form is the object code (or object file). Since each module can be
compiled independently of the others, one speaks of separate or independent
compilation. The distinction between separate and independent compilation is
explained below.

Separate Compilation and Interface Checking

The role of the compiler is not only to translate the source text into object
code, but also to verify that the text is well-formed, in other words that it con-
forms to the syntax and semantics of the language. The context-independent



syntax can be checked as the text is read sequentially without context infor-
mation, but checking the context-dependent syntax needs some additional
information about declared objects such as their type and locality. For this
purpose, the compiler manages an auxiliary data structure called the symbol
table. Actually, the data structure is ' more complex than a table, since it reflects
the hierarchy of nested scopes occurring in the program. Scopes themselves are
not represented by tables either, but by sorted trees of identifiers that allow
objects to be retrieved by their name.

The symbol table is constructed as declarations are parsed, and it-is removed
after the compilation of each module. Contrary to declarations, statements do
not provide context information, and consequently do not contribute to the
symbol table. They are instead directly compiled to machine code, to inter-
mediate code, or to an abstract syntax tree for later processing.

The question coming naturally to one’s mind now is: how can the compiler
- guarantee that objects visible across module boundaries are used in con-
formance with type compatibility rules? In other words: how can object
declarations from one module be visible during the compilation of another
module? Obviously, a mechanism providing a symbol table for external objects
is necessary, a symbol table extract that is stored in order to be retrieved upon
other compilations.

Some programming languages and assemblers avoid this problem by intro-
ducing external declarations informing the compiler that an object with the
given name exists and is declared somewhere outside the currently compiled
module. Usually, the external declaration mentions neither the exact origin of
the object, nor its type, which makes interface checking impossible; and even if
the type is provided, there is no guarantee that it is the right one. In that case,
one speaks of independent compilation, in contrast to separate compilation, the
latter performing full interface checking. Independent compilation will not be
considered further here, since the techniques presented in this thesis improve
the implementation of import-export mechanisms in modular programming
languages like Modula-2 or Oberon, which already guarantee type safety across
module boundaries.

This safety cannot be guaranteed by the compiler alone, as smart as it may
be, without some support from the programming language in the form of clear
concepts and adequate language constructs. Modula-2, for example, provides
this support by both the definition module and the import list A definition
module is a separate text file specifying the interface of a module. It contains
declarations of exported objects, making them available to partner modules,
also called clients of the interface. In order to access the extemnal object X
exported by the interface of module M, a client N has to insert the name M in



its import list, thereby extending the scope of the interface of M to the module
N. The qualified identifier M.X then refers to the imported object.

In Modula-2, the source text of a module consists of two files: the definition
and the implementation part. The definition part consists only of declarations
and does not contain any statements. Therefore, its compilation does not
produce code, but only a symbol table, which is linearized to a file called
symbol file. This symbol file is actually a compact representation of the interface
that will be reused to compile client modules of this interface. The compiler
restores the symbol table in memory from the symbol file each time the name
of this interface appears in the import list of the compiled module. On the
other hand, the compilation of the implementation part does not produce
persistent information, except the machine code which is written to a file called
object file.

Some implementations of Modula-2 [7, 8, 9], as well as Modula-3 [10], do
without symbol files. The symbol table is reconstructed by recompiling the
definition part each time a client imports the interface, which is less efficient,
but has the advantage to eliminate the burden of managing a supplementary
file for each module. A drawback of this method is that some interfaces may
rely on several other interfaces by reexporting imported types. Importing such
an interface forces the compiler to recompile many other interfaces, from which
only a few type declarations are needed. Depending on the module hierarchy, a
significant decrease in compiler performance may be observed. This problem
cannot occur with self-consistent symbol files, since they duplicate type decla-
rations imported from other modules (see next chapter).

In Oberon, definition and implementation parts are merged. Exported ob-
jects building the interface are marked in the text by an asterisk in their
declaration. This approach has several advantages: the programmer has always
the interface at hand, and works only on one document. This is especially
practical during the development of a module, where the definition and the
implementation must be held consistent after frequent modifications. For
documentation purposes, the definition part can be extracted automatically.
This simplification also releases the compiler from a nontrivial structural com-
parison between definition and implementation parts that is necessary to detect
defined but possibly not implemented objects.

Here is the example of a module M, client of modules A and B, exporting a
procedure Do and a variable max. First, the Modula-2 version:



DEFINITION MODULE M;
IMPORT A;
VAR max: A.Type;
PROCEDURE Dof(arg: AType);

END M.

IMPLEMENTATION MODULE M;
IMPORT A, B;

PROCEDURE Do(arg: A.Type);
VAR temp: A.Type;
BEGIN
temp := B.Transform(arg);
IF A.Greater(temp, max) THEN max := temp END

END Do;

BEGIN
max := A.Min
END M.

And then the Oberon version:

MODULE M;
IMPORT A, B;
VAR maxx: A.Type;

PROCEDURE Dox(arg: AType);
VAR temp: A.Type;
BEGIN
temp := B.Transform(arg);
IF A.Greater(temp, max) THEN max := temp END

END Do;
BEGIN

max := AMin
END M.

In Modula-2, two compilation steps (denoted by C below) are necessary. First,
the definition part M.Def is compiled producing a symbol file M.Sym. Then, the
compilation of the implementation part yields the object file M.Obj:

M.Sym := C(M.Def, A.Sym); M.Obj := C(M.Mod, M.Sym, ASym, B.Sym)

Only one step suffices in Oberon:



(M.Sym, M.Obj) = C((M.Mod, ASym, B.Sym)

Actually, it is desirable that the compiler detects and announces a modification
of the interface of M, if a previous version already exists. Therefore, the Oberon
compilation also involves M.Sym if the file can be found:

(M.Sym, M.Obj) == ((M.Mod, M.Sym, A.Sym, B.Sym)

The symbol file M.Sym is necessary for compiling clients of M (or M itself), but
it is not used for the execution of M, which only requires the object file M.Obj
(besides the object files of imported modules).

Program Linking and Loading

The module concept along with separate compilation allows to partition a
program into units that can be edited, documented, stored, distributed and
compiled independently of each other. However, when a unit is being executed,
it is not independent any longer: concrete interdependences exist between the
module and its imports. For example, the address of imported procedures must
be known in the calling module. The task of the program linker (or shortly
linker) is to merge separate object files into an executable unit in which
external references between modules are resolved. Depending on the program-
ming environment and operating system, the executable unit is stored in a file
and loaded later into memory by the program loader (or loader) for execution; or
the linked unit remains in memory for immediate execution without being
saved as a file. In the latter case, one speaks of a linking loader.

The linking and loading tasks in the Oberon System are somehow special,
because there is no clear distinction between the operating system and an
application. The Oberon System, which consists of a hierarchy of modules, is
open, in the sense that the symbol files of these modules are available to the
programmer. An application module can therefore import system modules; the
module can be linked and loaded during execution, thereby dynamically
extending the functionality of the base system. In fact, a distinction between
system and user modules vanishes.

The organization of the run-time system influences the linker in its task.
Depending on the way extemal procedures are called (indirection tables or
absolute memory addresses) and global variables are accessed, the code may
require more or less link editing work. Usually, local procedure calls use relative
addressing and accordingly do not need changes by the linker. Intemal and



external global variables are typically accessed through absolute memory ad-
dresses inserted in the code at link time.

Besides its linking function, the linker is also responsible for checking
consistency of dependent modules. Indeed, it can happen that a module
interface is modified in some incompatible way, and that clients having been
compiled prior to the modification are not recompiled. Such an error must be
detected before execution, since unforeseeable behavior might ruin the effort of
the compiler in type checking.

This consistency check needs additional information in object files. This
could be a timestamp indicating the last time the module was compiled. The
linker could verify that the chronology of the timestamps comesponds to a
topological order of the modules relatively to their import relations. Actually,
this is not a good solution since implementation modules may be recompiled
in any order, providing that the interfaces have not changed. A better solution is
to consider the timestamp of the last interface compilation. The timestamps for
the own interface and for each imported one are inserted in the object file. This
timestamping mechanism is usually adopted in current implementations of
modular programming systems.

The main drawback of this method is that a modification of an interface in a
purely upward-compatible way cannot be detected and that clients sometimes
need to be recompiled unnecessarily. The essence of the present work is to
show how these recompilations can be avoided by using a fine-grained consis-
tency check.
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Chapter 2

Symbol Files

During module compilation, object declarations are recorded in the symbol
table, which is an internal data structure of the compiler, or more-precisely, a
graph of linked records. The symbol table is discarded after every compilation,
except for the part corresponding to exported declarations that must still be
visible when client modules are compiled later on. Since this does not need to
happen in the same compilation session, and since main memory is not
unlimited, this part is externalized to a file called the symbol file, which is a
linear representation of the symbol table of the module interface. Each time a
client imports this interface, the compiler restores or intemalizes the symbol
table from the symbol file.

The exact contents of a symbol file, as well as the details of intemalization
and externalization mechanisms depend directly on the internal structure of the
symbol table, which in tum depends on the compiled programming language.
However, the global concepts and principles remain the same for all traditional
strongly-typed, separately-compilable programming languages. In the following,
Oberon-2 [11] is taken as example to describe symbol tables and symbol files.

Symbol Table

There are two main constituents of symbol tables: objects and structures.
Objects are named entities like declared constants, type identifiers, variables,
and procedures. The object's name is the only attribute by which the object is
retrieved and identified in its scope. Each object has a reference to a structure
node representing the object's type. Structures themselves are anonymous and
therefore never accessed independently in their scope, but always in con-
junction with an object they describe.

Type Graph

Structures may be shared by different objects having the same type, but objects
are unique and appear only once in a scope. A name is attributed to a type in
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order to declare objects of that type at scattered positions in a module text. The
structure representing that type is associated with an identifying object con-
taining the type name. In that case, a link exists from the structure to the
naming object. Type aliases are objects defining an alternative name for a type,
but the already existing reference from the structure to the original object is not
modified by aliases. This original name is called the canonical name of the type.
Here is a simple example of an Oberon declaration:

TYPE
A = ARRAY 2 OF INTEGER;
B=A
VAR
aA
b: B;
c: ARRAY 4 OF B;

A is the canonical name of the array type. INTEGER is a predefined type name. B
is an alias for A: an object declared as of type B is actually of type A.
Accordingly, the two variables a and b are of type A and the variable c is of an
anonymous type, an array of B (hence of A). This declaration is compiled into
the following type graph (figure 2.1), where an edge to a structure means "is of
type” and an edge back to an object means "whose canonical name is".

a b c
type type|  |type type
B ——j
” y y y
pe
A a2 e e
name
base type
A
type ; :
INTEGER :_fmi object:
name

structure:

Figure 2.1 Example of a type graph

As shown in the previous example, structures may rely on further structures: an
array consists of elements all of the same type. This element type can be a basic
type, like the element type of A, which is an integer, or it can in tum be a
composite type (also called structured type), like the element type of ¢, which is
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an array of integers. A basic type is always a predefined and unstructured type,
as opposed to a composite type, which is structured by components of further

types.
If these components of a structured type are named, as in the case of record

fields or parameters of a procedure type, the structure node also refers to
named and typed objects. In contrast to what its name could suggest, the
symbol table is a graph, and since recursive type definitions are possible, the
graph may contain cycles. Example:

TYPE
Ptr = POINTER TO Desc;
Desc = RECORD
do: PROCEDURE (VAR this: Desc; that: Ptr): BOOLEAN;
list: Ptr . :
END;
VAR
root: Ptr;

root
e
Ptr = pointer le—2"1  that
¥ 'basetype kﬂext par
Desc o> record |22 this BOOLEAN
first ield st par | type
do ¥ proc —"ﬁ—fboolean
et e
2P list

Figure 2.2 Example of a recursive type graph

The type graph describes the structure of user-defined types and objects, but
does not give any information about the locality of declarations. Nevertheless,
when an object is inserted into the symbol table, it must be checked that the
object has not already been declared in the same scope; likewise, when an
object is referenced, the object must exist in the current scope or in one of the
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enclosing ones. This information about locality is also contained in the symbol
table in the form of an additional and independent graph superimposed on the

type graph.

Scope Graph

This second graph collects the objects of a scope and allows them to be
retrieved by their name. Note that scope graphs consist of object nodes only
and, unlike type graphs, do not involve structure nodes. Indeed, a structure is
anonymous and does not appear alone in a scope, but always associated with a
named object, as reflected by the type graph.

Usually, a scope graph is a binary tree of alphabetically sorted objects, but
unsorted linear lists also yielded good results in the original Oberon compiler by
N. Wirth [12]. Indeed, when the number of objects in a scope is rather small,
which is usually the case, the gain due to the simple management of the list -
only one pointer per object and no sorting - suffices to compensate for the loss
of efficiency of the slower sequential search. Binary trees have a further
drawback over unsorted linear lists: they do not keep track of the declaration
order, which is important for formal parameters in procedure signatures and
fields in records. For this reason, a third graph, a linear list this time, is
superimposed on the binary tree for the objects whose declaration order must
be known.

Therefore, the binary tree could be seen as an optional measure to optimize
look-up operations in the symbol table only. Actually, it is also useful for a
different reason: as explained later in this thesis, it is sometimes necessary to
define a canonical order over a set of named objects, and this independently of
the declaration order that may vary over several versions of the same module.
The binary tree alphabetically sorts objects and hence simultaneously serves
two purposes: efficiency and canonical ordering. Figure 2.3 shows the scope
graphs for the same declarations as in figure 2.2:
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Figure 2.3 Example of scope graphs

The figure shows three scopes: a global one containing the objects Ptr, Desc and
root of the outermost level, then a scope which is local to the record structure
containing the fields do and Jist, and finally a scope local to the procedure
structure containing the parameter this and that. The structure nodes as well as
the dashed references actually belong to the type graph. Plain lines represent
the tree of alphabetically sorted objects. Each scope is rooted at an object or at
a structure of the enclosing scope. A global variable of the compiler named
TopScope points to the first object of the current scope. This variable is the point
where the whole symbol table is anchored in the table handler during compile
time.

When the symbol table of an imported interface is internalized from a
symbol file, a new module object is inserted in the global scope of the currently
compiled module. The scope of the interface is then attached to this module
object. Each time a designator of the form MA is met during compilation, the
object M is searched in the global scope; if M is found and is a module object,
the object A is then searched in the scope attached to M.

Object and structure nodes are implemented as compile-time records linked
by pointer fields (see chapter 4). The kind of object - constant, type, field,
variable, procedure, parameter, and so on - is encoded in a field of the object,
as well as the visibility of the object (intemal, exported, exported as read-only).
Similarly, the form of the structure - predefined type, pointer, record or array -
is stored in a field of the structure, along with corresponding attributes like
number of array elements or extension level in the record hierarchy.
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The symbol table consisting of the information described above is machine-
independent and reflects the textual declaration only, but other values are
calculated by the compiler and inserted before and during code generation in
the symbol table as well. One says that the symbol table is augmented by
machine-dependent attributes. Among these attributes are the storage addresses
of variables, allocation sizes and alignment factors of types, and entry points of
procedures.

In order to produce a symbol file, the global scope graph of the symbol table
is traversed, and each object that is marked as being exported is written to the
file. The object alone does not suffice, but all related information that is
necessary for using the object from a client module must also appear in the
symbol file. In particular, the type of the object has to be extemalized, too.
More precisely, the complete type graph rooted in the object has to be
linearized and written to the symbol file.

A Brief History
Symbol File Classification

Symbol files have not always been implemented the same way. A paper by J.
Gutknecht [13] classifies the different file formats by using two criteria. The first
one concemns the self-consistency of the file. If the symbol file of a module only
describes objects declared in that module, objects being of some imported type
are incompletely described. The missing information can only be completed by
importing further symbol files. In that case, the first symbol file is not self-
consistent and this method is said to be of class A. Note that this reexport of
imported objects is only possible for types: constants, variables or procedures
cannot be reexported. In contrast, if the symbol file flattens the module
hierarchy by replicating parts of imported interfaces, the file is self-consistent
and hence of class B. The module hierarchy is flattened in the sense that
declarations stemming from modules at different levels in a module hierarchy
are described together in the same symbol file. Thereby, clients do not have to
internalize several symbol files in order to obtain the complete type information
of an interface.

Using class-A symbol files in a system with a high hierarchy of modules may
result in a serious degradation of compilation speed. Imagine for example an
operating system whose resources are made available to applications through
module interfaces, as it is the case in the Oberon System [14]. Some types
declared in bottom madules of the hierarchy (e.g. Display.Frame in the Oberon
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System) are imported and reexported by many interfaces. Each time a module
importing such an interface would be compiled, the symbol file of the low-level
interface declaring the type would have to be intemalized. In the worst case, all
interfaces of the operating system must be loaded to compile one application
module.

The second classification criterion is the method used to encode the
information in the symbol file. When the syntax used is very similar to the
syntax of the source text, then the file is of class a. In the extreme, the symbol
file is even replaced by the definition module itself, like proposed by Foster [7]
and used in UCSD-Pascal [15] and Modula-3 [10]. The definition module being
not self-consistent, the technique corresponds to the Aa class with the draw-
back explained above. That means that the definition module is recompiled
each time it is directly or indirectly imported. When the symbol file is a
compact representation of the symbol table, it is of class B. A scanner and a
parser are necessary to build a symbol table from a class-a symbol file, whereas
a very simple and efficient parser can directly load a class-B symbol file into a
symbol table.

Symbol File Linearization

The first Modula-2 compiler developed at ETH [16] used a Ba technique, but
the next generation of Modula-2 compilers [17] have used the more efficient
BB method described by Gutknecht [13]. This method relies on a postorder
traversal of the type graph, in the sense that all components of an object appear
in the file before the object itself. For example, the type of an object is listed
before the name and attributes of the object, record fields appear prior to their
enclosing record type, and parameters prior to their procedure type. Since types
may be shared by different objects, they are numbered as they appear in the file,
and objects reference them with the corresponding number, therefore avoiding
to list the same type several times. The first few reference numbers are reserved
for predefined types. The postorder traversal of an acyclic type graph guarantees
that a type is always listed before the number referencing it. This facilitates the
reconstruction of the symbol table: a reference number can be replaced
immediately by the type it represents as it is read from the symbol file, since the
structure node for this type could already be allocated. Unfortunately, this nice
property is not guaranteed any longer in case of cyclic type graphs. The
following declaration illustrates the problem:
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TYPE
Ptr = POINTER TO Rec;
Rec = RECORD next: Ptr END ;

According to the rule above, the pointer type Ptr cannot be listed before the
record type Rec, since Rec is the base type of Ptr. On the other hand, Rec has a
component next of type Ptr, so Ptr should be listed first. Obviously, this legal
Modula-2 or Oberon type definition will require special treatment when ex-
ported. Note that this recursive type definition also needs special care from the
compiler to be parsed cormectly, since the identifier Rec is used prior to its
declaration. Actually, this is the only exception to the Oberon rule stating that
an identifier must be declared before being used. The solution to the problem
is to break the cycle within the graph, to write the new acyclic graph to the file
using the described method, but to leave a hint explaining how to close the
cycle again when reading the file. More concretely, the graph of the example
above is written to the file in the following acyclic form:

TYPE

Ptr = #16 POINTER TO #0;

Rec = #17 RECORD next: #16 END ;
FiX-up

#16 POINTER TO #17;

The first free reference number (#16) is implicitly assigned to the pointer type
(reference numbers O to 15 are reserved for predefined types). This pointer type
is temporarily undefined in order to point to a dummy predefined type with
reference #0. The next unused reference number (#17) is implicitly assigned to
the record type. The type of its field refers to the pointer type through the
reference #16. The definition of the pointer type #16 can be corrected later to
point to the record type #17, as indicated in the FIX-UP section.

In 1986, the first Oberon compiler written by N. Wirth [12] for the Ceres
workstation [18] was derived from a Modula-2 compiler by the same author.
Naturally, the existing technique for generating symbol files was adopted. At
that time, definition modules still existed in Oberon. They were eliminated in
1990 because of the complexity they caused in the compiler (see next section),
besides the advantages for the programmer not to have them, as explained in
chapter 3. For compatibility reasons, the portable Oberon-2 compiler called OP2
which | developed in 1990 [19] used the same symbol file format. OP2 is
described in chapter 4.

Unfortunately, this technique has one major drawback: it is not able to
linearize cyclic graphs, except those where the cycle is created by a forward
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pointer declaration, as shown in the example above. More general declarations
with recursive type definitions - like the one in figure 2.2 for example - cannot
be exported. The fix-up trick is easy to apply for a pointer type, since only one
reference in the symbol table - the base type of the pointer - has to be
patched. The general case requires the patch of several scattered references for
each cycle.

R Griesemer showed a more natural method of linearizing symbol tables
[20]. The method relies on a preorder traversal of the type graph. The idea is
that the linear description of an object in the file may open a parenthesis
containing the complete description of a component of the object. The
description of the object is resumed after closing the parenthesis. If the inserted
description recursively refers to the enclosing object, a reference number is used
instead, thereby breaking the cycle. This reference number is also used for
further nonrecursive references to this object as in the postorder method. The
rule stating that all components of an object have to appear in the file before
the object itself is relaxed, since the components will be described in the same
order as they appear in the declaration of the object. The previous example of a
forward pointer declaration would be linearized in the following way:

TYPE
Ptr = #16 POINTER TO (Rec = #17 RECORD next: #16 END) ;

The example in figure 2.2 would yield the following sequence, where #2 stands
for the predefined type BOOLEAN:

TYPE
Ptr = #16 POINTERTO
(Desc = #17 RECORD
do: #18 PROCEDURE (VAR this: #17; that: #16): #2;
list: #16
END);
VAR
root: #16;

The externalization algorithm used in the project of this thesis and described in
more details in further chapters uses a preorder traversal of the symbol table
and produces a symbol file of the BB class. This technique simplifies the
corresponding internalization algorithm and simultaneously eliminates the im-
plementation restriction disallowing the export of recursive type declarations,
which is not forbidden in the Oberon language.
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Chapter 3

System Consistency and Client Invalidation

A system of separately compiled modules is said to be consistent if each object
being imported by some client module is effectively supplied by its exporter
module. Furthermore, the effective type of each imported object must comply
with the type the object had when the client was compiled. In other words, the
implementation of each extemal object must be compatible with the object
definition used to compile each client module of that object. Note that
"compatible” is weaker than "identical”. Indeed, in some cases as shown below,
a slight modification of an object does not have any effect on its clients and the
system remains consistent. However, most programming environments do not
implement consistency checks with such a fine granularity. They usually do not
consider objects of an interface separately, but interfaces as a whole; they
declare a system inconsistent if a module interface supplied at link time is not
identical to the one seen at compile time by a client of it. This rule widely
applied to detect inconsistencies is actually too strict and often requires
unnecessary recompilations in order to maintain system consistency.

Consistency Checking

A strongly-typed, separately-compiled programming language without consis-
tency checking at link time is comparable to a car equipped with airbags, but
without brakes. In other words, it does not make much sense. All the effort
spent for security at compile time can be ruined at link time, since inconsistent
modules cannot be detected. Executing them can have unpredictable and
destructive effects on the rest of the system. One cannot speak of a safe
language implementation without automatic consistency checking at link time.
There are many different ways of implementing these checks. An important
criterion is that checks that can be made by the compiler should not be
repeated by the linker, unless it is necessary, and that the former should assist
in reducing the effort required by the latter.
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Granularity of the Checks

A system of modules may remain consistent after the modification of an
interface in a compatible way, even if the clients of this interface are not
recompiled. Here is an example of such a modification. First, the original
version:

MODULE A;
TYPE
Ptr¥ = POINTER TO Desc;
Descx = RECORD
visiblex, hidden: INTEGER;
END;
VAR
px, q%: Ptr;
BEGIN
NEW(p); NEW(q); ...
ENDA.

MODULE B;
IMPORT A;
VAR i: INTEGER;

BEGIN
i := Ap.visible

END B.

Module A is compiled first, then module B. The name and the type of the
internal field hidden in the record type A Desc are then modified in the following
way:

Descx = RECORD
visiblex: INTEGER;
newhidden: LONGINT;

END;

Module A is recompiled. However, module B does not need to be recompiled
since the modification of a hidden field is not visible for B and has no effect on
the use B makes of A Desc. The system of modules remains consistent, and 8 is
not invalidated. The fact that an invalidation occurs does not depend only on
the modification itself, but also on the way the imported object is used. The
same modification of A has no effect on 8, but invalidates the module C below:
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MODULE C;
IMPORT A;
BEGIN
Apr:=Agr
END C.

If module C is not recompiled, the record assignment will not copy enough
bytes, since the modification altered the size of A Desc. On the other hand, if the
number of bytes to be copied is determined at run time from the type
descriptor of A Desc, C does not need to be recompiled.

As shown by the examples above, system consistency can be defined at dif-
ferent granularity levels, from the entire interface down to object components,
and it may also take into account implementation issues. The complexity of
consistency checks can therefore strongly vary from one programming envi-
ronment to the other, depending on the method used. Checks with coarse
granularity are very simple and efficient to perform, but they negatively influence
the productivity of the programming environment since recompilations are
more often requested than actually necessary. On the other hand, the cost of
very fine-grained checks is not always compensated by rarely avoided recom-
pilations.

Compilation Dependence Graph

Independently of the checking technique, a recompilation of the complete
system always makes it consistent, as long as the modules are recompiled in a
correct order. Since an imported module has to be compiled before an
importing module, the partial order defined by the import-export relation is also
the compilation order. The system of modules forms a directed acyclic graph
called the compilation dependence graph, where the vertices are compilation
units and the edges export relations. In programming languages with separate
definition and implementation parts, like in Modula-2, reciprocal imports (in
implementation parts only) are allowed, which apparently introduces cycles in
the compilation dependence graph making a compilation impossible, as shown
in figure 3.1.

DEFINITION MODULE A;
TYPE T=RECORD a: INTEGEREND ;
END A.
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IMPLEMENTATION MODULE A;
IMPORT B;

B.b.a:=0;

END A,

DEFINITION MODULE B;
IMPORT A;
VARD: AT;

END B.

IMPLEMENTATION MODULE B;
IMPORT A;

END A

Figure 3.1 Cyclic import graph

In fact, each vertex of the cyclic import graph must be split in two subvertices
yielding two separate acyclic graphs with edges from the definition graph to the
implementation graph only, since an implementation part never exports any-
thing (figure 3.2). It is therefore possible to first compile all definition modules
in topological order, thereby producing the needed symbol files. The compi-
lation of implementation modules may then occur in any order.
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Figure 3.2 Corresponding acyclic compilation dependence graph

Reciprocal imports are not possible in Oberon, since definition and imple-
mentation parts are merged into one module. The import graph is therefore
identical to the compilation dependence graph. Actually, cyclic import is also
possible but not encouraged in Oberon, since it requires several editing/
compiling sessions on the same module and surely does not reflect a clean
programming style.

Using Keys for Consistency Checks

In most programming environments with separate compilation, consistency is
guaranteed by a very simple rule stating that every client of an interface has to
use exactly the same version of that interface. More practically, a unique symbol
file for each module is used for all subsequent client compilations. In order to
allow a check at link time, each symbol file contains the timestamp of its last
compilation, which is a unique number derived from the date and time of the
compilation. It may also be a number delivered by a random generator. The
word key is often used in place of timestamp. If a module interface is modified
and the module is recompiled, its symbol file receives a new key.

The key of a symbol file is copied to the object file of a compiled module
using this symbol file. Note that self-consistent symbol files reexporting parts of
further interfaces do not only contain their own key, but also the keys of these
imported interfaces. So, each object file keeps track of the keys of all directly or
indirectly imported interfaces, besides its own key. Example:
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MODULE A; MODULE B; MODULE C; MODULE D;
IMPORT A; IMPORT AB; IMPORT C;
TYPET*=...; VAR ux: CHAR; VARv#%: AT; VAR wx: CHAR;
Akey B-key C-, Akey D-key
T=.. u: CHAR VAT w: CHAR
A.Sym B.Sym C.Sym D.Sym
Akey B-key C-key D-key
A-key A-, B-key A-, C-key
A.Obj B.Obj C.Obj D.Obj

Figure 3.3 Key lists in symbol files and in object files

The linker compares the key lists in the imported object files of the modules
being linked. An inconsistency is detected if the key of a module has different
values in different object files. This occurs if a client of an interface is not
recompiled when this interface has been recompiled and has received a new
key. Consistency checking at link time is thereby reduced to the fast compa-
rison of keys, one for each imported module.

Note that the keys of indirectly imported modules only would be sufficient
for checking consistency at link time, but the keys of both directly and indirectly
imported modules are listed in object files for simplicity reasons.

In implementations of Modula-2 using symbol file keys, the compilation of a
definition part always results in a new symbol file with a new key, thereby
invalidating clients of this interface, whereas compilation of an implementation
part only produces a new object file without side effect. This is different in
Oberon: remember that the compilation of an Oberon module produces both a
symbol file and an object file. The original Oberon compiler [12] needs to
compare the new symbol file with the old one in order to decide whether a
new key is required. It would not be acceptable that the compiler generates a
new key each time an implementation is slightly modified and recompiled. So,
the newly generated symbol file is only definitively stored on disk if it is really
different. Symbol files are written in a canonical form to allow an efficient
byte-stream comparison.

In its very first version [21], the Oberon language had separate definition and
implementation modules compiled in the same way as Modula-2 modules, but
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with one major exception: the compilation of an implementation module could
also generate a new symbol file and, as a consequence, invalidate clients. The
problem was that the definition module was only defining visible fields of
records, whereas the implementation part had to reprocess each record defi-
nition and possibly complete it with hidden fields. The compiler could therefore
not always determine the size of an exported record by compiling the definition
part only, so that a new corrected symbol file was generated after compiling the
implementation part. Merging the two parts in one module elegantly solved the
problem and eliminated the burden of checking the two declarations of the
same record type for inconsistency, which involved a nontrivial recursive struc-
tural comparison.

Restoring System Consistency

Once a client has been invalidated, the system of modules becomes incon-
sistent and cannot be loaded before consistency has been restored. Client
invalidation always occurs after the interface of a supplier module has been
modified and recompiled, which generates a new symbol file for that module.
Just recompiling the invalidated client does not always restore system consis-
tency, since the interface of that client might reexport parts of the previously
modified interface. In that case, recompiling the invalidated client results in a
new symbol file for the client, which in tum invalidates further clients of it.

Trickle-Down Recompilations

This is particularly annoying if the modification concems a basic interface, an
interface at a low level in the system. Indeed, a basic interface often exports
types and routines widely used in the system; its modification can cause
trickle-down recompilations (recompilations triggering further recompilations)
affecting a large portion of the system and thereby annihilates the benefits of
separate compilation. Unfortunately, this happens quite often, because a basic
interface is defined very early in a project and the abstraction it represents is not
always well understood at that stage. As more clients of it are implemented,
refinements of the interface are necessary, causing trickle-down recompilations.
Sometimes, recompilation is not sufficient or, in fact, not possible at all. This
occurs, for example, when the component of an interface has been deleted but
is still referenced by a client module, or when the formal parameter list of an
exported procedure has been extended. In that case, the client needs editing
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before being recompiled. This differentiates the source invalidation from the
object invalidation; the latter class requires only a recompilation of the un-
changed source text. Obviously, object invalidation is preferable to source
invalidation, since consistency cannot be restored automatically without the
intervention of the programmer in case of source invalidation.

Benefits of Tools

Unfortunately, the kind of invalidation depends intrinsically on the nature of the
modification and cannot be controlled by tools, as smart as they might be.
However, tools can help predicting the effect of a planned modification, or
finding the modules affected after the modification is accomplished. They can
also limit the recompilation to those modules that have really been invalidated.

A programmer, manually restoring the consistency of a module set, would
probably follow the compilation dependence graph, starting from the first
invalid module up to the top level modules of the hierarchy, while recompiling
all visited modules. In spite of the danger of forgetting some of them, this is the
right thing to do in the case of a coarse-grained consistency check on the
interface level. However, if the linker uses fine-grained checks, it would be a
waste of time to proceed in this way, because many modules would be
recompiled unnecessarily. Indeed, the trickle-down recompilations may stop
before reaching the top level modules of the graph, since the propagation of
recompilations is dependent on the granularity of the consistency checks.
Example:
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MODULE A; MODULE B; MODULE C;
TYPE IMPORT A; IMPORT B;
Tox%=...; VAR xx*: ATO; ..Bx..
Tx=..:
Coarse-grained checks:
exported: Ackey A-, B-key C-key
new T1 recompilation recompilation recompilation
new A-key ®  new B-key ®  same C-key
Fine-grained checks:
exported: T0,T X, A.TO
ilati
newTl = recompilation not recompiled not recompiled

new T1, same TO
Figure 3.4 Granularity of the checks and number of recompilations

Using consistency check at the interface level may require more recompilations
than when using consistency checks at the object level, as shown in figure 34;
with coarse-grained checks, the modification of type AT7 and the recompilation
of its module A result in a new key for A, which requires the recompilations of
modules B and (, although they do not use AT7. In contrast, with fine-grained
checks, the clients of A do not need to be recompiled since they do not use the
modified item.

Considering the number of interdependences, the programmer cannot de-
cide by himself whether a client module needs recompilation, and cannot even
tell whether a software system is consistent, unless he tries to link it. Clearly,
the use of tools is compulsory to obtain the maximal gain out of a fine-grained
consistency check method, especially if the first goal is to avoid redundant
recompilations.

Previous work has sometimes concentrated too much on such tools while
keeping old and unsafe module linkers unchanged. This is a questionable
approach, since it is up to the programmer to use these tools performing the
consistency checks. If he does not, the safety of the system is not ensured.
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Background

There is not much literature to be found on the subject of link-time type
checking of strongly-typed, separately compiled languages. Most work has been
done between 1984 and 1989, with a peak in 1986. Still, even if research seems
to have stopped by then, no entirely satisfying solutions have been presented
yet.

Checksum Versus Timestamp

In 1984, as C. Bron, E. J. Dijkstra, and T. J. Rossingh [22] were about to
implement link-time checking in their programming environment using a sim-
ple timestamping mechanism, they realized that this would only work in a
universal module space. With the envisaged method, the symbol file (called
specification file in Modular Pascal) of each interface would have been time-
stamped so that the linker could have checked that the code of each client is
younger than the interface it relies on. But consider the situation where two
different projects, A and B, are under development, each one in a different
module space (in a different subdirectory of the same hierarchical file system,
for example), and both of them using the same name M for two unrelated
modules. If both modules M have been incidentally compiled at about the
same time, and for some obscure reason, the object file M Obj of A space is
accidentally moved to B space, thereby replacing the correct M.Obj of B space,
the linker will not be able to detect the inconsistency, because the timestamp
of the erroneous M.Obj will be in a valid range.

The above observation convinced the authors to implement a different
technique. For every interface a checksum is calculated, which is supposed to
change with every change in the interface. The object file of every client module
of this interface contains the interface checksum. At link time, the checksum of
the effectively supplied interface must be identical to the one expected by the
client.

Mesa, Modula-2, and Oberon use the same checking mechanism with the
difference that the checksum is unigue, in that it is derived from the date and
time the interface is compiled. Actually, this is not a checksum - it is called key
- since it does not depend on the contents of the interface. This has the
advantage to work well in different module spaces, to be simpler and more
efficient (no checksum to be computed), but the disadvantage that an interface
can never be restored to a previous stage. For example, an accidentally deleted
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symbol file cannot be recovered by recompiling the corresponding interface
without receiving a new key, and thereby invalidating clients.

At about the same time, M. Rain proposed a solution involving both
timestamps and checksums [23). Symbol files, here called unit dictionary, are
given a timestamp at creation time. Before each recompilation, the old unit
dictionary is loaded into the cache dictionary, some kind of global symbol table,
if it is not already present. During this operation, the compiler computes a
checksum of the dictionary being loaded. As the compiler produces the new
dictionary, it also computes a checksum in the same way. The dictionaries are
considered the same if the checksums are equal. In that case, the old time-
stamp is reused for the new compiled unit.

Actually, M. Rain does not explain why he is using both timestamps and
checksums. The checksum could replace the timestamp in the symbol file.
Incidentally, note that the test at link time is very different for timestamps or
checksums. On the one hand, each object file has only its own timestamp and
the linker checks that this timestamp is younger than the one of every imported
object file. On the other hand, each object file contains its own checksum and
a list of checksums of imported interfaces, and the linker checks that all
effectively supplied checksums are equal to the expected ones. So, the use of
checksums is slightly more expensive but eliminates the problem of multiple
module spaces.

Enhancing the Granularity

The main drawback of the above methods is the very coarse granularity of the
corresponding link-time and compile-time checking. Changing a single line in
an interface may trigger massive recompilations. In 1986, W. T. Tichy presented
his smart recompilation algorithm to solve this problem [24]. The algorithm
analyzes the effect of a modification in a module by computing a change set for
the definition part of this module and a reference set for each dependent
implementation part. The change set is computed each time an interface is
recompiled by comparing the old and new symbol files, and consists of those
objects that were either added, changed, or deleted. The reference set records
the objects being imported by an implementation part. If the intersection of
these two sets is empty, then a recompilation of the considered imple-
mentation part is not necessary.

The cost of computing the change sets is not negligible and is reported to
be, on average, less than a third of the cost of a compilation. The technique is
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not fully integrated in the compiler, but requires two separate tools in con-
junction with the Make utility of UNIX [25].

R Hood, K. Kennedy, and H. A. Miiller extended the smart recompilation
algorithm in order to determine the effects of a change not only on the direct
clients of an interface, but also on its indirect ones [26]. The improved
algorithm, called global interface analysis algorithm, propagates the change set
along the compilation dependence graph, starting from the vertex of the
modified interface. The change set is filtered through the contents of each
traversed vertex, before being propagated to children vertices. More precisely,
the change set is first filtered through the list of imported objects (i.e. the
intersection of the change set with the set of imported objects is calculated). A
nonempty result indicates that the module needs to be recompiled. The Tichy
algorithm is then used to analyze the effect of this recompilation. The new
change set is then filtered through the list of exported objects and propagated
to the children.

The global interface analysis algorithm does not work directly on the object
files, but on a private data structure. This requires some preprocessing on a
well-defined set of modules, like constructing the compilation dependence
graph or computing the filters for each vertex. The problem with this approach
is that the auxiliary data structure has to be kept consistent with the system of
modules under development. If a new module is added, for example, the data
structure has to be recomputed. The paper does not specify how this is
achieved. It neither mentions any safety aspect. The algorithm is (to be)
embodied in an editor which interactively displays a list of modules affected by
incremental changes. It is not clear what happens if a module is edited using
another editor and then recompiled. The loader probably does not detect
inconsistencies.

Integrating Type Information into Object Files

H. Eidnes, S. O. Hallsteinsen, and D. H. Wanvik implemented a smart separate
compilation facility that has been used since 1983 in the CHIPSY programming
environment for the CHILL language [27]. In contrast to the global interface
analysis algorithm described above, the method integrates the information
needed for the checks into the object files. This eliminates the burden of
keeping a separate data structure up-to-date. Furthermore, the exported symbol
table information is also stored in object files and not in separate symbol files.
Like Oberon, CHILL has no textually separate interfaces.
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Each object file in CHIPSY contains an array of exported objects (the export
interface), an array of imported objects (the import interface), and a timestamp
which is given to the object file when the module is compiled for the first time.
With each exported object is associated a version counter and symbol table
information. An imported object has a version counter and a cross-link to the
exporter. The cross-link consists of a file name, a timestamp, and an array index,
uniquely identifying the imported object. When a module is recompiled, the old
timestamp is reused, and the new export interface is compared to the old one.
If an exported object is modified, its version counter is incremented, but the
object retains its position in the array. If an exported object is deleted, it leaves
an empty slot in the array. Global type consistency is guaranteed at link-time if
all cross-links to the same exporter have the same and correct timestamp, and if
in each pair of imported and exported objects, the array index, as well as the
version counter, have the same values.

This technique has some drawbacks caused by the fact that the history of
development of a module is contained in its object file. If, for example, an
object is removed from an interface and reinserted later, it is considered as a
new object and it receives a different amay index, thereby invalidating all the
clients of this object. Furthermore, the problem in conjunction with multiple
module spaces is not solved. Indeed, a module and its copy may be edited and
recompiled with their clients in two different module spaces. The same object
modified in two different ways sees its version counter being incremented by
one in both spaces. If the duplicated module is copied back to the original
space, recompiled clients become inconsistent and the linker cannot detect the
problem.

The Modula-2 compiler from Digital's Western Research Laboratory for VAX
and MIPS DECstations [9] implements link-time type checking by a tool called
intermodule checker that is run separately from the linker. The compiler writes
the type information of each exported and each imported object in the object
file. The tool verifies by structural comparison that the same type information is
used throughout the system of modules to be linked.

. The latest version of the Modula-3 compiler from Digital's System Research
Center [10] seems to use a similar technique as the one presented in chapter 6
of this thesis. [it should be stated that | presented the idea of this thesis during
an internship at DEC SRC in summer 1990.]
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Motivation

In 1986, W. Tichy noted in a paper [24] the consequences of using slow
compilers: "With modern high-level languages, redundant compilations are a
serious obstacle. The processing cost of making a minor change or adding a
few declarations to a large system may be so great that it retards the growth
and evolution of the system. At the very least, it imposes hours of idle time on
development teams while everything is periodically recompiled from scratch.
High compilation costs also tend to convolute system structure, because they
force programmers to incorporate changes in ways that minimize the number
of recompilations, rather than preserve well-structuredness.”

Knowing that the Oberon-2 compiler [19] for MIPS processors [28] consis-
ting of 9 modules recompiles itself on a Silicon Graphics' Indigo® (MIPS R4400,
150 MHz) in about 1.5 second user time, one could think that the statement
above is not true any longer, and that all the care taken to avoid recompilations
is not justified any longer, since compilers have become so fast now (which is
partly due to faster modern workstations).

Unfortunately, there will always be slow compilers and inefficient program-
ming environments, but the principal reason why this statement, especially its
second part, is still true today comes from a completely different consideration.
Indeed, the style of programming and the architecture of software systems have
radically changed in the last few years. In the past, programs consisting of a set
of modules used to be considered as a complete whole. These programs had to
be used as they were, any modification or accommodation to the context being
impossible. As shared libraries and dynamic loading become more widespread,
a different kind of software systems seems to emerge. These systems consist of
libraries of modules and serve as resource and base for future applications that
are still unknown when the system is compiled. An application developed later
can dynamically link and load modules of the library.

As developer and manager of a library, it is important to be careful not to
invalidate clients unless absolutely necessary. Indeed, it is always unpleasant to
have to explain to a client that his software will need a complete recompilation
if he uses the new version of a library. In the extreme case, some clients are
even unable to recompile their programs, because they simply lost the sources.

Hence, a slightly different goal is pursued today: instead of reducing the
number of recompilations, which are cheap now, one tries to minimize the
number of invalidations, which may have severe consequences when a library is
used world-wide by many unknown clients. Even if the goal has changed, the
means to reach it are approximately the same, because avoiding an invalidation
also avoids a recompilation. As shown above, using fine-grained checks is
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always better in terms of number of recompilations. However, the costs of a
consistency check vary depending on the granularity of the checks, as deter-
mined by the definition of consistency. Finer granularity causes higher costs. A
trade-off between flexibility in use and complexity of implementation must be
chosen.

The role played by tools has also changed. In the past, research in the area
aimed at producing tools capable of automatically restoring consistency after an
invalidation in a system of well-defined modules. Today, it is impossible to
restore the consistency since the invalidated clients are not known. Tools,
whose use remains optional, have a secondary role now. In this work, more
attention is given to the compiler and the associated linker. These have to
collaborate in order to maintain integrity.
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Chapter 4

The Portable Oberon-2 Compiler OP2

Two new models for compiletime and linktime consistency checking of
separately compiled modules are presented in the following chapters. Both
models have been implemented in the portable Oberon-2 compiler OP2 [19]
described in this chapter. OP2 was developed to port Oberon onto commer-
cially available platforms. Like the original Oberon compiler [12], from which it
was derived, OP2 is itself written in Oberon and its first version produced code
for the Ceres workstation [18]. Since then, OP2 has been modified slightly to
accept Oberon-2 programs [11] and different code generators have been writ-
ten to cover today's most commonly encountered processor architectures [29].

Architecture of the Compiler

In contrast to other programs written in a high-level programming language, a
compiler cannot be merely ported. The program has to be modified to produce
different code for the new machine the language is to be ported to. Therefore, it
is worthwhile paying attention to portability before constructing the compiler.
The time invested in designing a well-structured compiler, separating machine-
independent from machine-dependent parts, is rewarded many times when
porting it. However, many compilers developed with the goal of being portable
have tumed out to be inefficient in terms of compilation speed and quality of
compiled code. Portability and efficiency have been given equal importance in
OP2. Therefore, automated retargetable code generation has not been consi-
dered. More conventional and faster techniques have been chosen instead.

.In a single-pass recursive-descent compiler, all the tasks of the compilation
are executed "simultaneously™: for example, actions of syntax analysis, code
generation and type checking are interleaved. Because all required attributes are
passed on the procedure stack, no intermediate representation of the source
text is needed between the different tasks. This makes the compiler compact
and efficient, but not easily portable. Indeed, since machine-dependent and
machine-independent tasks are closely coupled, it is difficult to modify the
compiler for a new machine. One solution to the problem is to clearly separate
the compilation tasks into two groups: a front-end consisting of the machine-
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independent tasks (lexical analysis and syntax analysis, type checking) and a
back-end consisting of the machine-dependent tasks (storage allocation, code
generation).

Effectively, compilation thereby becomes a two-pass process, although the
source text is processed only once. The interface between front-end and
back-end is a complex data structure in memory instead of a sequential file,
taking advantage of large stores. Only the back-end needs to be modified when
the compiler is ported. The front-end enters declarations into a symbol table
and builds an abstract syntax tree representing the program statements. If no
errors are found, control is passed to the back-end, which generates code from
this syntax tree. Since this structure is guaranteed to be free of structural errors
and type inconsistencies, type checking and error recovery are not part of the
back-end, which is a noteworthy advantage. Only implementation restrictions
must be checked for.

Another advantage of an intermediate representation is that additional
passes may be inserted to improve code quality. Such an optimization phase
cannot be embedded easily in a conventional single-pass compiler, if at all.
Also, an intermediate representation reduces the effort of porting several
programming languages to a new target architecture, since a new back-end can
be used with different existing front-ends.

Module Structure

The front-end and the back-end are implemented separately as a set of nine
modules, all written in Oberon. The lowest module of this hierarchy is OPM,
where M stands for machine. One must distinguish between the host machine
on which the compiler is running, and the target machine for which the
compiler is generating code. Most of the time, the two machines are the same,
except when using a cross-compiler. OPM defines and exports several constants
used to parametrize the front-end. Some of these constants reflect target
machine characteristics or implementation restrictions. For example, these
values are used in the front-end to detect overflow conditions in the evaluation
of constant expressions. OPM has a second function. It works as the interface
between the compiler and the host machine. This interface includes procedures
to read the text to be compiled, to read and write data in symbol files, and to
display text (error messages, for example) on the screen. All these input and
output operations are strongly dependent on the operating system. The com-
piler is structured in such a way that it can easily be ported to environments
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other than the Oberon System. If the compiler resides in the Oberon System
environment, the host-dependent part of OPM is based on the standard
modules Texts and Files.

OPM

Parameters

Figure 4.1 OP2 Module import graph

The topmost module OP2 is very short. It is the interface to the user, and
therefore host machine-dependent, since input parameters like module file
names and compiling options have to be read through host-dependent rou-
tines. Like the host-dependent part of OPM, this module remains unchanged
when the compiler is used in the Oberon System environment. It first calls the
frontend with the source text to be compiled as a parameter. If no error is
detected, it then calls the back-end, passing the symbol table and the syntax
tree that were generated by the front-end as parameters.
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Between the highest and the lowest module, one finds the front-end and the
back-end, which consist of four and three modules, respectively. During compi-
lation, there is no interaction between these two sets of modules. The symbol
table and the syntax tree are defined in module OPT and are accessed both by
the front-end and the back-end. This explains the presence of import arrows
from OPT to back-end modules visible in the import graph of figure 4.1.
However, there is no transfer of control, such as procedure calls (some will be
introduced later by the new consistency-check models).

The front-end is controlled by module OPP, a recursive-descent parser. Its
main task is to check the syntax and to call procedures constructing the symbol
table and the syntax tree. The parser requests lexical symbols from the scanner
(OPS) and calls procedures of OPT, the symbol table handler, and of OPB, the
syntax tree builder. OPB also checks for type compatibility.

The back-end is controlled by OPV, the tree traverser. It first augments the
symbol table with machine-dependent data (using OPM constants), such as the
size of types, the address of variables, or the offset of record fields. It then
traverses the syntax tree and calls procedures of OPC, the code generator, which
in tun synthesizes machine instructions using procedures of OPL, the low-level
code emitter.

This module structure resuits in a fully portable front-end, as well as a
host-machine independent back-end.

Symbol Table

The symbol table contains information about declared constants, variables,
types, and procedures, as explained in chapter 2. It is built by the front-end. The
front-end uses it to check the context conditions of the language and the
back-end retrieves type information from it. In OP2, the symbol table is a
dynamically allocated data structure with three different component types:

TYPE
Object = POINTER TO ObjDesc;
Struct = POINTER TO StrDesc;
Const = POINTER TO ConstDesc;

An Object is a record (more precisely a pointer to a record), which represents a
declared object, such as a variable, a named constant, a procedure, or a named
type. The object declaration in the compiler is the following:
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ObjDesc = RECORD
left, right, link, scope: Object;
name: OPS.Name; (x identifier »)
leaf: BOOLEAN; (¥ procedure: leaf; variable: candidate to be allocated in register )
mode: SHORTINT; (x constant, type, variable, procedure, or module *)
mnolev: SHORTINT;  ( negative module no ifimported, level no if local #)
vis: SHORTINT;  (x visibility: not exported, exported, read-only exported »)
typ: Struct; (x object type x)
conval: Const; (¥ numeric attributes x)
adr, linkadr: LONGINT  ( storage allocation *)

END;

The name of the object stored in the object itself (field name) is used to retrieve
the object in its scope. Each scope is organized as a sorted binary tree of
objects (fields left and right) and is anchored to the owner procedure (field
scope), which in turn belongs as an object to the enclosing scope. Parameters of
the same procedure, fields of the same record and variables of the same scope
are additionally linked sequentially (field /ink) to maintain the declaration order.
Procedures that do not call any further procedures (leaf procedures) are marked
by the front-end (flag leaf), as are variables whose addresses are never needed,
and which therefore can be allocated in registers. The back-end may use this
information for improving code quality. Note that this information would not
be available in a single-pass compiler. An object always has a type, described by
a StrDesc record, pointed to by a field fyp in the object:

StrDesc = RECORD
form, comp: SHORTINT;  ( basic or composite type, type class »)
mno: SHORTINT; (¥ imported from module no mno *)
extlev: SHORTINT;  ( record extension level x)
ref, sysflag: INTEGER;  (x export reference, system flag x)
n, size: LONGINT;  (x number of elements and allocation size »)
tdadr, align: LONGINT;  (x address of type descriptor, alignment factor x)
txtpos: LONGINT;  ( text position »)
BaseTyp: Struct; ( base record type or array element type »)
link: Object; (* record fields or formal parameters of procedure type »)
strobj: Object (¥ named declaration of this type x)
END;

There are several classes of types: basic types such as character, integer, or set,
and composite types like array, open array, or record (fields form and comp).
The field form denotes the exact class of a basic type or indicates a composite
type, whereas the field comp denotes the exact class of a composite type or
indicates a basic type. This separation allows to distinguish basic from com-
posite types by an efficient integer comparison. It also permits a 16-bit imple-
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mentation to use sets for efficient tests; this would not be possible with a
single field, since more than 16 different classes exist.

The third element type of the symbol table is ConstDesc. This record contains
numeric attributes of objects, like values of declared or anonymous constants:

ConstDesc = RECORD
ext: ConstExt; ( extension for string constant »)
intval: LONGINT;
intval2: LONGINT;
setval: SET;
realval: LONGREAL
END;

An example involving the three different kinds of components is shown in
figure 4.2 below:

CONST
Pi =314,
con
TYPE Pi 1. 314 ]j
A = ARRAY 4 OF LONGINT;
VAR ]
e . typ E . var
i: INTEGER; A real i
aA,;
X, y: LONGINT; [
var var
a integer X
mode
ObjDesc: name conval
| var
left typ right y
array 4
StrDesc: I form |~ BaseTyp I \

ﬂngint

ConstDesc: value l

Figure 4.2 Declarations and corresponding symbol table

Syntax Tree

The front-end builds an abstract syntax tree representing all statements of the

program being compiled. The Oberon syntax is mapped onto a tree of elements
called NodeDesc:
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Node = POINTER TO NodeDesc;

NodeDesc = RECORD
left, right, link: Node;
class, subcl: SHORTINT;  (x kind of node: construct, operation, expression »)
readonly: BOOLEAN;  (# whether this expression is read-only x)
typ: Struct;  (x type of the expression represented by this node *)
obj: Object; (x named object represented by this node )
conval: Const (¥ constant value represented by this node )
END;

Each Oberon construct can be decomposed into a root element identifying the
construct and a maximum of two subtrees representing its components: an
assignment has a left and a right side, a While statement has a condition and a
sequence of statements, and so on. Some Oberon constructs are organized
sequentially: for example, lists of actual parameters in procedure calls and
sequences of statements in structured statements. Auxiliary nodes might have
been inserted to link these subtrees, yet an additional link field in the node is
more space-efficient.

Each node has a class, and possibly a subclass, identifying the Oberon
construct represented. It also has a type, which is a pointer to a StrDesc of the
symbol table. Similarly, a leaf node representing a declared object contains a
pointer (field obj) to the corresponding ObjDesc of the symbol table. A
ConstDesc may be attached (field conval) to a node to describe a numeric
attribute, such as the value of an anonymous constant. The position in the
source text is stored in the root node of each statement. This facilitates locating
compilation errors reported by the back-end. Figure 4.3 shows the repre-
sentation of two statements involving variables declared in figure 4.2.
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WHILE expr DO statseq END ; assign
while |
var dyadic
+
longint longint
X expr statseq
l link
. class
Node: subcl dyadic var
—1— type * .
—— obj longint longint
y
left right
conv index
longint longint
var var var
integer array integer
i a i

Figure 4.3 Statements and corresponding syntax tree

While generating code for a node, one typically has to evaluate left and right
subtrees recursively, then the node itself, and finally the linked successors. A
traversal of the tree looks like this:

Traverse(node: Node):

WHILE node # NIL DO
Traverse(nodex left);
Traverse(node+-.right);
Do something with node;
node := node+.link

END

The intermediate representation might have been a stream of instructions for a
virtual machine, but an abstract syntax tree has been preferred for various
reasons. Using an instruction stream may have some advantages in regard to
register allocation, for example. The virtual machine may be defined as having a
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infinite number of registers, which are manipulated by the instructions; some
optimizations on register level are then possible by reordering or modifying the
instructions. The infinite register set is then mapped in the back-end to a real
register set.

An instruction set for a virtual machine would have been defined without
any knowledge of future target machines. Perhaps the mapping of this instruc-
tion set to a real instruction set would not be easy, the virtual and real
machines being very different (RISC and CISC, for example). Furthermore,
generating these pseudoinstructions requires a code generator already, whereas
building the syntax tree is a trivial recursive task easily embedded in a recursive-
descent parser.

Trying to solve these problems by maintaining the instruction set for the
virtual machine on a high abstraction level - using a stack instead of a register
set, for example - does not help either, since most of the advantages of an
instruction stream disappear.

Since the tree is a natural mapping of the Oberon syntax, each procedure of
the parser returns as parameter the root of the subtree comesponding to the
construct just parsed. Furthermore, a tree keeps the program structure intact, so
that control-flow dependent optimizations can be integrated easily. Without a
tree, an expensive control-flow analysis would be required, since basic blocks
would have been dissolved in the linear code. The reordering of program pieces
is easier to perform in a tree than in an instruction stream. For example, by first
generating the statement sequence of a While statement (right subtree) and
then evaluating the condition (left subtree), one branch instruction can be
removed from the loop and replaced by an unconditional branch instruction
executed only once.

Compilation Phases

As explained at the beginning of this chapter, the task of compilation can be
divided into several more or less independent phases. Each phase works on
some data produced by previous phases and provides input data for the
following phases. The input data of the first phase is the source text of the
module to be compiled. The output of the last phase is the object file
containing the generated code. Additional input and output data in the form of
symbol files are necessary in a context of separate compilation (figure 4.4).
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Figure 4.4 The different compilation phases

Lexical Analysis and SyntaxAnalysis

The scanner implements lexical analysis and the parser implements syntax
analysis. Although these two tasks are implemented by separate modules, they
execute in parallel and form the first compilation phase. Thereby, the sequence
of symbols provided by the scanner does not have to be stored for later
processing. Instead, the symbols are continuously passed, one after the other,
as required by the recursive-descent parser. This is possible because the Oberon
syntax can be parsed with one symbol lookahead. Similarly, the scanner needs
only one character lookahead to decompose the character stream into a
sequence of terminal symbols. In other words, lexical analysis and syntax
analysis are done in a single pass on the source text.

The output of this first compilation phase performed by the front-end is the
symbol table on the one hand, and the syntax tree on the other hand. From the
frontend’s point of view, the syntax tree is a write-only structure, but the
symbol table is a read-and-write structure accessed for checking the context-
dependent syntax. Context information for external objects is obtained from the
symbol files (as explained in chapter 2). When the parser recognizes an import
declaration, the corresponding symbol file is loaded into a separate scope of
the symbol table.
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Storage Allocation

In contrast to the previous phase, which is machine-independent, the next one,
storage allocation, has to be parametrized depending on the target architecture.
Storage allocation adds target-machine specific attributes to the objects of the
symbol table. These attributes depend on the kind of object being considered:

« Every type gets a size attribute. For record types, a type descriptor is
allocated and its address is associated with the type. Type descriptors are
used at run time to perform type tests and garbage collection.

« Record fields get an offset specifying their position in the enclosing
record.

« Variables get an address, or a register number if they are permanently
allocated in a register.

« For procedures, a frame size sufficient to keep all locally defined variables
is calculated. Exported procedures additionally need an identifying num-
ber - called entry number - so that they can be referenced from a client
module. Oberon-2 type-bound procedures (methods) get a number that
is used as an index into a method table.

Note that some attributes listed above, as well as the different allocation steps
described below are specific to the original version of OP2. The storage
allocation phase has been completely rewritten in the two models presented in
the following chapters. Indeed, storage allocation is tightly coupled with mod-
ule linking, which in turn depends on the method used for link-time consis-
tency checking.

As shown in figure 4.4, the syntax tree is not affected by storage allocation.
Some information inferred from the structure of the syntax tree - like whether
or not a procedure is leaf, or whether a variable can be allocated in a register -
is nevertheless useful for storage allocation. This information is already collec-
ted by the front-end as the tree is built and stored in the concemed objects.
Thereby, the syntax tree does not have to be traversed during storage allocation.

Since extemal objects are imported together with their allocation infor-
mation, they are not affected by this phase. It is therefore not necessary to
traverse scopes of imported modules, but only the scope of locally declared
objects. Storage allocation is done in the three following steps:

1. Exported types and procedures are visited in alphabetical order. Alphabe-
tical order is preferable to declaration order: this allows the programmer
to swap type declarations or procedure declarations in an already com-
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piled source text. A recompilation of the modified text has then no
influence on entry numbers or type descriptor addresses, which are
stored in the symbol file. Different attribute values would enforce the
creation of a new symbol file, thereby invalidating clients of the interface.
Similarly, a modification of nonexported objects should be invisible to
clients. This is why intemnal objects are visited after exported ones.

2. The list of (global) variables is traversed in the order of their declaration.
Alphabetical order would be less appropriate, since allocation could not
take advantage of a programmer's tendency to declare variables of the
same size in clusters. This would result in a higher memory frag-
mentation caused by alignment requirements. If addresses of exported
variables are not visible over module boundaries, but entry numbers are
exported instead, entry numbers can be distributed in alphabetical order
of the exported variables in step 1, whereas addresses are still distributed
in declaration order of the variables in step 2.

3. The last step treats all remaining nonexported (global) types and
procedures, as well as the local scopes of all procedures. Step 2 is
applied for each list of local variables and step 3 is recursively called on
each local scope. Traversal order is not important here, since objects
decorated in this step never appear in an interface, and therefore have no
influence on system consistency.

At the end of this phase, the symbol table is traversed and each exported object
is linearized together with its allocation information into a symbol file. The
original version of OP2 reads the old symbol file, compares it in a byte-wise
fashion with the new one, and stores the new file on disk if it is different.
Otherwise, the old file is retained with its old key (see chapter 2). When
possible, the order in which the objects appear in the symbol file should remain
the same among subsequent compilations, even if some declarations have
been swapped. Here again, processing the objects in alphabetical order helps to
avoid unnecessary invalidations.

Code Generation
The last compilation phase is code generation. The symbol table now contains

sufficient information to emit code. Some allocation information about impor-
ted objects may still be missing (like the entry point addresses of imported
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procedures). This information is inserted in the code by the linker at load time.
The code accessing intemally defined objects does not need to be patched at
load time, since the relative addresses of these objects are known. However,
depending on the processor architecture, absolute addressing is sometimes
preferred to relative addressing. Therefore, the linker may also insert absolute
addresses of intemal objects in the code.

The task of code generation can be thought of as mapping every node of the
syntax tree into a semantically equivalent code sequence, and storing these
code pieces linearly into an amay. Every code piece consists of zero or more
machine instructions and, in general, depends on code generated for other
nodes. These dependences should be kept as small as possible to allow for an
efficient and systematic code generation process. A simple rule to enforce a
high degree of locality in the code generator is to postulate that dependences
exist between adjacent nodes only. In this case, dependences can be modeled
as attributes flowing along the edges of the syntax tree. These attributes are
recorded in an jtem that is passed as parameter (on the stack) instead of being
stored in the syntax tree. The contents of an item are highly dependent on the
target machine architecture. An excerpt of the module OPV is listed below. It
gives an overview of the syntax tree traversal:

PROCEDURE design(n: OPT.Node; VAR x: OPL.item);
(% generate code for the designator n »)

VARYy: OPL.Item;
BEGIN

CASE n+.class OF

| index:
design{n+.left, x);
expr(n+.right, y);
OPC.Index{x,y) (%x:=x[y] »)

END;
xtyp ==natyp
_END design;

PROCEDURE expr(n: OPT.Node; VAR x: OPL.item);
(* generate code for the expression n »)

VARy: OPL.Item;
BEGIN

CASE n+.class OF

| dyadic:
expr(ns.left, x); ...
expr(n+.right, y);
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CAGSE n+.subcl OF

i plus:
OPC.Add(x,y) (¥x:=x+yx)

END;
END
x.typ := nt.typ
END expr;

PROCEDURE stat(n: OPT.Node);
(* generate code for the statement sequence n )
VAR x: OPL.Item; LO, L1: OPL.Label;
BEGIN
WHILE n # NIL DO
CASE n+.class OF

| while:
L0 := OPL.pc; (% remember start address of loop )
expr(nt.left, x);  (* evaluate conditional expression into x )
OPC.CF)(x, L1); (* if not x then jump to L1 x)
stat(ns.right);  (x do statement sequence )
OPC.BJ(LO); (x backward jump to LO )
OPL.FixLink(L1)  ( fix-up LT with current pc x)

END;
n := n+.link
END
END stat;

Code generation is not the subject of this thesis and will not be discussed
further here. For more details about code generation and retargeting of OP2, see
the technical report The Oberon System Family [29].



Chapter 5

The Layer Model

As observed in previous chapters, being able to modify module interfaces
without invalidating their clients would be very convenient. The original OP2
compiler does not permit this, since any modification to an exported object
always results in a new symbol file with a new key. Obviously, as smart and
sophisticated the technique might be, deleting or modifying an object in an
interface will always affect clients importing that object. On the other hand,
extending an interface with a new object should be a hanmless operation, since
previously compiled clients do not see the newly inserted object.

This chapter presents a new model for interface extension and its realization
in OP2. Note that the new model has been conceived with one special require-
ment in mind: the existing implementation of OP2 and of the linking module
loader should need only few modifications in order to switch to the new
model. Especially, the compiler back-end and the object file format should not
be affected too much by the modifications, so that the new model can be
adopted without programming effort onto the many different platforms running
the Oberon System and OP2. However, the compiler front-end and the symbol
file format can be entirely replaced since they are machine-independent and
hence identical on all platforms.

The Idea

Clients of an exported object need some allocation information about the
object to access it. These clients are invalidated when this information is
medified. Extending an interface by some new objects should leave the
allocation information for already existing objects unchanged, so that clients of
these old objects do not need a recompilation. The part of the existing symbol
file, which provides this allocation information, should remain unchanged by an
interface extension. This can be the case if the additional symbol table
information comresponding to inserted objects is appended at the end of the file.
Conceptually, each time an interface is extended, a new extension layer appears
on top of the existing interface.
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A Stack of Extension Layers

Repeated extensions of an interface result in a multilayered interface. The
compilation of an extended interface must yield a new symbol file containing
the preceding symbol file as a prefix. In order to build such a stack of
chronologically ordered layers, the routine generating the symbol file must first
externalize exported objects belonging to the oldest layer, continue with objects
of intermediate layers, and finish with newly inserted objects (if any). Obviously,
it is not possible to determine the layer an object is belonging to, by only
looking at its declaration in the source text. This information must be taken
from the old symbol file.

The first compilation phase therefore reads the objects of the old symbol file
into a separate scope. This scope is used during parsing to assign a layer
number to a declared name. Note that it would be sufficient to keep in memory
a table associating a layer number with each name present in the symbol file,
instead of loading the complete symbol file into a scope. But for convenience,
the same routine is used as for decoding and loading symbol files of imported
modules.

The layer number of each object is determined by the position of the object
in the symbol file, but is not explicitly stored in the file. Layers are separated in
the file by a stopper. The first layer contains the objects with layer number 0.

The compilation consists of the following steps:

1. read own symbol file (SF);
n := number of layers in SF;
each object old from SF recalls its layer number: 0 <= old.layer < n;

2. parse source text, build symbol table and abstract syntax tree;
for each declaration of a global object obj:
if obj is exported and was present in SF: obj.layer := old.layer (0..n-1)
if obj is exported and was not present in SF: obj.Jayer :== n
if obj is not exported: obj.layer := NotExported

3. allocate storage;

4. generate new symbol file:
FORi:= 0 TO n DO externalize objects with obj.layer = i END

5. generate code;

The variable n indicates the number of layers present in the old symbol file. If
the symbol file does not exist yet or does not contain any exported object, n is
simply set to 0. In the second phase, the source text is parsed. When a global
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exported object is declared, the scope of the old symbol file is searched for an
object with equal name. If such an object is found, this means that the object
was already exported in a previous version. In that case, the old layer number is
copied to the new object (field /ayer), otherwise the object is new and is
assigned layer number n. A nonexported object has no layer number (field /ayer
set to NotExported, a large constant). After storage allocation, which distributes
addresses and entry numbers to local and exported objects, the new symbol file
is generated, layer after layer. The code generation phase completes the
compilation.

Extensions Versus Modifications

The algorithm above does not take into account the case where an object
previously belonging to the layer number / is not exported any longer, is
modified, or is simply deleted. In that case, the stack of extension layers should
collapse from the height n to the height /, all the objects with a layer number
between i and n-7 forming a new layer with number /. Indeed, modifying an
object in a layer has consequences in storage allocation for objects in the same
layer and layers above. The example in figure 5.1 shows the effect of editing
changes to the number of layers in a symbol file originally consisting of 2
layers:

AB
Z Y4
uv uv (VA A B, V,Z AV, 2
e —— — —_—
XY XY XY XY XY
Zinserted Aand B inserted U deleted B deleted

Figure 5.1 Growing and shrinking of extension layers

The algorithm has to detect differences between the old and new layers, and
shrink the stack of layers if necessary. Such a difference indicates an interface
modification that is more destructive than a simple extension: clients of the
modified layer have to be invalidated.

Verifying that each previously exported object is still present in the new
source text is not sufficient, but every exported attribute of it, like its type or its
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allocation information, must also remain unchanged, otherwise clients have to
be invalidated.

A structural comparison between the old and the new version of each object
of the same layer is expensive. A global comparison at the layer level is
preferable. Therefore, all objects of a same layer must be extermalized in some
canonical order, thereby allowing a byte-stream comparison of the new and old
layers.

In order to avoid unnecessary invalidations caused by the insertion of an
exported object anywhere in the source text, which is a legal interface exten-
sion, the allocation of a new object should not influence the allocation of
objects in lower layers. Storage allocation has therefore to be done in the order
of the layers, starting with the oldest exported objects, and finishing with
nonexported objects. Furthermore, objects of the same layer must be allocated
in a canonical order, so that swapping two object declarations in the text has
no effect on storage allocation.

Consequently, both storage allocation and symbol file generation process
the objects in the same order: canonical order for objects of the same layer
(alphabetical order for types and procedures, declaration order for variables, see
previous chapter) and chronological order of the layers. It is therefore possible
to combine these two tasks into the same phase, thereby reducing the number
of symbol table traversals. Here is a more elaborate version of the algorithm
executing the different compilation phases:

1. read own symbol file (SF);
n := number of layers in SF;
each object old from SF recalls its layer number: 0 <= old.layer < n;

2. parse source text, build symbol table and abstract syntax tree;
for each declaration of a global object obj:
if obj is exported and was present in SF: obj.layer := old.layer (0..n-1)
if obj is exported and was not present in SF: obj.layer := n
if obj is not exported: obj.layer := NotExported

3. allocate storage and generate new symbol! file:

i := 0; match := TRUE;

WHILE (i < n) & match DO
save allocation state;
allocate and export types and procedures with obj.layer = i, in alphabetical order;
allocate and export variables with obj.layer = i, in declaration order;
match := new layer = old layer;
INC(i)

END;

IF ~match THEN discard last layer; restore allocation state END ;
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allocate and export types and procedures with i <= obj.layer <= n, in alphabetical order;
allocate and export variables with i <= obj.layer <= n, in declaration order;
allocate remaining nonexported objects;

4. generate code;

The comparison between old and new versions of a layer takes place imme-
diately after the allocation and generation of the new layer. If a mismatch is
detected, this last layer is discarded and a new layer containing all remaining
exported objects is created. This makes storage allocation necessary for all
remaining objects, including the objects of the faulty layer, which have already
been allocated once. The storage allocation for these objects is nevertheless
repeated, since the set of objects to be allocated in canonical order may have
changed.

Storage allocation reserves some global resources like entry numbers or
memory space for allocated objects. Resources attributed to objects of the
discarded layer must be released prior to the reallocation. The allocation state is
saved before each allocation of a layer, and restored after a possible mismatch.

Consistency Checking

At compile time, the client of a module sees a stack of layers describing the
exported interface. If an identical stack is provided at link time by the exporter,
the client is consistent and can be safely linked to the module. Also, if the
interface is extended in the meantime, consistency is guaranteed, because the
stack of layers required by the client is present as a prefix of the effectively
provided stack. However, if the stack is smaller, some required layer may not be
present, and the client may have to be invalidated.

Comparing the height of the stack seen by the client at compile time with
the height of the stack provided by the exporter at link time is not sufficient for
detecting inconsistencies: the stack may be higher and yet not conform,
because it may shrink and grow again in an incompatible way; it may also be
smaller and nevertheless conform, because a client may not import objects
from every layer it sees; a prefix of the visible stack may contain all required
objects. The interface part following the required prefix may be modified or
even deleted without invalidating that particular client.

For each imported module, the client specifies in its object file the number
of layers it needs as well as a checksum, here called fingerprint, reflecting the
contents of these layers. Note that a single fingerprint for all required layers is
sufficient, because the client always imports a set of contiguous layers starting
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from the lowest layer. Contrary to the client, the exporter has to list one
fingerprint at each layer level, since a client may import any number of layers.
When a client is being linked to an exporter, the linker first checks that the
exporter supplies at least as many layers as required by the client. Then, it
compares the effectively listed fingerprint for the highest required layer to the
fingerprint expected by the client. Verifying one fingerprint at some layer level
implicitly verifies all fingerprints below that level as well, because each finger-
print does not only depend on the layer contents but also on the fingerprint of
the preceding layer. The advantages of using a fingerprint instead of a conven-
tional timestamp will become obvious in the next section describing the
implementation.

Figure 5.2 shows an exporter M with one layer and its client A. The export
section of the object file M.Obj mentions the number of exported layers, one in
the example, and lists the comesponding fingerprints, here fp0. The import
section of the object file AObj indicates that the first layer of module M with
fingerprint fp0 is required.

MODULE Mm; MODULE A;
VAR IMPORT M;
x%: CHAR;
ux: BOOLEAN; wMx
X, U layer O
M.Sym

1:fp0 export

import M, 1: fp0

M.Obj A.Obj
Figure 5.2 An interface M and its client A
Figure 5.3 shows an extension of module M by two exported variables, as well

as two new clients, B and C. Note that client A is still consistent after the
extension of M and does not need to be recompiled.
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VAR
x%, yx: CHAR;
ux, vx: BOOLEAN;
ny new layer 1
X, U layer O
M.Sym
2:fp0, fp1 | export
import
M.Obj
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MODULE A; MODULE B; MODULE C;
IMPORT M; IMPORT M; IMPORT M;
~MX. . Mu.. . Mu..
. My..
still valid new new
M, 1:fp0 M, 2:fp1 M, 1:fp0
A.Obj B.Obj C.0bj

Figure 5.3 Interface extension without client invalidation

Although client B uses two layers from M, only one fingerprint corresponding to
the topmost layer is listed in its object file. Client C sees two layers from M, but
uses only one. Consequently, the second layer of M may be modified without
invalidating C, and neither A. However, B is invalidated if any object of the
second layer is modified, as shown in figure 5.4, where the variable y is dropped

from M.

MODULE M;
VAR
x%: CHAR;

ux, vi¢: BOOLEAN;

v

X, u

M.Sym

2: fp0, fp1'

M.Obj

modified layer 1

layer 0

export

import

MODULE A; MODULE B; MODULEC;
IMPORT M; IMPORT M; IMPORT M;
wMXx.. .. Mu .. «~Mu ..
. My..
invalidated:
still valid fp1 # fp1' still valid
M, 1: fp0 M, 2: fp1 M, 1: fp0
A.Obj B.Obj C.Obj

Figure 5.4 Interface modification resulting in client invalidation
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Client B8 is invalidated: although it does not use the deleted variable y, it uses
the layer the variable was removed from. Note that the variable v could also be
deleted without affecting either A or C. In this case, the layer stack would shrink
to the initial height, causing no problem to client C, which would nevertheless
see a smaller stack at link time than at compile time.

The Implementation

The Layer Model has been implemented in the portable Oberon-2 Compiler
OP2 described in its original version in the preceding chapter. OP2 was nearly
left unchanged except for the modules OPT and OPV. A new symbol file format
reflecting the stack structure required new import and export routines in OFT,
and the OPV part performing storage allocation was rewritten. The part traver-
sing the abstract syntax tree was left unchanged.

Symbol File Format

Because it was not possible to maintain compatibility between symbol files in
the original model and in the layer model, the opportunity has been used to
completely revise the symbol file format. The new format is still of the BB class,
but corresponds now to a preorder traversal of the type graph, thereby allowing
recursive types to be exported (see chapter 2). The following productions in
EBNF syntax describes the structure of the symbol file:

SymFile = OFAX Module {{Object} FPrint}.

After the one-byte file tag and the module name, lists of objects separated by
stoppers (FPrint) forms the different layers. The stopper consists of a one-byte
tag (FPRINT) followed by the fingerprint value of the layer:

FPrint = FPRINT value.

Note: identifiers in capital letters represent one-byte tags, identifiers starting with a
capital letter are production names, other identifiers stand for numbers, except name,
which represents a OX-terminated list of characters. See the complete format in the
appendix. .
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It would not be necessary to store the fingerprint of each layer in the symbol

file, since it could be recomputed when the symbol file is loaded, but it is done

for efficiency reasons. The additional disk space is insignificant, considering the

relative small size of a fingerprint (LONGINT) compared to the size of a layer.
Each object is either a constant, a type, a variable, or a procedure:

CHAR value:1

BOOL (FALSE | TRUE)

(SINT | INT | LINT | SET) value
REAL value:4

LREAL value:8

STRING name

NIL.

Constant

Object

Constant name

| TYPE Struct

| ALIAS Struct name

| (RVAR| VAR) Struct offset name

| (XPRO | IPRO) Signature entryno name
| CPRO Signature len {code:1} name.

Note that the name of a type object (TYPE) is not listed, because it appears as
canonical name of the object's structure (production Struct). This is explained in
more details in the following. A type may appear in a symbol file without being
marked as exported by an asterisk. This occurs for example when the type of a
variable is not exported, but the variable is. On the one hand, the identifier of
such a type should not appear in the symbol file, because clients are not
allowed to use it. On the other hand, the compiler has to recognize types
indirectly imported from different modules, in order to guarantee type equiva-
lence. Now, Oberon uses name equivalence. Undoubtedly, the name has to be
listed in the symbol file. This is also convenient for the browser which would
have notation problems with anonymous types otherwise.

A clear distinction has to be made between the structure and the object of
the type: the structure of a type always appears in the symbol file if any
exported object of that type exists, but the object of the type only appears if the
type itself is marked as exported. The question now is whether the name
belongs to the structure or to the object. Obviously, the considerations above
attribute the name to the structure, which is correct. Note that data structures in
OP2 do not provide a name field for structures (record StrDesc, see previous
chapter), but a pointer (field strobj) to a named object. The pointer avoids
redundancy and contributes to efficiency.
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The name in a type declaration is the canonical name of the type (see
chapter 2). It is an attribute of the structure of the type that has to be listed
with the structure in the symbol file. When a type is marked as exported, both
its structure and its object are listed in the symbol file. Since the name is an
attribute of the structure, it is not necessary to repeat it with the type object.
Clients can only use the name if the corresponding object is exported. Type
aliases introduce alternative names for the same type, or, in other words, new
objects for the same structure. In that case, type alias objects are listed with
their name, which is different from the already listed canonical name.

A previous version of the symbol file format bound the name to the object
rather than to the structure. The object had therefore always to be exported
with the structure. Exported and nonexported types had different tags. This did
not cause any problems in the original model, but it would do so in the layer
model. Indeed, a type not explicitly exported, but nevertheless appearing as
hidden type in a symbol file layer, could not be made visible later on, without
modifying the layer, since a new tag would be necessary. The new technique
allows the structure to be listed alone in a layer, and the corresponding object
in a subsequent layer. Marking the type identifier with an asterisk becomes a
true extension.

The tag RVAR specifies a read-only variable, VAR a read-write variable, XPRO
an extemnal procedure, /PRO an interrupt procedure (which may have different
calling conventions), and CPRO a code procedure (inline procedure which is
used for hardware interfacing purposes). Storage allocation information has the
form of an offset for variables and an entry number for procedures. Entry
numbers could replace offsets for variables, which would allow variables of the
same layer to be reordered in the source text without invalidating clients. Note
that with either of the two methods, a new variable can be inserted at any
position into the text without client invalidation, since the new varable is
allocated in a new layer.

Procedures have a signature, whereas variables and types have a structure:

Struct = negref
| STRUCT Module name {SYS value]
( PTR Struct
| ARR Struct nofElem
| DARR Struct
| REC Struct size align descAdr nofMeth {Field} {Method} END
| PRO Signature).
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The same structure may be referenced several times by different objects. The
(positive) tag STRUCT introduces the first occurrence of a structure. Subsequent
occurrences are replaced by a (negative) reference number. The first user-
defined structure has reference number 16, since smaller reference numbers are
reserved for predefined basic types. Indeed, the structure of standard types is
implicitly known in every module and does not need to be described in symbol
files. Every occurrence of a standard type is therefore replaced by a small
(negative) predefined reference number (see appendix).

A structure may be a pointer referencing a further structure,-a fixed or
dynamic array of elements, a record - possibly extending some base record -
with fields and methods, or a procedure type specified by a signature. Allo-
cation information for record types is the allocation size, an alignment factor,
the type descriptor address, and the total number of methods.

Fields, methods (also called type-bound procedures), and signatures are
described by the following productions:

Field = ((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.
Method = (TPRO Signature name | HDTPRO) methno entryno.
Signature = Struct {(VALPAR | VARPAR) Struct offset name} END.

Visible record fields may be read-only (RFLD) or read-write (FLD). Hidden fields
represent nonexported fields, which are of a pointer (HDPTR) or procedure
(HDPRO) type. The mark-and-sweep garbage collector needs to know the
position of pointer fields in records. For this reason, type descriptors contain a
table of pointer fields offsets. Information on hidden pointers may be used by
the compiler to build type descriptors for record types extending an imported
record type. This information is not necessary if type descriptors are built at
load time. In that case, similar information must be stored in the object file, so
that hidden fields can be found at load time in nested records as well as in
global variables. OP2 prefers the first variant which is more convenient.

-A safe implementation of module unloading may need the exact location of
hidden procedure fields in imported records. Information about nonexported
methods (HDTPRO) is necessary to build method tables at compile time. Three
boolean constants exported from module OPM can disable the generation of
information in the symbol file on hidden pointer fields, hidden procedure fields,
and hidden type-bound procedures.

Signatures consist of a function result type — which can be the predefined
type NoTyp in case of a procedure - and a list of value (VALPAR) or variable
(VARPAR) formal parameters. Parameter names are present for documentation
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purposes and are used by the browser only. The presence of parameter offsets
avoids recomputing them when compiling caller modules. Formal parameter
offsets may not be necessary depending on the calling conventions. Other
allocation information is record field offsets, method table indexes, and method
entry numbers.

A structure always has a name - which can be empty if the structure is
anonymous - a module specifier (Module), and an optional system flag (SY5).
The meaning of the flag is implementation-dependent and is interpreted by the
back-end only. It can be set in the source text of low-level interfaces, for
example, to mark redeclared types of the host operating system, which may
have different allocation requirements.

Contrary to objects, structures may be reexported. As a consequence, they
need a module specifier indicating their origin, so that the compiler can
recognize the same structure indirectly imported via different symbol files. The
module specifier indicates the module name and layer number the structure
stems from:

Module = 0] ((negmno layerno | MNAME name) {FPrint} END).

The module whose symbol file is currently read has a module specifier equal to
zero, because both the module name and layer number are implicitly known.
Otherwise, a similar numbering scheme as for structures is used for module
specifiers: a module name is only spelled out at its first occurrence (after the
positive tag MNAME), subsequent occurrences are replaced by a (negative)
number. ‘

If an imported type is reexported, a module specifier lists the fingerprint
value of the original layer declaring the type. Indeed, such a reexported type
may be imported several times through different symbol files, and a possible
inconsistency has to be detected at compile time. Therefore, the compiler
verifies that the layer declaring the type has the same fingerprint in all symbol
files.

The consistency check is more flexible at link time, since the fingerprints of
the used layers only are listed in the object file and checked by the linker. The
model thereby tolerates inconsistent fingerprints of unused layers, which is not
a mistake, but a contribution to extension flexibility.

Each fingerprint is only listed once in the symbol file. The number of listed
fingerprint determines the number of used layers at the first occurrence of a
module (MNAME). The number of layers (layerno) is explicitly listed in sub-
sequent occurrences of a module specifier. If this number is larger than in the
first occurrence, missing fingerprints only are listed.
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The example in figure 5.5 shows a module M and its client N. Module N
reexports the types TO, T1, and T2, declared in the layers no 1, 0, and 3 of
module M.

MODULE M; MODULE N;

TYPE : IMPORT M;
TOx%=...; VAR
Tx=..; x3#: M.TO;
T2%=...; y*: MT1;

_ % M.T2;

T2 layer 3 '
T0 z
T layer 0 Xy
M.Sym N.Sym

4: fp0.fp3 export 2: fp0', fp1’

import M, 4:p3

M.Obj N.Obj

Figure 5.5 Type reexport in symbol files

Here are excerpts from the symbol file of N, which consists of two layers, and
which reexports the types declared in M:

N's layer no O:

... STRUCT MNAME M fp0 fp1 END TO ...
fp0and fp1 are listed = TO belongs to M's layer no 1
..STRUCT-10ENDT1 ...
~1 means module M, 0 means T1 belongs to M's layer 0 = fp0 is not repeated

N's layer no 1:
.. STRUCT -1 3 fp2 fp3 END T2 ...
T2 belongs to M's layer 3 = fp0 and fp1 are not repeated

A fifth layer in M could be modified without invalidating the already compiled
client N. Also, a client P importing both N and the new M would not notice that
M has been extended after the compilation of N, because N does not use the
new layers of M.



Consistency checking at compile time is performed when a layer is imported
several times through different symbol files. The compiler verifies that such a
layer has the same fingerprint in all symbol files.

The new symbol file format is machine-independent in that the same
module OPT of the compiler is able to read and write a symbol file on different
platforms without modifications, provided that the boolean constants control-
ling generation of hidden information are correctly set in OPM. However, the
contents of the symbol file are not machine-independent, because some
attributes, like record field offsets for example, may take different values on
different machines. It would be possible to recalculate these offsets when
loading the symbol file, but this would require the presence of every exported
and nonexported field along with its type in the symbol file. This would not
only take more space but also dramatically complicate the consistency check or
introduce superfluous dependences for clients. Furthermore, the symbol file
contents would not make any advantages of being machine-independent, since
the symbol file can be reproduced at any time from the textual interface with
no danger of invalidation for any clients.

Externalization, Fingerprinting and Internalization

The algorithm for storage allocation presented in the previous section is
implemented in a procedure of module OPV. This procedure traverses the
scope graph of globally declared objects, allocates objects in the required order,
and calls a routine OutObj in OPT for each object to be exported. OutObj
initiates a recursive depth-first traversal of the object’s type graph to serialize
each node into a byte sequence as defined by the symbol file format. To each
production of the format comresponds a serializing procedure:

PROCEDURE OutObjx(obj: Object);
BEGIN
CASE objr.mode OF
| Con:
OutConstant(obj); OutName(obj+.name)

| XProc:
OPM.SymWiInt(Sxpro, expCtxt.fprint); OutSign(obj+.typ, objs.link);
OPM.SymWint(obj+.adr, expCtxt.fprint); OutName(obj+.name)

[ Typ:
IF obj+.typ+.strobj = obj THEN
OPM.SymWint(Stype, expCtxt.fprint); OutStr(obj+.typ)
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ELSE
OPM.SymWint(Salias, expCtxt.fprint); OutStr(obj+.typ); OutName(obj+.name)
END
END
END OutObj;

PROCEDURE OutStr(typ: Struct);
BEGIN
IF typ.ref < expCtxt.ref THEN OPM.SymWint(-typ+.ref, expCxt.fprint)
ELSE )
OPM.SymWint(Sstruct, expCtxt.fprint);
typ+.ref := expCixt.ref; INC(expCxt.ref);
IF expCixt.ref > maxStruct THEN err(228) END ;
OutMod(typ);
IF typ+.strobj # NiL THEN OutName(typ+.strobj+.name)
ELSE OPM.SymWCh(OX, expCtxt.fprint)
END;
IF typs.sysflag # O THEN ... END;
CASE typ+.form OF
| Pointer:
OPM.SymWInt(Sptr, expCtxt.fprint); OutStr(typ+.BaseTyp)
| ProcTyp:
OPM.SymWiInt(Spro, expCtxt.fprint); OutSign(typ+.BaseTyp, typ+.link)
END
END
END Outstr;

PROCEDURE OutSign(result: Struct; par: Obj‘ect);
BEGIN ‘

OutStr(result);

WHILE par # NIL DO ,

IF part.mode = Var THEN OPM.SymWint(Svalpar, expCtxt.fprint)
ELSE OPM.SymWInt(Svarpar, expCtxt.fprint)
END; ’
OutStr(par+.typ);
OPM.SymWiInt(par+.adr, expCixt.fprint);
OutName(par+.name); par := par+.link

END;

OPM.SymWInt(Send, expCtxt.fprint)

END OutSign;

Terminal symbols of the file syntax are generated by procedures of OPM, like
SymWint for an integer or SymWch for a character. These procedures also
update the current fingerprint passed as second parameter. The fingerprint is
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the result of a hash function applied to the sequence of values making up the
layer. The fingerprint FP of a sequence of n+1 values V, to V, is defined as
follows:

FP(Vo, V1, Vn) = (FP(VQ, V1, Vn_1) XORVn) ROT1
FP(empty sequence) := 1

where XOR denotes a 32-bit exclusive or, and ROT 7 a 32-bit rotate left by one
bit. This recursive definition allows the procedure FPrint to compute fingerprints
in an incremental fashion, like checksums. FPrint is called each time a proce-
dure like SymW(Ch or SymWint writes a value to the symbol file:

PROCEDURE FPrint*(VAR fp: LONGINT; val: LONGINT);
BEGIN fp := S.ROT(S.VAL(LONGINT, S.VAL(SET, fp) / S.VAL(SET, val)), 1)
END FPrint;

PROCEDURE SymWCh*(ch: CHAR; VAR fp: LONGINT);
BEGIN Files.Write(newSF, ch); FPrint(fp, ORD(ch))
END SymWCh;

PROCEDURE SymWintx(i: LONGINT; VAR fp: LONGINT);
BEGIN Files.WriteNum(newSF, i); FPrint(fp, i)
END SymWint;

Using fingerprints for consistency checking has several advantages over using
unique keys derived from the compilation time and date. First, a fingerprint can
be recomputed, because it is a hash function of the layer contents. Therefore,
the same layer always results in the same fingerprint, independently of its
compilation time. This is convenient when the same source text is compiled on
different machines. Another advantage is that a newly generated layer can be
compared to its older version by comparing their fingerprints, which is more
efficient than reading the old symbol file a second time. This also avoids
reading the newly generated symbol file.

The fingerprinting function should guarantee that any change in a layer is
reflected in the fingerprint. Unfortunately, this is impossible because the finger-
print is of a finite length (32-bit integer here) and there can be more different
layers than possible fingerprint values. Therefore, two different layers may have
the same fingerprint, which is called a fingerprint collision. Taking the layer
contents as fingerprint value would avoid collisions, but this is both impractical
and inefficient in terms of memory usage and comparison time.

In practice, a fingerprint is nevertheless as safe as a timestamp, because a
collision is not more probable than a breakdown of the computer real-time
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clock (dead backup battery, for example). Even in the case of a collision, the
consistency of the system of modules would most probably not be endangered.
The only fatal collision is the one occurring between the original and the
modified version of a same layer. In that case, the linker will not notice that
nonrecompiled clients of that layer have been invalidated.

The probability of a collision can be reduced by simply increasing the
fingerprint length. More sophisticated fingerprinting algorithms, like the MD5
Message-Digest Algorithm presented by R Rivest [30] and intended for digital
signature applications, could be employed here. However, these methods fulfill
special requirements, like function irreversibility, which are not necessary in the
layer model. More important here are the incremental aspect of computation,
low probability of collision, and efficiency. In order to find a good fingerprinting
method, one should take into account the influence of typical interface modifi-
cations on the probability of a collision. Undoubtedly, several PhD theses could
be written on the subject. However, it is not manifest why the very simple
fingerprinting function presented above should give poorer results than a more
complicated one. Complexity is often superfluous. it is nevertheless possible to
use another fingerprinting function by simply replacing the FPrint procedure in
module OPM with no effect on the model.

The global record variable expCixt contains the export context information,
which is used and updated during the extemalization phase. Fields of this
record are for example the current fingerprint being computed (fprint) and the
reference counter for exported structures (ref).

Similarly, a global record variable impCtxt manages import context infor-
mation, which is used and updated during the intemalization phase. Among
other fields, tables are necessary to associate with a reference number an
already intemalized structure or module name. Predefined structures have
predefined reference numbers smaller than the constant FirstRef

The internalizing routines are the counterpart to the extemalizing routines
presented above:

. PROCEDURE InSign(mno: SHORTINT; layer: INTEGER; VAR res: Struct; VAR par: Object);
VAR last, new: Object; tag: LONGINT;
BEGIN

InStruct(res);

tag := OPM.SymRint(); last := NI,

WHILE tag # Send DO
new := NewObj(); news+.mnolev := -mno; new+ layer := fayer;
IF fast = NIL THEN par := new ELSE last+.link := new END ;
IF tag = Svalpar THEN new+.mode := Var ELSE new+.mode := VarPar END ;
InStruct(new+.typ); news.adr := OPM.SymRInt(); InName(new+.name);
last := new; tag := OPM.SymRInt()
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END
END InSign;

PROCEDURE InStruct(VAR typ: Struct);
VAR mno: SHORTINT; layer: INTEGER;
tag: LONGINT; name: OPS.Name; obj, last, old: Object;
BEGIN
tag := OPM.SymRint();
IF tag # Sstruct THEN typ := impCtxt.ref{-tag]
ELSE
typ := NewsStr(...);
InMod(mno, layer); typ+.mno := mno; typ+.layer := layer;
InName(name);
IF name # " THEN obj := NewObJ(); objt.name := name;
Insertimport(obj, GlbMod[mno).head+.right, old);
IF old # NIL THEN typ := old+.typ
ELSE
obj+.mode := Typ; obj+.typ := typ; typ+.strobj := obj;
obj+.mnolev := -mno  ( objt.layer = NotExported, name not visible here x)
END
END;
impCtxt.ref{impCtxt.nofr] := typ; INC(impCtxt.nofr);
tag := OPM.SymRint();
IF tag = Ssys THEN ... END ;
CASE tag OF
| Sptr: )
typ+.form := Pointer; ... InStruct(typ+.BaseTyp)
| Spro:
typ+.form := ProcTyp; ... InSign(mno, layer, typ+.BaseTyp, typ+.link)
END
END
END inStruct;

PROCEDURE InObj*(VAR obj: Object);  (x first number in impCtxt.nextTag )
VAR mno: SHORTINT; typ: Struct; tag: LONGINT;
BEGIN
tag := impCtxt.nextTag;
IF tag = Stype THEN  (* type name visible now x)
InStruct(typ); obj := typ+ strobj; obj+.layer := impCtxt.layer
ELSE
mno :=..;
obj := NewObj(); obj+.mnolev := -mno; obj+.layer := impCtxt.layer;
IF tag <="Pointer THEN  (* Constant x)
obj+.mode := Con; obj+.typ := impCtxt.ref{tag];
obj#.conval := NewConst(); InConstant(tag, obj+. corwal)
ELSIF tag >= Sxpro THEN
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InSign(mno, impCtxt.layer, obj+.typ, obj+.link);
CASE tag OF
| Sxpro: obj+.mode := XProc; obj+.adr := OPM.SymRint()

END
ELSIF tag = Salias THEN
obj+.mode := Typ; InStruct(obj+.typ)

END;
InName(obj+.name)
END
END InObj;

These routines do not have to recompute fingerprints, since each layer is
followed by its fingerprint in the symbol file. Reading a symbol file consists of
repeated calls to the procedure inObj, which retums an object to be inserted in
the scope of the corresponding module:

inMod(mno, dummy);
impCixt.nextTag := OPM.SymRInt();
WHILE ~OPM.eofSF() DO
WHILE impCtxt.nextTag # Sfprint DO
InObj(obj);
Insertimport(obj, GlbMod[mno).head+.right, old);
impCixt.nextTag := OPM.SymRint()
END;
InFPrint(mno);
INC(impCtxt.layer);
impCtxt.nextTag := OPM.SymRInt()
END;

Writing a symbol file is a little bit more complicated than reading it, since
storage allocation is performed at the same time. Furthermore, the last written
layer may have to be discarded and storage allocation repeated in case of a
layer mismatch.

Storage Allocation and Reallocation

During storage allocation, objects and structures are supplied with both con-
text-independent attributes, like type size or field offsets, and context-dependent
attributes, like address or entry number. The order in which objects are
processed has no effect on the value of context-independent attributes, but
influences context-dependent attributes. When an object is reallocated after a
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layer mismatch, only its context-dependent attributes need to be recomputed. It
is therefore advantageous to perform storage allocation in two distinct steps
and only repeat the second step after a mismatch.

Moreover, the size of a type may be required already in the front-end by the
Oberon standard function SIZE for constant folding. Since the source text is not
entirely parsed at this stage, a complete allocation is not possible yet. However,
the first allocation step, which includes the computation of the size, can be
computed, since almost all context-independent attributes are defined, except
for one. Indeed, since type-bound procedures may be declared outside the
context of their record type, it is not possible to count them before the text is
completely parsed. So, the number of methods is determined in the second
step, although this number is context-independent.

Objects have no context-independent attributes, but context-dependent attri-
butes only. Therefore, the first step is done on structures only, by a procedure in
OPV called TypeSize. As indicated by its name, this procedure computes the size
of the type passed as parameter, by first determining recursively the size,
alignment, and offsets of the type components:

PROCEDURE TypeSizex(typ: OPT.Struct);
VAR f, c: INTEGER; offset, size: LONGINT; align, falign: LONGINT;
fld: OPT.Object; btyp, ftyp: OPT.Struct;
BEGIN
IF typ = OPT.undftyp THEN OPM.err(58)
ELSIF typ+.size = -1 THEN (% not yet computed x)
f := typ+.form; ¢ := typ+.comp; btyp := typ+.BaseTyp;
iF c = Record THEN
iF btyp = NIL THEN offset := 0; align :=1
ELSE TypeSize(btyp); offset := btyp+ size; align := btyp+.align
END;
fid := typa.link;
WHILE (fld # NIL) & (fld+.mode = Fld) DO
ftyp := fld+.typ; TypeSize(ftyp);
size := ftyp+ size; falign := Base(ftyp); Align(offset, falign);
fldr.adr := offset; INC(offset, size);
IF falign > align THEN align := falign END ;

fld == fid+.link
END;
typr.align := align;

Align(offset, Base(typ)); typ+ size := offset;
typr.n:=-1 (¥ methods not counted yet »)
ELSIF ¢ = Array THEN
TypeSize(btyp);
typ+.size = typr.n % btyp+.size
ELSIF f = Pointer THEN
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typ.size := OPM.PointerSize

ELSIF f = ProcTyp THEN
typ+.size := OPM.ProcSize

ELSE (% ¢ = DynArr x)
TypeSize(btyp);
IF btyp+.comp = DynArr THEN typ+.size := btyp+.size + 4
ELSE typt.size := 8
END

END

END
END TypeSize;

The first line of the procedure catches erroneous type definitions that recursively
use SIZE, like this one:

TYPE A = ARRAY SIZE(A) OF CHAR;

When a named type is being defined, the structure associated with the named
object is still undefined (undftyp). This allows TypeSize to detect such illegal
definitions. Other recursive type definitions resulting in cyclic type graphs are
either correct, or already caught by the front-end. Cycles cannot cause TypeSize
to loop forever, because there is always a pointer type or a procedure type in a
cycle; the constant size of a pointer or of a procedure (OPM.PointerSize and
OPM.ProcSize, usually one word) breaks the cycle. The initial value of -1
indicates that the size has not been calculated yet. The comparison with -1
avoids a second traversal of the type graph.

The field align in a record structure reflects the alignment constraint in
number of bytes of the record. Usual values are 1, 2, 4 or 8 bytes. For example,
a long real field may have to be aligned on a double word boundary (8 bytes).
The procedure Base retums the alignment factor of the type passed as para-
meter. A record type takes on the strongest alignment constraint of its fields, so
that the alignment is respected when the record is allocated as field in another
record.

-The procedure TypeAlloc performs the second allocation step. Contrary to
TypeSize, TypeAlloc may reach the same node several times in a recursive type
graph. It is therefore necessary to mark visited nodes to avoid infinite loops. An
integer value is used to mark nodes, because a binary value, "visited” or "not
visited”, would not allow a type to be revisited during reallocation after a layer
mismatch. Note that only the types belonging to the last layer need a reallo-
cation; types already allocated in lower layers do not. Therefore, each type has
to recall the layer number in which it was visited for the first time. Moreover,
objects in local scopes are allocated after exported objects; since local scopes
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are rooted in global objects or global structures, these global nodes have to be
revisited. In addition, type graphs of exported objects are also traversed during
export. Figure 56 shows the different states of a structure node during
allocation and export:

not allocated |
nonexported l

allocated —— exported ——»

W‘

reallocated =~ —— reexported ——»

allocated
incl. local scopes

reallocated
incl. local scopes

Figure 5.6 States of a user-defined type during allocation and export

The procedure TypeAlloc may reach type nodes being in any of these states. The
procedure has to identify the state before deciding whether to (re)allocate the
node or not: a node being already in the next state is part of a cycle and is not
reallocated. When the first symbol file layer is built, the type nodes of the layer
number O change from the "not allocated” state to the allocated” state, and
then to the "exported” state when export routines are called during the same
traversal, All other type nodes remain in the "not allocated" state.

A second traversal of the scope brings all the type nodes belonging to the
layer number 1 into the "allocated” and then "exported” state. This continues
until all symbol file layers are generated. At this stage, all exported type nodes
are in the "exported” state (or in the "reexported” state if a mismatch occurred)
and all nonexported type nodes are still in the "not allocated” state. A last
traversal revisits all nodes in order to find and allocate nonexported objects and
types in local scopes and to bring remaining type nodes into the "allocated incl.
local scopes” state.

The new field stamp in StrDesc encodes the state and layer number of each
node in such a way that a simple comparison indicates whether the node has
to be (re)traversed. The field ref in StrDesc indicates the reference number of the
structure in the symbol file. This field is reset during a reallocation, so that the
node can be corectly reexported. Note that reference numbers are valid in all
symbol file layers, since an object in a higher layer may be of a type already
defined in a lower layer. The following table shows the value of the fields stamp
and ref for each state:
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Table 5.1 State encoding during allocation

State Fieldstamp  Field ref

not allocated NotAllocated = NotExported
allocated 4xlayer+2 = NotExported
exported 4xlayer +2 - < NotExported
alloc. incl. local scopes 4xlayer+3 < NotExported
reallocated 4xlayer = NotExported
reexported 4xlayer < NotExported

realloc. incl. local scopes  4xlayer+1 < NotExported

An odd stamp value in a type node indicates that the type and the objects in
the local scope of the type have been allocated. In each traversal, TypeAlloc
decides whether to traverse (and stamp) a node or not, by comparing the
node’s stamp to a global stamp (expCtxtstamp), which is updated for each new
layer. The value of expCtxtstamp divided by 4 always comesponds to the
number of the layer being allocated. The first value of the global stamp is 2; it is
then incremented by 4 after each layer, except after a mismatch, in which case
it is decremented by 2. A node is (re)traversed if its stamp value is greater than
the global stamp value. Hence, decrementing the global stamp by 2 after a
mismatch forces nodes to be reallocated in the next traversal.

NotAllocated and NotExported are large constants whose values are chosen
to simplify the stamp comparison (NotAllocated is even). Predefined types have
a predefined ref field and do not need to be allocated in TypeAlloc. External
types, imported from other modules, are not allocated, but since they may be
reexported, they need a field ref This field must be reset after a layer mismatch
if the type was reexported in the discarded layer. For this reason, the procedure
TypeAlloc also stamps extemal types, exactly like internal types.

PROCEDURE TypeAlloc(typ: OPT.Struct);
" BEGIN
IF typr.mno # O THEN (3 imported type, its size is already computed »)
IF OPT.expCtxt.exported & (typ+.stamp > OPT.expCtxt.stamp) THEN
typr.stamp := OPT.expCtxt.stamp; typs.ref := OPT.NotExported;
... stamp all reachable external types and reset their ref ...
END
ELSIF typ.ref >= OPT.FirstRef THEN  (x not a predefined type *)
stamp := typ+.stamp; TypeSize(typ);
IF OPT.expCtxt.exported THEN
IF stamp > OPT.expCtxt.stamp THEN
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typ+.stamp := OPT.expCtxt.stamp; typ+.ref := OPT.NotExported;
... allocate all reachable types and reset their ref ...
END
ELSE
IF ~ODD(stamp) THEN  (x not yet traversed with OPT.expCtxt.exported = FALSE %)
IF stamp > OPT.expCtxt.stamp THEN  ( not traversed at all )
typt.stamp := OPT.expCtxt.stamp + 1;
.. allocate alf reachable types and local scopes ...
ELSE  (x already traversed with OPT.expChxt.exported = TRUE x)
INC(typ+.stamp);
.. allocate all reachable local scopes ...
END
END
END
END TypeaAlloc;

The field exported of the export context expCixt indicates whether the current
traversal allocates exported objects only. The fields of expCtxt are updated by the
procedure Outlayer, each time a new layer is written to the symbol file. The
fields expCtxt from and expCixt.to specify a range of layer numbers; objects with
a field /ayer in that range are selected by the following two procedures to be
allocated and possibly written to the symbol file:

PROCEDURE Variables(var: OPT.Object);
VAR adr: LONGINT; layer: INTEGER; typ: OPT.Struct;
BEGIN ...
WHILE var # NIL DO
layer := vars.layer;
IF (layer >= OPT.expCtxt.from) & (layer <= OPT.expCtxt.to) THEN
typ := vart.typ;
TypeAlloc(typ);
IF var+.stamp > OPT.expCtxt.stamp THEN
vart.stamp := OPT.expCtxt.stamp;
NegAlign(adr, Base(typ));
DEC(adr, typ+.size); vars.adr := adr; vars.linkadr := adr;
IF OPT.expCtxt.exported THEN OPT.OutObj(var) END
END;
END;
var := vars.link
END;

END Variables;
PROCEDURE Objects(obj: OPT.Object);

VAR layer: INTEGER;
BEGIN
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IF obj # NIL THEN
Objects(obj+ left);
layer := obj+.layer;
IF (obj+.mode IN {Con, Typ, ... (¥ not Var ) }) &
(layer >= OPT.expCtxt.from) & (layer <= OPT.expCtxt.to) THEN ...
TypeAlloc(obj+.typ);
IF OPT.expCtxt.exported THEN OPT.OutObj(obj) END
END; ’
Objects(obj+.right);
END
END Objects;

The range specified by expCtxt.from and expCtxt.to contains only one layer, until
a mismatch occurs. The range then includes the remaining layers to be
exported. A last traversal with expCtxtexported set to FALSE completes the
allocation phase. In this last traversal, the range is set to include all exported
and nonexported objects, so that every local scope can be reached and
allocated. The following statements from the procedure AllocAndExport in OPV
show the global structure of the allocation phase:

OPT.InitExport;
WHILE OPT.expCtxt.exported & OPM.noerr DO
OPL.GetAllocState(allocState);
Variables( first variable );
Objects( first object );
OPT.Outlayer;
IF OPT.expCtxt.mismatch THEN OPL.SetAllocState(allocState) END
END;

;;ariables( first variable );
Objects( first object )

The procedure OPT.Qutlayer detects a possible layer mismatch and sets the
different fields of the expCtxt variable. After a layer mismatch, the allocation
state is restored and the variable exp(txtexported remains TRUE for one more
traversal. The allocation state indicates the amount of memory allocated for
global variables and constants, and of the number of entries attributed to
exported procedures and methods. The procedure Outlayer also resets the
writing position of the symbol file rider to the beginning of the discarded layer.
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Front-End Modifications

The implementation of the layer model requires only few maodifications in OP2.
Besides new OPT procedures that are described above, existing procedures of
the front-end are not modified, except for two in the table handler:

« The procedure retrieving imported objects in external scopes recalls for
each imported module the number of the highest accessed layer. This
layer number is recorded together with the corresponding fingerprint in
the object file and will be used by the module linker for consistency
checking.

« After each declaration of an exported object, the table handler searches
in the scope of the old symbol file for an object with the same name, in
order to reuse the same layer number for the declared object.

The data structures in OP2 are left unchanged, except for the records ObjDesc
and StrDesc in OPT, which both need two new integer fields, stamp and layer.
The field stamp is used to mark nodes visited during allocation as shown above.
The field fayer recalls the layer number from which the object or the structure
was imported. In addition, module OPT declares several new data structures,
like import and export contexts, that are used locally by the new procedures,
but have no influence on the rest of the compiler.

Object File Format and Linker Modifications

The back-end remains unchanged, except for the procedure generating the
object file and the allocation procedures in OPV described above. Indeed, a
slight modification of the object file format (see the complete format in the
appendix) is necessary to list the number and fingerprints of exported layers:

HeaderBlk = ... noflayer:2 {fprint:4} modname.

The old object file format used to list a key only. Another modification concerns
the import block where the number and fingerprint of the highest used layer
from each imported module replace the key of that imported module:

impBlk = 85X {noflayer:2 {fprint:4] name}.
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Note that a module may be imported without being used; in that case, the
number of used layers is 0 and no fingerprint is present. Here also, the old
object file format provided a key for each imported module. Other aspects of
the format remain unchanged.

According to the modified format, the linker performs a different consistency
check. Instead of comparing the key of each imported module with the
expected one, it now verifies that each imported module supplies at least the
same number of layers as required, and then it compares the corresponding
fingerprint with the expected value: .

IF (LEN(m.fprints+) < e) OR (e > 0) & (m.fprints[e~1] # fprint) THEN mismatch END

Where m is the imported module, m.fprints the amay of fingerprints of the
supplied layers, e the required number of layers, and fprint the required
fingerprint. This test is performed for each imported module.

Drawbacks and Limitations of the Model

The layer model attains the objective stated at the beginning of this chapter: it
is now possible to extend module interfaces without invalidating their clients.
Updating an existing implementation of OP2 to the layer model is easy,
because only machine-independent portions of the compiler need to be re-
placed. The minor modifications required in the back-end and in the module
linker are trivial.

A new portable module browser, which is necessary due to the new symbol
file format, is available and replaces the old one. Furthermore, the use of
fingerprints instead of unique keys has several advantages. A fingerprint compa-
rison is more efficient than a byte-stream comparison, for example. Also, the
recompilation of an older interface version does not yield a new and incom-
patible key, but the original fingerprint. Similarly, an interface compiled in
different module spaces gets the same fingerprint in all spaces.

Record Field Revelation

The model has nevertheless some limitations. One could expect that exporting
a hidden record field, which is called revelation, is treated as an extension and
does not cause clients of the record to be recompiled; but this is not the case.
Indeed, a field made visible in a base record might cause a name collision with
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a field of a record extending this base record. Slightly modifying the Oberon
scope rules for record fields could solve this problem. Applying the concept of
locality to the scopes of extending records would allow fields in extending and
extended records to be declared with identical names. This would not be
comparable to method overriding, since the name would always designate the
same field independently of the dynamic type of the record. This could confuse
the programmer and discourage good programming style.

The implementation of field revelation would also pose difficulties. The layer
exporting the record with the hidden field should not be modified, otherwise
clients would be invalidated. So, a kind of fix-up in a higher layer should reveal
the field. That means that the declaration of a record would be spread over
several layers. This fix-up mechanism would introduce complexity in the export
routines: each type object might belong to a range of layers instead of to a
single layer, and it might have to be traversed several times to be exported. A
layer number would be assigned to each record field. Furthermore, several
versions of the same record might be indirectly imported from different
modules, which would require an additional consistency check. The reexport of
a revealed field without client invalidation would be difficult to implement.
Fix-ups would have to appear in a higher layer of the symbol file of the
reexporting module.

For these reasons, field revelations, as well as method revelations, are not
considered as extensions, but as invalidating modifications. Similarly, changing
a read-only variable or field into a read-write variable or field would require
fix-ups causing the same problems.

Extending a record with a new hidden field usually modifies the size of the
record, and therefore the fingerprint of the layer. Also, a new hidden method
results in a new fingerprint because the number of methods is modified in the
symbol file. In both cases, clients of the record are invalidated.

History of Development

The main drawback of the model is that the history of the module's develop-
ment is included in the symbol file. It is necessary to read the old symbol file to
assign a layer number to an object. This number represents the age of the
object and is not present in the source text. If the old symbol file is not
available for some reason when the module is recompiled, the history of
development is lost, and all exported objects then form a single layer. This may
invalidate clients expecting a different stack of layers.
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Also, deleting an obsolete object may invalidate clients, even if these do not
use the object. Indeed, the stack of layers above the layer previously containing
the object will collapse.

A solution to the problem would be to store history of development in the
source text. A layer number could follow each export mark, for example. This
would probably create other consistency problems, even more difficult to solve.

A better idea is to get rid of the history of development. History is only
necessary to associate a layer number with each exported object, and to order
the different layers. So, if each layer would only contain one object, and if the
relative order of the layers would be imelevant, then history of development
would not be necessary any longer. This naturally leads to the object model
presented in the next chapter.
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Chapter 6

The Object Model

The OP2 version implementing the layer model avoids client invalidation by
using the history of development that is stored in the symbol file of each
interface. If the symbol file gets lost, the compiler cannot guarantee compa-
tibility between the recompiled interface and clients of it, even if the interface is
not modified. The original compiler also stores history into the symbol file in
the form of a unique key derived from date and time of the first interface
compilation. The recompilation of a module whose symbol file is lost may have
disastrous consequences on system consistency.

This chapter proposes a second model for separate compilation and module
extension that does not require the history of development. Applying this new
model, the compiler can recompile modules without altering the system
consistency, even if the old symbol files are not available. Symbol files do not
keep track of history of development as in the layer model.- Although old
symbol files are not indispensable for a noninvalidating recompilation, the
compiler nevertheless reads them to wam the programmer when an interface is
modified in a way that may invalidate clients.

The Idea

System consistency is lost when some symbol table information stored in the
symbol file of a module and expected by clients is modified after the recom-
pilation of this module. Without history of development, it is not possible to
allocate newly inserted objects after existing ones in order to keep the symbol
table information for older objects unchanged. The problem is that older and
newer objects cannot be differentiated without history. Therefore, objects of the
same age cannot be grouped in the same layer and layers cannot be chrono-
logically sorted. A single layer containing all objects and labeled by a single
fingerprint would be a step back to the original model: any interface modi-
fication would always result in a new fingerprint and hence in a client
invalidation. As a unique alteative, the new model chooses the other extreme;
instead of packing all objects into a single layer, the model provides a layer and
an individual fingerprint for each object.
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A Fingerprint per Object

Conceptually, this model is a special case of the layer model with a finer
granularity for consistency checking. There is nevertheless an important differ-
ence to the layer model: since these layers containing one object each cannot
be sorted without history of development, a client cannot express its require-
ments by just specifying a layer number and a fingerprint, but it has to explicitly
list every needed object with its fingerprint. Every module exports objects to
clients and makes use of objects from imported modules. The new model
discards the concept of layers and is called the object model.

Names and fingerprints of all exported objects are listed in the export
section of an object file, but only the names and fingerprints of effectively used
objects are listed in the import sections for imported modules. An extemal
object is marked to be listed in the import section if its name is used in the
source text being compiled.

The example in figure 6.1 shows an exporter M and its client A. The export
section of M lists every exported object with its fingerprint, and the import
section for M in A lists every used object from M with its fingerprint.

MODULE M; MODULE A;
VAR IMPORT M;
xx: CHAR;
ux: BOOLEAN; M.
X, u
M.Sym
u:fpu
x: fpx export export
use x: fpx use from M
M.Obj A.Obj

Figure 6.1 An interface M and its client A

Figure 6.2 shows an extension of module M by two exported variables, as well
as two new clients, B and C. Note that client A is still consistent after the
extension of M and does not need to be recompiled.
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MODULE M; MODULE A; MODULE B; MODULE C;
VAR IMPORT M; IMPORT M; IMPORT M;

X%, y%: CHAR;

ux, vx: BOOLEAN; . Mx... . Mu.. «Mu..

My,

u v, Xy

M.Sym

u: fpu still valid new new

v: fpv fpx unchanged

x: fpx

y: fpy export u: fpu

use x: fpx v: fpv u: fpu
M.Obj A.Obj B.Obj C.0bj

Figure 6.2 Interface extension without client invalidation

The fingerprint of the variable x is left unchanged by the extension of M.
Therefore, the client A using x can be linked to M without being recompiled
first. The linker verifies that exporter modules supply objects with the fingerprint
values expected by client modules.

Note that the variable y is not used by any clients and can therefore be
modified or even dropped from the interface of M without invalidating clients.
in contrast, modifying the variable x will result in a new fingerprint value for x
and A will be invalidated. Deleting x also invalidates A, since the linker will not
find the fingerprint for x in the export section of M when linking A. However,
modifying or deleting x neither affects 8 nor C.

In the layer model, the fingerprint of a layer is a hash function of the symbol
file contents describing the layer and is also a function of the fingerprint of the
preceding layer. As a consequence, the fingerprint is dependent on the history
and is context-dependent. Fingerprints cannot be computed that way in the
object model, since they have to be context-independent. Otherwise, the
insertion of a new object could have side effects on the fingerprint of other
objects. '

Remember that fingerprints are only used to check consistency over module
boundaries. Nonexported attributes of an exported object are therefore not
relevant for the fingerprint computation. Obviously, the fingerprint of an object
has to depend on its type, because the type is also an exported attribute of the
object. The name of the type is not sufficient, because a modification of the
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type structure may leave the name unchanged. Such a modification has to be
detected by the module linker and must therefore influence the fingerprint
value of the object. As a consequence, the fingerprint of an object is a function
of all attributes defining the object in the symbol file, including those of the
type of the object. The fingerprint of an object can only be context-independent
if all exported attributes of the object are also context-independent.

A symbol file describing two objects of the same type does not list the type
structure twice. The type of the second object is replaced by a number
referencing the type of the first object. Now, the fingerprint of the second object
should not depend on the presence of the first object. The reference number is
a context-dependent attribute and hence cannot be used in the fingerprint
computation. Structure reference numbers in symbol files can be seen as an
optimization for avoiding the duplication of common type graphs. Similarly, a
multiple traversal of a type graph should be avoided for efficiency reasons when
computing the fingerprint of objects of a same type structure. As a result, every
structure also receives a fingerprint. Structure fingerprints can be considered as
common subexpressions in the computation of object fingerprints.

The fingerprint of an object is therefore a function of the fingerprint of its
type structure. A clear distinction is made between objects and structures. A
type involves an object and a structure, each with a fingerprint (fpo and fps), as
illustrated by the following example:

MODULE Mm;
TYPE Ax = ARRAY 8 OF INTEGER;
VAR ax: A; a ™
END M.
A
object: fpo A P amray8 P
structure: fos INTEGER ™ integer

Figure 6.3 Example of a type declaration and associated fingerprints

Fingerprints of predefined types and objects are predefined constants. Finger-
prints of user-defined types and objects in figure 6.3 are computed as follows:

fps(A) :="M.A" & Array @ 8 @ fps(INTEGER);
fpo(A) = Type e fps(A);
fpo(a) = Var & fps(A);
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The symbol e represents the fingerprinting operator. The fingerprint of the
structure of the type A depends on the module name and canonical name of
the structure ("M.A”), on the fact that A is an array (Array, Type, and Var are small
integers), on the number of elements (8), and finally, on the fingerprint of the
element structure (the fingerprint of the structure INTEGER).

The fingerprint of a structure depends on the canonical name of the
structure, because the canonical name is an attribute of the type. Also, the
module name is part of the fingerprint because structures can be reexported,
contrary to objects, whose fingerprint neither contains the object name, nor the
module name, because objects cannot be reexported. Since exported objects
are not dependent on other objects, but only on structures, the fingerprint of an
exported object is never used to compute another fingerprint (record fields,
methods, and parameters do not have their own fingerprint since they are not
stand-alone exported objects). Therefore, the name of an object is not part of
the fingerprint, but is explicitly listed with the fingerprint in object files.

The value of an imported constant object (not the object itself) may be
reexported by a newly declared constant (alias). In that case, the fingerprint of
the new constant does not depend on the fingerprint of the imported constant,
but on its value only. A consistent constant value is guaranteed at link time,
since the fingerprint of the imported constant is checked, when the reexporting
module is linked.

Addresses of variables, entry numbers of procedures, and addresses of type
descriptors do not appear as arguments of the fingerprinting function, because
they are context-dependent attributes of objects. Therefore, the linker would not
be able to detect an inconsistent use of these attributes by client modules,
since the values of these attributes are not part of the fingerprints. As a
consequence, these attributes cannot be used at compile time by client
modules and hence cannot be listed in the symbol file. Without history of
development, it is impossible to guarantee that inserting a new object in an
interface will not modify addresses or entry numbers of existing objects.
Therefore, the address of an extemal object is not inserted in the client code at
compile time, but at link time. The address is present in the object file of the
exporting module only. This requires a fix-up chain for each extemnal object in
client modules. Extemal objects are then linked by name (see the section on
the implementation).
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Fingerprinting Recursive Types

Clearly, computing the fingerprint of a type involves a bottom-up traversal of the
type tree. Unfortunately, a type is not always represented by a tree, but a more
general graph is sometimes necessary. Consider the following type declaration
and the comesponding attempt for a fingerprint computation (for better reada-
bility, the module name M is not shown in the expressions):

TYPE
Ptrx = POINTER TO Desc;
Descx = RECORD nextx: Ptr END ;

fps(Ptr) := "Ptr" @ Pointer  fps(Desc);

fps(Desc) = "Desc” & Record e "next” e offset(next) @ fps(Ptr);
fpo(Ptr) := Type @ fps(Ptr);

fpo(Desc) := Type o fps(Desc);

Obviously, this is a recursive type declaration: fps(Ptr) depends on fps(Desc), and
vice-versa. The cycle has to be broken to compute the fingerprints. Considering
that the computation involves a recursive depth-first traversal of the type graph,
a fingerprint value may be required, when it is not completely computed at that
time, because the corresponding node may belong to a cycle being traversed. A
simple solution would be to use the partially computed value since the final
one is not available yet. This would yield the following expressions, where the
first one denotes a temporary value corrected in the third line:

fps(Ptr) := "Ptr" @ Pointer;
fps(Desc) := "Desc” @ Record @ "next" & offset(next) @ fps(Ptr);
fps(Ptr) := fps(Ptr) o fps(Desc);

The problem with this solution is that starting the computation with Desc
instead of Ptryields different expressions and hence different fingerprint values:

fps(Desc) := "Desc” @ Record @ "next” © offset(next);
fps(Ptr) := "Ptr" @ Pointer o fps(Desc);
fps(Desc) := fps(Desc) @ fps(Ptr);

Without using history of development, it is difficult to guarantee a constant
evaluation order. Both alphabetical order and order of declaration may be
perturbed by the insertion of new objects. In the example below, inserting the
new type A in front of the declarations of B and C modifies both orders:
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TYPE
Ax = POINTERTO C;
Bx = POINTERTO C;
Cx =RECORD z%: BEND ;

Prior to the insertion of A, the fingerprint computation started by visiting 8, then
C, whether alphabetical order or declaration order was used. Now, A is visited
first in both cases, and C is visited before B, because A depends first on C.
Therefore, by using any of these orders, the fingerprint values for 8 and C would
depend on the presence of A, which would be incorrect, because neither 8 nor
C depends on A.

Actually, B and C form a strongly connected component of the type graph. A
correct solution is to locate strongly connected components and to compute
fingerprints of the nodes of these components first. A canonical node must be
determined, so that the computation can always start at the same node. A new
inserted type cannot alter the fingerprint values, except if the new type is a node
of the strongly connected type graph. In that case, it is comrect to modify the
fingerprints, because this is a modification of the types in the graph.

Declaration order is inadequate to determine the canonical node of the
strongly connected component, because swapping two declarations in the
source text should have no effect on fingerprint values. Alphabetical order is a
good choice; the node with the "smaller” name is the canonical representative.
Applying this technique to the previous example results in the following
statement sequence for computing the fingerprints of the structures in the
strongly connected graph (the structure A does not belong to it):

fps(B) := "B" @ Pointer;
fps(C) :="C" @ Record o 2"  offset(z) @ fps(B);
fps(B) := fps(B) @ fps(C);

The node B is the canonical representative of the graph. The fingerprint of C
uses a temporary value of the fingerprint of B. Object fingerprints are not
shown; the computation of their fingerprint is never problematic, because
objects never belong to cycles. The execution of these statements yields the
following results:

fps(B) = "B" @ Pointer & ("C" @ Record @ "z" o offset(z) @ ("B" @ Pointer));
fps(C) = "C" @ Record & "z" ® offset(z) @ ("B" @ Pointer);

There is nevertheless a problem with this technique: each fingerprint in a cycle
should contain the complete type information of the cycle. Testing any finger-
print of the cycle at link time should simultaneously verify all types in the cycle.
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Unfortunately, this is not the case. For example, the fingerprint of C above does
not "know" that B is a pointer to C. It just knows that B is a pointer, because a
temporary value for the fingerprint of B was used to compute the fingerprint of
C. Breaking the cycle also cuts this information.

Although every fingerprint in a strongly connected component of a type
graph does not contain the complete type information of the component,
evidently, the sum of them does. This sum is a kind of global fingerprint of the
component. Therefore, if this global fingerprint is added back to each finger-
print, then each of them contains the complete type information. This solution
requires three traversals of the type graph:

1. Traverse the type graph to find strongly connected components and their
canonical representatives; for each found component, execute steps 2
and 3.

2. Traverse the strongly connected component starting from its canonical
representative to compute fingerprints, and combine them to form a
global fingerprint.

3. Traverse the strongly connected component to combine the global
fingerprint with each fingerprint.

This solution is too expensive and hence not acceptable. The following remark
will help finding a more efficient solution: cycles made accessible to the
outside by one node only cannot have more than one evaluation order for the
fingerprint computation. In contrast, a cycle with several entry nodes can have
different evaluation sequences for the same fingerprint. In other words, a
different fingerprint value is obtained when the computation enters a cycle at a
different node.

An entry node is always a named type that can be referenced by other types.
The previous example had two entry nodes (B and (), but the following
declaration has only one:

TYPE
Descx = RECORD
handlerx: PROCEDURE(VAR par: Desc; msg: INTEGER);
nextx: POINTER TO Desc
END;
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Although the type graph is cyclic, the evaluation order is always the same,
because the computation can only start at the node Desc (record structure). The
partially computed fingerprint value for Desc used for fingerprinting the signa-
ture of handler and for fingerprinting the type of next does not contain the
complete type information of the cycle, because the computation is not
concluded yet. However, this is irrelevant, since the fingerprints of these field
types will never be used by nodes other than Desc. Other nodes can only use
the final fingerprint of Desc (which contains the complete type information),
because Desc is the only accessible node from outside the cycle: Therefore,
record field objects do not need fingerprints.

As a conclusion, the fingerprinting of a type graph does not pose any
problems if each strongly connected component of the graph involves only one
named type.

Breaking Cycles

The question now is: when, exactly, may a strongly connected component
contain more than one named type? The scope rules of the Oberon language
(6], more precisely the amendments of them, give the answer:

1. If a type T is defined as POINTER TO T1, then the identifier T7 can be
declared textually following the declaration of 7, but it must lie within the
same scope.

2. Field identifiers of a record declaration are valid in field designators only.

The second point confirms that record fields do not need fingerprints. The first
amendment above is the only exception to the rule stating that identifiers must
be declared before being used. Therefore, the only possibility for a strongly
connected component of a type graph to describe more than one named type
is to include at least one named pointer to a forward-declared named type, as
demonstrated here:

+ Type declarations introducing a new type name T cannot be nested. They
all have the form 7=...,

A strongly connected type graph declaring more than one type name
involves several such type declarations; one of them appears first in the
source text.
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« Since the type graph is strongly connected, type declarations in the graph
must directly or indirectly depend on each other.

+ The first declaration must depend on a following declaration (cyclic
module imports are not allowed); according to the Oberon scope rules,
this declaration can only be a named pointer to a named type.

As explained before, a single recursive depth-first traversal of a type graph is
capable of correctly computing all fingerprints of the graph nodes, only if each
strongly connected component of the graph has at most one entry point. A
correct fingerprint for a node T must contain the type information of 7 and the
type information of every node that is reachable from T. Also, its value must not
depend on the starting point of the computation. Now, strongly connected
components with more than one entry point always contain a named pointer to
a named type. Interrupting the recursion of the fingerprint computation each
time a named pointer to a named type is encountered ensures that each
strongly connected component with more than one entry point is decomposed
into subgraphs consisting of strongly connected components with a single
point of entry.

For example, the following type declarations constitute a strongly connected
component with four entry points, namely A, ADesc, B, and BDesc:

Ax = POINTER TO ADesc;
Bx» = POINTER TO BDesc;
ADescx = RECORD bx: BEND ;
BDescx = RECORD

ax: A;

p*: PROCEDURE(VAR b: BDesc)
END;

Figure 6.4 shows the connectivity of the corresponding type graph. If the cycle
is broken between a named pointer and its named base type (dashed lines), the
strongly connected component splits into four strongly connected components
with one entry point each (rectangle).
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A Fr———— + ADesc

» BDesc [¢—~————— B

Figure 6.4 Breaking a cyclic type graph

Similarly, the recursion in the fingerprint computation can be interrupted if the
fingerprint of a named pointer type does not depend on the fingerprint of the
named pointer base type, but only on the name of the base type. Figure 6.5
illustrates the remaining dependences in the fingerprint computation.

A |—— "ADesc” ADesc

BDesc "BDesc” <«—— B
"]

Figure 6.5 Fingerprinting recursive types

The strongly connected component containing the type BDesc is still cyclic, but
it has only one entry point. Therefore, the computation of the fingerprint of
BDesc does not pose any problems, as shown below:

fps(A) := "A" @ Pointer ® "ADesc”;
fps(B) :="B" @ Pointer ® "BDesc”;

fps(ADesc) := "ADesc” @ Record;
fps(ADesc) := fps(ADesc) @ "b" @ offset(b) o fps(B);

fps(BDesc) := "BDesc" @ Record; '
fps(BDesc) := fps(BDesc) @ "a" @ offset(a) @ fps(A) ®
"p" @ offset(p) @ Proc & Varpar & fps(BDesc);
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All fingerprints can be computed in one traversal of the type graph. If the value
of a fingerprint is needed during its own computation, as for fps(BDesc) above,
an initial value is used instead. This initial value contains the name and the
form of the type, but it could be any special value meaning self, since an initial
value is never used by another fingerprint computation, except by its own one.
Indeed, there is only one entry point in a recursive computation.

This drastic simplification of the fingerprint computation has a serious
drawback: consistency checking at link time can only guarantee that the base
type of the imported pointer has the expected name, but it cannot verify that
the structure of this base type has not changed. However, it is interesting to
note that this verification is sufficient if the pointer is only assigned in client
modules, but never dereferenced. Indeed, the memory integrity of the system of
modules is preserved after a pointer assignment on one condition: that the
assigned pointer is assignment-compatible with the destination variable. The
client executing the assignment does not need to know exactly what the
pointer is pointing at (opaque pointer types in Modula-2 make use of this
property).

In Oberon, pointer assignment-compatibility rules are tightly coupled with
the concept of record extension. A pointer can be assigned to a variable if the
pointer type extends the type of the variable. Therefore, the fingerprint of the
pointer must not only contain the name of the pointer base type, but also the
names of all record types extended by the pointer base type. Otherwise,
assignment incompatibility could not always be detected:

TYPE
BTx = POINTER TO BTDesc;
BTDesc* = RECORD ... END ;

Tx = POINTER TO TDesc;
TDescx = RECORD (BTDesc) next: TEND ;

VAR
btx: BT;
te: T,

A client importing the module containing these declarations is allowed to
assign t to bt, since T extends BT. In that case, the linker only checks the
fingerprints of t and of bt, which depend on the fingerprints of T and of BT
respectively. Now, if the declaration of TDesc is modified and does not extend
BTDesc any longer, t is no more compatible with bt, and the client should be
invalidated. If the fingerprint of 7 does not also include the name of the
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extended record BTDesc, the inconsistency cannot be detected. So, the finger-
prints of the variables bt and t must be the following:

fpo(bt) = Var @ "M.BT" @ Pointer ® "M.BTDesc";
fpo(t) = Var @ "M.T" @ Pointer @ "M.BTDesc" ® "M.TDesc";

Of course, if a client dereferences a pointer, then the structure of the pointer
base type must be consistent. In that case, both the fingerprints of the pointer
and of the pointer base type are verified. Besides marking imported objects
whose names are used in the source text, the compiler also marks the named
base type of every dereferenced, named pointer. The fingerprints of marked
objects are listed in the object file and are compared at link time to the
fingerprints of the corresponding objects supplied by the exporter module.

Fingerprinting Signatures

Until now, the analysis of strongly connected components declaring more than
one named type has only considered the original Oberon language. In the
Oberon-2 version of the report [11], the second amendment to the scope rules,
which is described above, also includes method identifiers besides field iden-
tifiers. This confirms that neither record fields nor methods need fingerprints.

In Oberon, every component of a named type is textually declared between
the equal sign following the name of the type and the semicolon terminating
the declaration. This is not the case in Oberon-2, since methods are procedures
bound to a record type from outside the record declaration. This means that a
record type has an implicit forward reference to its methods. This observation
modifies the conclusion that a strongly connected component must include a
named pointer to a named type in order to declare several named types. Indeed,
a type-bound procedure may strongly connect two components of a type graph
declaring a type name each:

"TYPE
T1% = RECORD ...END;
T2% =RECORD t: T1; ...END ;

PROCEDURE (VAR self: T1) Mx (VAR t: T2); ... END M;

When fingerprinting the signature of the method M above, the fingerprint of the
parameter type T2 should not be computed, otherwise the fingerprint values
become dependent on the starting point of the computation. The fingerprint of
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the signature has nevertheless to reflect the type of its formal parameters so that
a modification of the signature can be detected at link time.

It is interesting to note that memory integrity is preserved if the fingerprint of
a procedure only depends on the type name and mode of the formal para-
meters, as well as on the name of the result type. Indeed, the complete
structure of the formal parameter types and of the result type does not need to
be included in the fingerprint of the procedure, because this structure is
checked in the client module calling the (type-bound) procedure. For con-
venience, procedures and type-bound procedures are fingerprinted using the
same algorithm.

The following example shows a module B8 exporting a procedure P whose
formal parameter type T is imported from A, and two client modules C and D
calling P:

MODULE A;
TYPE T% =...;
VAR t%: T;

ENDA.

MODULE B;
IMPORT A;
PROCEDURE Px(t: AT); ... END P;
END B. (x the fingerprint of AT is checked *)

MODULE C;
IMPORT A, B;
BEGIN
B.P(AY)
END C. (x the fingerprints of B.P and of A.t are checked »)

MODULE D;
IMPORT A, B;
VARLAT;
BEGIN
B.P(t)
END C.  (x the fingerprints of B.P and of AT are checked »)

Although the fingerprint of B.P does not reflect modifications in the structure of
AT, itis impossible to call B.P from an inconsistent client module. Indeed, if AT
is modified, its fingerprint and the fingerprint of the variable At are modified.
Therefore, module B cannot be linked without being recompiled, since the
fingerprint of ATis checked (when a client module uses an imported identifier,
the linker has to check the comesponding fingerprint). Note that the recom-
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pilation of B does not result in a new fingerprint for B.P, since this one depends
only on the name "AT".

The client modules € and D have to declare or to import a variable of type
AT in order to call the procedure B.P. Thereby, the fingerprint of AT or of a
variable of type AT is checked and hence an inconsistency is detected if either C
or D is not recompiled. On the other hand, if AT is not modified, but the
signature of B.P is (a new formal parameter type replaces AT, for example), the
inconsistency is detected by checking the fingerprint of 8.P.

In other words, the fingerprint of a (type-bound) procedure depends only on
the names occurring in its signature. It does not have to reflect the complete
structure of the formal parameter types, since this is done when declaring or
calling the procedure. The fingerprint of the signature only guarantees that the
signature has not been modified textually, and that the type checking of actual
and formal parameters performed by the compiler is stilf valid at link time.

Note that the name and the offset of a formal parameter are not finger-
printed. The name is present in the signature for documentation purpose only
and can be modified without invalidating clients of the signature. The offset of
a formal parameter cannot be inconsistent, because the order of the formal
parameters is included in the signature fingerprint and the complete structure of
every formal parameter type is verified as explained above.

Obviously, the name of a formal parameter type cannot be used in the
fingerprint computation if the type is anonymous. The fingerprint has never-
theless to guarantee the validity of the type checking between actual and formal
parameters performed at compile time. For example, a formal open amay of
some element type accepts any open or fixed-size amay of the same element
type as actual parameter. In this case, the fingerprint of the signature has to
include the form of the type (open array) and the name of the element type.
Also, a formal fixed-size or open array of characters accepts a constant string as
actual parameter. In contrast, anonymous records do not make sense as formal
parameters, since name equivalence in Oberon prohibits any assignment com-
patibility and thereby makes it impossible to call the procedure. The fingerprint
computation for a signature exactly reflects the Oberon rules for parameter
passing.

Fingerprint Computation
To resume, fingerprinting recursive types does not pose any problems if the

recursion is broken at each occurrence of a named pointer type to a named
base type, and at each occurrence of a (type-bound) procedure signature. The
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fingerprint of such a pointer type and of a signature then guarantees that the
declaration has not changed textually, but does not represent the complete type
information. A complete type checking is performed by verifying the fingerprint
of the base type when the pointer type is dereferenced, and by verifying the
fingerprint of the parameters when a procedure is declared and called.

A fingerprint that contains the complete type information also guarantees
the validity of the textual declaration. Therefore, the fingerprint of any type can
be computed in two steps: first, the part containing information about the
textual declaration only, and then the part containing the remaining type
information. The first part is called the identifier fingerprint, since it mainly relies
on the type identifier. The final fingerprint is a combination of both parts,
except for procedure signatures and named pointer types to named base types,
for which the identifier fingerprint is also the final fingerprint.

Table 6.1 describes the computation of the identifier fingerprint (denoted
idfp) of any userdefined structures. Each predefined type has a different
identifier fingerprint, which is a predefined constant (not shown in table 6.1).

Table 6.1 Computation of identifier fingerprints

Structure S idfp(S)

POINTERTO T name & Pointer @ idfp(T)
RECORD ... END name & Record

RECORD (T) ... END name & Record e idfp(T)
ARRAY OF T name & DynArr @ idfp(T)
ARRAY n OF T name @ Array & n @ idfp(T)

PROC (ag: Tg: ...; VAR an1: Tp0): T name @ Proc @ Valpar e idfp(To) @ ...
... ® Varpar o idfp(Ty,1) @ idfp(T)

The name of the structure and the name of the module declaring the structure
are included in the identifier fingerprint (the concatenation of both is denoted
name in the table). However, if a structure is anonymous, no name is consi-
dered by the computation.

The identifier fingerprint of a pointer type also contains the identifier
fingerprint of its base type. The identifier fingerprint of an extending record type
also contains the identifier fingerprint of the record type it extends. The
identifier fingerprint of a signature also contains the identifier fingerprint of its
formal parameter types. In other words, the type name is not always sufficient
to guarantee consistency, because Oberon uses structural type equivalence
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instead of type name equivalence in some cases like procedure assignment,
parameter passing to formal open amays, as well as pointer and record
assignment.

The identifier fingerprint of an array must include the identifier fingerprint of
the element type, because a client module can pass a string as parameter to a
formal array of characters; the final fingerprint of the amay type is not checked
in that case, but only the fingerprint of the procedure, which is independent of
the final fingerprint of the array type.

The final fingerprint of a structure depends on the identifier fingerprint of
that structure, as shown in table 6.2.

Table 6.2 Computation of structure fingerprints

Structure S fp(S)
(named) POINTER TO (named) T idfp(S)
POINTERTO T idfp(S) @ fp(T)
RECORD ... idfp(S) @ size @ align ® nofmeth @ ...
fldx: T; ... "fid" @ offset e fp(T) & ...
methx (...) PROC (...) "meth” @ methno & fp(signature)
END
RECORD (T) ... END idfp(S) e fp(T) & ... (like above)
ARRAY OF T idfp(S) e fp(T)
ARRAY n OF T idfp(S) @ fp(T)

PROC (ag: Tg; ...; VAR @nq: To): T idfp(S)

Depending on the implementation, further attributes may also be included in
the fingerprint computation: the offset of hidden pointer fields and/or of
procedure fields, the method number of hidden methods, and the value of the
system flag (sysflag, see chapter 4), for example.

The fingerprint of an object depends on the mode of the object and on the
fingerprint of its type, but it does not include the object name because objects
are linked by name. Table 6.3 shows the different object modes and the
corresponding fingerprint computation.
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Table 6.3 Computation of object fingerprints
Object x ‘ fp(x)

CONST xx =value oftype T Const @ form(T) @ value

TYPEx%=T Type & fp(T)

VAR x%: T Var & Readwrite o fp(T)

VAR x=: T Var & Readonly e fp(T)

PROC xx(...) XProc e fp(signature)

PROC+ xx(...) IProc @ fp(signature)

PROC- xx(...) Cg, ... Cn1 CProc o fp(signature) ene cy @ ... ® ¢

XProc denotes a conventional exported procedure, IProc an interrupt procedure
(which may have different calling conventions), and CProc a code procedure
(inline procedure which is used for hardware interfacing purposes). Note that
no distinction is made between a type object and its alias object. Both have
therefore the same fingerprint and a client may use either of the two names.
However, swapping the alias name with the canonical name in the type and
alias declarations results in a new fingerprint, since the canonical name is
included in the fingerprint of the structure.

Anonymous Types and Name Equivalence

Remember that the fingerprint of a recursive type defined as pointer to a base
type has to include the name of the pointer type as well as the name of the
base type, in order to break the cycle in the fingerprint computation. However,
this is not possible if the base type is anonymous. In that case, the fingerprint of
the pointer type depends on the fingerprint of its base type and includes the
complete type information. In contrast, the fingerprint of the base type does not
contain the complete information, but it is only used to compute the fingerprint
of the pointer type:

TYPE
Tx = POINTER TO RECORD nextx: TEND ;

fps(T) = "M.T" @ Pointer & Record @ ...
... ® "next” @ offset(next) @ ("M.T" @ Pointer & Record);
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Since there is only one named type in this graph, there is a single entry point;
so, the fingerprint computation is not problematic, as explained in the prece-
ding sections.

Anonymous types nevertheless pose a problem. Consider the following
module exporting two variables of an anonymous type:

MODULE M;
VAR
p¥, q%: POINTER TO RECORD ... END ;
END M.

A client assigning M.p to M ¢ has to list the fingerprints of p and q in its object
file. These two fingerprints are identical, since both variables are of the same
type, and since the fingerprint of an object does not include the object name.
However, this is not the problem. Consider now the new version of module M:

MODULE M;
VAR
px*: POINTERTO RECORD ... END ;
gx: POINTER TO RECORD ... END ;
END M.

The assignment of M.p to M.q is not allowed any longer, because the variables
are of a different type, although the type structures are identical. Indeed, Oberon
does not use structural equivalence, but name equivalence. The problem is that
the modification has no effect on the fingerprint values and that the client is
therefore not invalidated. Remember that the fingerprint has to be context-
independent. It is inherently impossible to reflect this kind of modification in
the fingerprint (which must be context-independent), since everything but the
context remains unchanged.

At first sight, this seems to be disastrous and to cast doubts on the
correctness of the proposed model. A more careful examination reveals that the
problem is harmless. First, exported objects of an anonymous type are ex-
tremely rare. Second, the depicted interface modification would denote a
dubious programming style and makes this scenario still more improbable.
However, the compiler neither has to judge the quality of the submitted
programs nor to rely on improbabilities.

If the incompatible assignment is really executed, the memory integrity of
the system is not endangered (a language favoring structural type equivalence
would admit the assignment). A program working before the modification will
still work after it. One could fear a different behavior of type tests implied by
assignments of dereferenced pointers in the exporting module, after an illegal
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pointer assignment performed by an noninvalidated client; but the compiler
does not generate implied type tests for anonymous types, because an anony-
mous type cannot be extended.

So, in some extremely rare cases, the object model may apply structural
equivalence for anonymous types used over module boundaries. However, if the
old symbol file is available when the modified interface is recompiled, which is
normally the case, the compiler signals the interface change (the implemen-
tation is described later in this chapter).

A Fingerprint per Object Component

The granularity of type checking in the original linker is rather coarse: a single
key guarantees the consistency of an entire interface. Therefore, any interface
modification always results-in a new key and clients of the interface are
invalidated. The layer model improves the situation by prescribing a fingerprint
for each layer of an interface, and the object model by a fingerprint for each
object of an interface. One wonders whether still finer-grained checks are
desirable and possible. Would a fingerprint for each object component be both
practical and efficient?

Object components are formal procedure parameters, record fields, and
type-bound procedures. Modifying the number of formal parameters in an
exported procedure without invalidating clients does not make much sense.
First, a mechanism for default parameters as well as for superfluous parameters
(questionable idea!?) would have to be introduced in the language. Second, it
would be difficult to distinguish between an interface modification with no
desirable client invalidation and a modification with required invalidation.
Furthermore, the consistency check would be more expensive, since as many
fingerprints as parameters would be checked for each imported procedure.

Inserting and removing exported record fields or type-bound procedures
pose similar problems. As explained in the preceding chapter, a name collision
might occur between a newly inserted field and a field in a record extending the
modified record. Here too, the language and in particular its scope rules would
have to be modified to permit such extensions.

A component is tightly bound to its object, much more than an object is
bound to the module interface it belongs to. For example, there is a well-
defined order among object components, which is not the case among objects
of a same module interface. So, any externally visible change to an object
should be considered as an invalidating modification.
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In contrast, it would be interesting to be able to modify the hidden part of
an object. Similarly to the reimplementation of a procedure body that does not
invalidate clients, the modification of the intemal implementation of a record
type is desirable. For example, inserting or deleting hidden fields (at least at the
end of the record) should not invalidate clients of the record.

At first sight, this should be already possible now since implementation-
specific and hidden attributes neither appear in the symbol file, nor in the
fingerprint computation. A more careful attention reveals that this is not true,
since the record size, hidden pointer fields, hidden procedure fields, and hidden
methods may be used by some clients (to build type descriptors or method
tables, for example) and are therefore included in the symbol file and in the
fingerprint value.

The point is that these attributes are only used under special circumstances.
A client accessing record fields through a pointer will not need the record size,
for example. On the other hand, a client statically allocating a record, or copying
a record will. It would be possible to classify the clients of a record in different
categories, depending on the use the client makes of the record. A record may
be accessed through a pointer, statically allocated, dynamically allocated, ex-
tended, copied, and so on. Unfortunately, each category would require a
fingerprint, thereby yielding larger object files. The additional complexity in both
the compiler and the linker would be too important in comparison with the
relatively small gain in flexibility.

The object model makes a distinction between two classes of record clients
only: on the one hand, clients using the public information about the record
(like exported fields), on the other hand, the clients using the private infor-
mation about the record (like hidden fields or record size). Note that the
membership to one of these classes also depends on the system's implemen-
tation. For example, some implementation might determine the record size at
run time before copying a record.

Each record has two fingerprints: a public one and a private one. Both
fingerprints are listed in the object file exporting the record type, but only one of
them is listed in the object file of a client importing this record type. If a client
just accesses fields of the imported record, it then lists the public fingerprint of
this record. Only this fingerprint will be checked by the linker. That means that
a modification of the private information of the record, like the insertion of new
hidden fields at the end of the record, cannot invalidate this client. In contrast,
such a modification will generate a new private fingerprint and will thereby
invalidate clients that declare a variable of this record type and therefore list the
private fingerprint in their object file. Evidently, the modification of the public
fingerprint of a record, caused by the insertion of a new exported field for
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example, invalidates all clients of this record. The private fingerprint has
therefore to depend on the pubilic fingerprint.

Both public and private fingerprints of a record type are bound to the type
structure, but not to the type object. The object itself has a single fingerprint,
which depends on the public fingerprint of the structure only. The object
fingerprint is only listed in the object file if the type name is exported, but both
structure fingerprints are listed if the type appears in the symbol file, as shown
in the following example:

MODULE M;
TYPE
Desc = RECORD ... END ;
VAR
px, qx%: POINTER TO Desc;
END M.

MODULE N;
IMPORT M;
BEGIN
NEW(M.p)
END N.

The module M lists four fingerprints in its object file: both public and private
fingerprints for the structure Desc (which is exported through the exported
variable p and g), as well as the fingerprints of the variables p and ¢ that
depend on the public fingerprint of Desc. However, the fingerprint of the object
Desc is not listed, because the name Desc is not exported. The client N lists the
fingerprint of p only in its object file. In this example, the linker will not verify
that the private structure of Desc has not changed; it will only check the
fingerprint of p, which does not depend on the private fingerprint of Desc. This
is correct, because the client N does not use the private structure of Desc: the
required information for the dynamic allocation is obtained at run time from
the type descriptor and is therefore always consistent.
Consider now a new version of the client N:

MODULE N;
IMPORT M;
BEGIN
M.pr:=Mgr
END N.
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The client performs a record assignment and hence needs to know the record
size, which is found in the symbol file of M. The linker must verify that the
record size is consistent when N is linked to M. Therefore, this version of N lists
the private fingerprint of Desc along with the fingerprints of p and q. Note that
an Oberon implementation taking the size at run time from the type descriptor
of Desc would not require a verification of the private fingerprint of Desc at link
time.

One observes that fingerprints of exported structures whose name is not
exported may nevertheless be needed, if these structures can be the base type
of a pointer type. This is the case for array, dynamic amray, and record structures.
Therefore, the private and public fingerprints of such exported structures are
always listed in the object file, even if their name is not exported. In contrast,
fingerprints of objects are only listed if the object's name is exported. Actually,
an object cannot appear in a symbol file if its name is not exported, contrary to
a structure.

Two fingerprints per record type is the right balance between the two ex-
tremes, namely, a single fingerprint per module interface or a fingerprint per
object component. One can conclude that the object model is a trade-off
between both simplicity of implementation and efficiency of consistency check-
ing on the one hand, and flexibility in module extension on the other hand.

The Implementation

Similarly to the layer model, the object model has been implemented in the
portable Oberon-2 Compiler OP2. However, the object model needed more
editing changes in OP2 than the layer model, partly because of the new object
file format. On the other hand, the storage allocation in the object model is
much simpler than in the layer model and even simpler than in the original
OP2, because the order in which objects are allocated is not relevant. Indeed,
context-dependent attributes are not used over module boundaries. So, different
values due to a different allocation order are not visible to the outside and
hence cannot invalidate clients.

Symbol File Format

Basically, the object model employs the same symbol file format as the layer
model. However, some context-dependent attributes have been eliminated from
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the symbol file. This section enumerates the differences between the formats
(the complete file format is described in the appendix).

In the object model, the symbol file is not built as a stack of layers separated
by stoppers and containing objects, but as a single list of objects:

SymFile = OFBX Module {Object}.

The new one-byte file tag indicates a different file format. The layer model
stores the fingerprint of each layer in the file. The usually small number of layers
requires a small amount of disk space for the fingerprints. This is different in
the object model, which requires one fingerprint for each object and two
fingerprints for each named record or array structure. So, the fingerprints are
recomputed when reading the symbol file and are not stored in the file. The
time gained in reading more compact files compensates for the time spent in
recomputing fingerprints. Writing the fingerprints into the symbol file would
result in a file size increase of 20% in average.

The module specifier consists of the module name only, or a negative
number referencing an already listed name, but it includes neither layer num-
bers nor layer fingerprints:

Module = 0} negmno | MNAME name.

The first module specifier in the file (after the file tag) lists the module name of
the interface described by the file (the own module name). The number 0 refers
then to the own module. Other module names and negative numbers refer to
modules that are imported by the interface.

Variables have no offsets and (type-bound) procedures have no entry num-
bers, since these attributes are context-dependent:

Object = ..
[ (RVAR [ VAR) Struct name
| (XPRO | IPRO) Signature name
| ..
Method = (TPRO Signature name | HDTPRO) methno.

Offsets of variables are present in the object file and are used by the linking
loader to compute absolute addresses, which are inserted in the code of client
modules as well as in the exporting module (unless pc-relative addressing is
used in the exporting module). Procedure entry numbers disappear completely,
since absolute addresses can also be computed by the linking loader from the
absolute code position in memory and from procedure offsets, which are stored
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in the object file. The linker finds imported variables and procedures by their
name.

The address of the descriptor of each record type is not listed any longer as
an attribute of the record structure in the symbol file. Type descriptors are
linked using the name of the type they describe. If this type is anonymous, its
private fingerprint is used instead of its name.

Struct = negref
|  STRUCT Module name [SYS value]

( .
| REC Struct size align nofMeth {Field} {Method} END

| )

The type descriptor is a data structure allocated at run time that contains
information about each record type. Type descriptors contain the hierarchy of
type extensions, which is used for type tests at run time. They also include a
method table dispatching the calls to type-bound procedures, as well as a
pointer offset table accessed during garbage collection to locate pointer fields
in records and in aray elements.

From an implementation point of view, a type descriptor address is actually
the address of a global variable initialized at load time to point to a type
descriptor. In the previous models, a type descriptor is always indirectly
accessed through this pointer variable. The object model, which requires one
fix-up chain for each object, links every use of a type descriptor into one fix-up
chain. This allows the absolute address of the type descriptor to be directly
inserted in the code.

The elimination of these global pointers represents a gain in both memory
space and execution speed of type tests: the type tag to be checked is
compared to a constant value (immediate addressing mode) instead of being
compared to the contents of a global variable (memory access). Note that this
optimization is not possible if a compacting garbage collector is used, or else
type descriptors have to be allocated outside the heap.

- As explained in the preceding chapter, to each production of the symbol file
grammar correspond both an extemalizing and an intemalizing routine. Since
the format is almost the same in both models, the routines are very similar and
hence not listed here.

In the layer model, fingerprints of imported layers are not computed, but
read from the symbol file of imported modules, whereas fingerprints of ex-
ported layers are computed by the externalizing routines. This is different in the
object model. First, the fingerprints of imported structures and objects cannot
be read from imported symbol files, because symbol files do not contain



106

fingerprints. So, they are computed when these symbol files are internalized.
Second, the externalizing routines do not need to compute fingerprints for
exported items, since fingerprints are not written into the symbol file. However,
fingerprints for exported items have to be listed in the object file. So, the
fingerprinting routines that are called for imported items by intemalizing
routines are also called for exported items by the routine generating the object
file. Consequently, these fingerprinting routines, which are presented in the
following sections, are stand-alone procedures separate from the externalizing
and internalizing routines.

Fingerprinting Structures

Remember that structure nodes need (public and private) fingerprints for two
reasons. First, fingerprints of structure nodes may serve as common sub-
expression in the computation of the object fingerprints. Indeed, different
objects may be of the same type. In that case, their fingerprint depends on the
fingerprints of the common type structure. It would be a waste of time to
compute these fingerprints several times. Second, the fingerprint of a named
pointer type does not depend on the structure of its base type if this base type
is named too (possible cycles are broken in this context). Dereferencing a
variable of such a pointer type then requires the verification at link time of the
fingerprints of the base structure.

The cost of determining whether a structure node really needs to recall its
fingerprint values (whether the node is the root of a common subgraph, for
example) is not negligible. It is much more efficient to store the fingerprint
values in each structure node, without distinction.

The identifier fingerprint of a structure may be used several times by the
computation of other fingerprints. For example, the identifier fingerprint of a
base record is used for computing the identifier fingerprints of all record types
extending this base record. Here too, common subexpressions can be elimi-
nated by storing the identifier fingerprint in each structure node.

The data structure StrDesc in OP2, which represents nodes of compiled struc-
tures, is augmented by new fields holding the three different fingerprint values:

StrDescx = RECORD

fpdone, idfpdone: BOOLEAN;
idfp, pbfpx, pvfpx: LONGINT;

END;
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An identifier fingerprint (idfp), a public fingerprint (pbfp) and a private finger-
print (pvfp) are stored in each structure node. pbfp and pvfp are exported from
OPT, because their value may be written to the object file by the module OPL.

The same node of a cyclic type graph may be reached several times during
the fingerprint computation. Therefore, already traversed nodes must be marked
to avoid infinite loops. It is not possible to determine whether a fingerprint is
already computed by looking at its value, because all 32-bit numbers can be a
valid fingerprint value. Consequently, additional boolean fields are both neces-
sary and convenient to mark the node. Public and private fingerprints are
computed simultaneously. Accordingly, the completion of their computation is
denoted by a single field (fpdone). A second boolean field (idfpdone) indicates
that the identifier fingerprint has been computed.

The same hash function as in the layer model computes the fingerprints in
an incremental fashion. The procedure FPrint of module OPM implements this
fingerprinting function:

PROCEDURE FPrint*(VAR fp: LONGINT; val: LONGINT);
BEGIN fp := S.ROT(S.VAL(LONGINT, S.VAL(SET, fp) / S.VAL(SET, val)), 1)
END FPrint;

Each attribute the fingerprint has to depend on is passed as parameter to this
procedure. For example, a name is fingerprinted by applying the hash function
to each character of the name:

PROCEDURE FPrintName(VAR fp: LONGINT; VAR name: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR;
BEGIN i :=0;
REPEAT ch := name[i]; OPM.FPrint(fp, ORD(ch)); INC(i) UNTIL ch = 0X
END FPrintName;

The fingerprint of a signature includes the identifier fingerprint of the types
occurring in the formal parameter list of the signature. Now, the type of a
formal parameter may in tum be a signature. This mutual recursion requires a
foiward declaration for one of the two procedures computing either identifier
fingerprints (procedure /dFPrint) or signature fingerprints (procedure FPrintSign).
The procedure FPrintSign first calls the procedure /dFPrint on the function
result type of the signature and on each formal parameter type of the signature,
in order to compute their respective identifier fingerprint. The final fingerprint
for the signature is a combination of these identifier fingerprints (see table 6.1).
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PROCEDURE +IdFPrint*(typ: Struct);

PROCEDURE FPrintSign(VAR fp: LONGINT; result: Struct; par: Object);
BEGIN
IdFPrint(result); OPM.FPrint(fp, result+.idfp);
WHILE par # NIL DO
OPM.FPrint(fp, par+.mode); IdFPrint(par+ typ); OPM.FPrint(fp, part.typ+.idfp);
par := pars.link
END
END FPrintSign;

PROCEDURE IdFPrintx(typ: Struct);

VAR btyp: Struct; strobj: Object; idfp: LONGINT; f, c: INTEGER;
BEGIN

IF ~typ+.idfpdone THEN

typ+.idfpdone := TRUE;

idfp := 0; f := typr form; ¢ := typs.comp;

OPM.FPrint(idfp, f); OPM.FPrint(idfp, c);

btyp := typ+.BaseTyp; strobj := typ+.strobj;

IF (strobj # NIL) & (strobj+.name # ") THEN
FPrintName(idfp, GlbMod[typ+.mno]+.name);
FPrintName(idfp, strobj+.name)

END;

IF (f = Pointer) OR (c = Record) & (btyp # NIL) OR (c = DynArr) THEN
IdFPrint(btyp); OPM.FPrint(idfp, btyp+.idfp)

ELSIF ¢ = Array THEN
IdFPrint(btyp); OPM.FPrint(idfp, btyp+.idfp); OPM.FPrint(idfp, typ+.n)

ELSIF f = ProcTyp THEN
FPrintSign(idfp, btyp, typ+.link)

END;

typ+.idfp = idfp

END
END IdFPrint;

The identifier fingerprint of a structure depends on the form of the structure
(boolean, integer, array, and so on). If the structure is named, its fingerprint also
depends on the canonical name of the structure and on the name of the
module defining the structure. The identifier fingerprint of an (open) amay
depends on the identifier fingerprint of its element type (see the section on
fingerprinting signature). An anonymous formal record type is not compatible
with any actual type; therefore, its identifier fingerprint does not need to include
information about its interal structure.

The flag idfpdone is set at the beginning of the procedure, so that recursive
type definitions like the following ones do not cause the procedure to loop
forever:
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Proc = PROCEDURE(proc: Proc);
Ptr = POINTER TO ARRAY OF Ptr;
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In this case, the recursive use of an identifier fingerprint by its own computation

yields the value 0, which is entirely satisfying.

The procedure FPrintStr simultaneously computes the public fingerprint and

the private fingerprint of the structure received as parameter:

PROCEDURE FPrintStrx(typ: Struct);

VAR f, c: INTEGER; btyp: Struct; strobj, bstrobj: Object; pbfp, pvfp: LONGINT;

BEGIN
IF ~typr.fpdone THEN
IdFPrint(typ); pbfp := typ+.idfp;
IF typr.sysflag # O THEN OPM.FPrint(pbfp, typ+.sysflag) END ;
pvip := pbfp; typ+.pbfp := pbfp; typ.pvfp := pvip;
(x initial fingerprints may be used recursively »)
typ+.fpdone := TRUE;
f:= typ+.form; ¢ := typr.comp; btyp := typ+.BaseTyp;
IF f = Pointer THEN
strobj := typ+.strobj; bstrobj := btyp+.strobj;
IF (strobj = NiL) OR (strobj+.name = ") OR
(bstrobj = NiL) OR (bstrobj+.name = ") THEN
FPrintStr(btyp); OPM.FPrint(pbfp, btyp+.pbfp); pvip := pbfp
(* else named pointer to named record; use idfp as pbfp and as pvfp )
END
ELSIF f = ProcTyp THEN ( use idfp as pbfp and as pvfp )
ELSIF c IN {Array, DynArr} THEN FPrintStr(btyp);
OPM.FPrint(pbfp, btyp+.pvp); pvip := pbfp
ELSE (% c = Record )
IF btyp # NIL THEN FPrintStr(btyp);
OPM.FPrint(pbfp, btyp+.pbfp); OPM.FPrint(pvip, btyp+.pvfp)
END;
OPM.FPrint(pvfp, typ+ size); OPM.FPrint(pvp, typ+.align);
OPM.FPrint(pvip, typr.n});
nofhdfld := 0; FPrintFlds(typ+.link, O, TRUE);

IF nofhdfld > OPM.MaxHdFId THEN OPM.Mark(225, typ+.txtpos) END ;

FPrintTProcs(typ.link);

OPM.FPrint(pvip, pbfp);  (x checking pvfp must also check pbfp »)
strobj := typ+.strobj;

IF (strobj = NIL) OR (strobj+.name = ") THEN pbfp := pvfp

(% pbfp of an anonymous record must contain the complete information x)

END
END;
typ+.pbfp := pbfp; typr.pvip := pvip
END
END FPrintStr;
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The initial value of both the public and private fingerprints of a structure is the
identifier fingerprint of the structure. Remember that a named structure may
refer to itself. In this case, the initial value is used as fingerprint during a
recursive computation.

In contrast, a named pointer to a named structure, as well as a procedure
type, breaks the recursion, by using the identifier fingerprint as public and
private fingerprint (the public and private fingerprints of any pointer type are
always equal). Remember that if a named pointer to a named structure is
dereferenced, the public fingerprint of the structure will be checked at link time.

The fingerprint of other pointer types depends on the public fingerprint of
the referenced structure. If this structure is allocated, copied or extended, its
private fingerprint will be checked. However, if this structure is anonymous, the
verification is not possible, because the structure cannot be identified. In this
case, its public fingerprint also contains its private fingerprint, which is always
the case for (open) array types. This dependence is forced for anonymous
records. Example:

MODULE M;
TYPE
Desc = RECORD ... END;
P = POINTER TO Desc;
Q =POINTERTO RECORD ... END ;

VAR
pOx, plx: P;
q0*, q1%: Q;
BEGIN ...
END M.
MODULE N;
IMPORT M;
BEGIN
M.p0~r = M.p1;
M.q0r == M.q1+
ENDN.

The fingerprints of the variables p0, p7, and q0, g7 depend on the fingerprints of
P and Q, respectively, and are checked in module N, since these variables are
imported and used by N. The fingerprint of P depends on the public fingerprint
of Desc only. The private fingerprint of Desc is explicitly checked in N, because of
the record assignment. However, it is not possible to check the private finger-
print of the base type of Q, because this base type is anonymous. Therefore, the
fingerprint of the pointer type Q - and hence of g0 and g7 - has to depend on
the private fingerprint of its base type. This is the case, since the public
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fingerprint of an anonymous record is set to the value of its private fingerprint,
and since the fingerprint of Q depends on this public fingerprint.

The public and private fingerprints of an (open) array structure are equal and
depend on the public fingerprint of the element type of the structure. The
fingerprint of a fixed-size array also depends on the number of elements, which
is already contained in the identifier fingerprint.

The private fingerprint of a record structure depends on the complete
allocation information listed in the symbol file (size, alignment factor, number
of methods, both visible and hidden fields and methods), whereas its public
fingerprint depends on the visible fields and methods only.

The local procedure FPrinttdFld searches for hidden fields that have never-
theless to be fingerprinted. This requires the scanning of nonexported fields
being of a record type and the unrolling of nonexported fields being of an array
type. Relevant hidden fields are pointers and procedures. They only contribute
to the private fingerprint value of the record structure they belong to, if the flags
controlling their presence in the symbol file are set. Public fingerprints do not
include information on hidden pointers.

PROCEDURE FPrintHdFld(typ: Struct; fld: Object; adr: LONGINT);
(* modifies pvfp only *)
VAR, j, n: LONGINT; btyp: Struct;
BEGIN
IF typs.comp = Record THEN FPrintFids(typ+.link, adr, FALSE)
ELSIF typr.comp = Array THEN btyp := typ+.BaseTyp; n := typs.n;
WHILE btyp+.comp = Array DO n := btyp+.n % n; btyp := btyp+.BaseTyp END ;
IF (btyp+.form = Pointer) OR (btyp+.comp = Record) THEN
j := nofhdfld; FPrintHdFld(btyp, fid, adr);
IFj # nofhdfld THEN i :=1;
WHILE (i < n) & (nofhdfld <= OPM.MaxHdFld) DO
INC(adr, btyp+.size); FPrintHdFld(btyp, fid, adr); INC(i)
END
END
END
ELSIF OPM.ExpHdPtrFld &
((typr.form = Pointer) OR (fld+.name = OPM.HdPtrName)) THEN
OPM.FPrint(pvfp, Pointer); OPM.FPrint(pvfp, adr); INC(nofhdfld)
ELSIF OPM.ExpHdProcFld &
((typ+.form = ProcTyp) OR (fld+.name = OPM.HdProcName)) THEN
OPM.FPrint(pvfp, ProcTyp); OPM.FPrint(pvfp, adr); INC(nofhdfid)
END
END FPrintHdFlid;
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The local procedure FPrintflds computes the contribution of each exported
record field to the fingerprints of the enclosing record structure. The public
fingerprint of a record structure depends on the accessibility (read-write or
read-only), name and offset of each of its exported fields, as well as on the
public fingerprint of the type of each of its exported fields. The private
fingerprint of a record structure depends on the private fingerprint of the type of
each of its exported fields, as well as on its hidden fields, if these are present in
the symbol file.

PROCEDURE FPrintFlds(fld: Object; adr: LONGINT; visible: BOOLEAN);
(% modifies pbfp and pvfp x)
BEGIN
WHILE (fid # NIL) & (fld».mode = FId) DO
IF (fld+.vis # internal) & visible THEN
OPM.FPrint(pbfp, fld+.vis); FPrintName(pbfp, fld+.name);
OPM.FPrint(pbfp, fld+.adr); FPrintStr(fld+.typ);
OPM.FPrint(pbfp, fld+.typ+.pbfp); OPM.FPrint(pvip, fid+.typ+.pvip)
ELSE FPrintHdFld(fld+ typ, fid, fldr.adr + adr)
END;
fid := fid+.link
END
END FPrintFlds;

The local procedure FPrintTProcs recursively traverses the scope graph of a
record structure in order to find the procedures bound to the record. The public
fingerprint of a record structure depends on the method number (obj+. linkadr),
on the signature and on the name of each exported type-bound procedure. The
private fingerprint of a record structure depends on the method number of non-
exported type-bound procedures if these numbers are listed in the symbol file.

PROCEDURE FPrintTProcs(obj: Object);  (» modifies pbfp and pvfp x)
BEGIN
IF obj # NIL THEN
FPrintTProcs(obj+.left);
IF obj+.mode = TProc THEN
IF obj#.vis # internal THEN
OPM.FPrint(pbfp, TProc); OPM.FPrint(pbfp, obj+.linkadr);
FPrintSign(pbfp, obj.typ, obj#.link); FPrintName(pbfp, obj+.name)
ELSIF OPM.ExpHdTProc THEN
OPM.FPrint(pvfp, TProc); OPM.FPrint(pvfp, obj+.linkadr)
END
END;
FPrintTProcs(obj.right)
END
END FPrintTProcs;
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Fingerprinting Objects

Fingerprinting objects is much simpler than fingerprinting structures, because
objects have only one fingerprint whose computation cannot be recursive.
Similarly to StrDesc, the data structure ObjDesc of OPT gets a new field holding
the fingerprint value, as well as a field indicating whether the fingerprint has
been computed:

ObjDescx = RECORD

fpdone: BOOLEAN;
fprint*: LONGINT;

END;

The fingerprint value is stored in the object to avoid a recomputation when the
fingerprint is needed more than once. The procedure generating the object file
and the procedure comparing the new and old symbol files (see the next
section) both require object fingerprint values.

PROCEDURE FPrintObijx(obj: Object);
VAR fprint: LONGINT; f, m: INTEGER; rval: REAL; ext: ConstExt;
BEGIN
IF ~objt.fpdone THEN
fprint := 0; obj+.fpdone := TRUE;
OPM.FPrint(fprint, obj+.mode);
IF obj+.mode = Con THEN
f := obj typ+.form; OPM.FPrint(fprint, f);
CASE f OF
| Bool, Char, Sint, int, Lint:
OPM.FPrint(fprint, obj+.conval+.intval)
| Set:
OPM.FPrintSet(fprint, obj+.conval+.setval)
| Real:
rval := SHORT(obj+.conval+.realval); OPM.FPrintReal(fprint, rval)
| LReal:
OPM.FPrintLReal(fprint, obj+.conval+.realval)
| String:
FPrintName(fprint, obj+.conval.exts)
I NifTyp:
ELSE err(127)
END
ELSIF obj+.mode = Var THEN
OPM.FPrint(fprint, obj#.vis); FPrintStr(obj+.typ);
OPM.FPrint(fprint, obj+.typ+.pbfp)
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ELSIF obj+.mode IN {XProc, {Proc} THEN
FPrintSign(fprint, obj+.typ, obj+.link)

ELSIF objt+.mode = CProc THEN
FPrintSign (fprint, obj+.typ, obja link); ext := obj+.convalt.ext;
m := ORD(ext+[0]); f := 1; OPM.FPrint(fprint, m);
WHILE f <= m DO OPM.FPrint(fprint, ORD(ext+[f])); INC(f) END

ELSIF objt.mode = Typ THEN
FPrintStr{obj+.typ); OPM.FPrint(fprint, obj+.typ+.pbfp)

END;

obj+.fprint := fprint

END
END FPrintObj;

The fingerprint of an object depends on the mode of the object. In case of a
constant, it depends on the constant value. Module OPM exports additional
fingerprinting routines for constant values that cannot be passed as parameter
to the fingerprinting procedure without a machine-dependent type cast.

The fingerprint of a variable depends on its accessibility (read-write or
read-only) and on the public fingerprint of its structure. The fingerprint of a
normal or an interrupt procedure depends on the fingerprint of its signature
only, whereas the fingerprint of a code procedure also includes the byte-stream
inserted in the code at each call site of the code procedure (this byte-stream is
present in the symbol file).

Finally, the fingerprint of a type object includes the public fingerprint of the
type structure.

Consistency Checking at Compile Time

Inconsistencies should be detected as early as possible. Therefore, the compiler
checks whether multiple imports of a same item are consistent. Inconsistent
imports of constants, variables or procedures are not possible at compile time,
because such objects can only be directly imported from a single symbol file. In
contrast, types can be reexported and hence imported from different symbol
files, as shown here:

MODULE M;
TYPE

Te=..;
END M.
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MODULE N;
IMPORT M;
VAR ax: M\T;

END N.

MODULE O;
IMPORT M, N;
VARDb: M.T;

BEGINb:=N.a

END O.

in this example, the type T, which is originally exported from M, is imported
into N and reexported from N as the type of the variable a. Therefore, T is
present in both the symbol files of M and N. If T is modified and M is
recompiled, but N is not recompiled, then the module O will import a different
version of T from M than from N. This inconsistency can be detected when
compiling O.

The compiler reads the symbol files in the order specified by the import list
(which is not relevant). For each import of a module, a new module object is
inserted into the symbol table, and a new scope graph is attached to this
module object. Each object present in a symbol file is inserted into the scope
graph of the module declaring this object. So, when the type T of the example
above is read from the symbol file of N and is being inserted into the scope of
M, the compiler notices that an object with the same name is already there,
because it was inserted when reading the symbol file of M. In that case, the
compiler has to compare the two versions of T and to inform the programmer
of a possible inconsistency.

The original model simply compares the keys of the modules which are
imported several times, whereas the layer model compares the fingerprints of
the common layers. In the object model, the check consists in computing and
comparing the fingerprints of both versions of T. The new version has to be
completely loaded, so that its fingerprint can be computed. The problem is that
the symbol table cannot hold multiple versions of the same type graph for
several reasons. First, an object node reserves only one pointer field to hold its
type graph. Second, type identity would not correspond to pointer identity any
longer. Indeed, since Oberon favors type name equivalence, the compiler simply
tests structure pointers for equality to decide whether two types are equal.
Several versions of the same type would render this simple test impossible.

Managing two versions of a type graph (by attaching the second one to a
temporary variable, for example) while keeping pointer identity for already
loaded types is complex and may result in a different topology for a cyclic graph
and hence in a different fingerprint value. Storing the fingerprints of reexported
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types in the symbol file could simplify the problem, but would increase the
symbol file size.

A simple solution to this problem exists: the procedure reading the symbol
file first computes the fingerprint of the old version of a type before overwriting
this old version with the new one. Overwriting means that the nodes describing
the old structure are reused for the new version, thereby leaving the pointer
values unchanged. The fingerprint of the new version is then computed and
compared to the fingerprint of the old version. Note that only named types can
be imported from different symbol files and hence can be inconsistent. Conse-
quently, it is sufficient to reuse the nodes representing named structures only.
Also, only the fingerprints of named structures are compared.

Before computing new fingerprints for a type, it is important to wait until all
structures the type depends on are loaded from the symbol file. Otherwise,
fingerprinting a partly loaded type graph would yield wrong results. For this
reason, the routine internalizing structures from the symbol file does not call
the fingerprinting routines after each loaded structure of a type graph, but after
each strongly connected component of the graph. Since the routine exter-
nalizing the structures proceeds in a preorder fashion, the intemalizing routine
has to wait until a complete type graph is loaded.

It is then possible to compare old and new fingerprints for each named type.
If the new public fingerprint of a structure is different, the compiler gives an
error. In contrast, if the new private fingerprint is different, the compiler only
gives an error if the private structure of the type is really used. For example, if
the type T above was defined as a pointer to a record, it would be possible to
insert new hidden fields in this record type and to recompile M without
invalidating N, because declaring a variable of a pointer type does not require
the private structure of the pointer base type. Also, the module O, which does
not need this private structure either, could be compiled without errors,
although two different private structures for the record type would be imported
from M and N.

The compilation of O should not report an error because of inconsistent
versions of M.T, otherwise it would be a waste of flexibility and would discard
the advantages of having two fingerprints for record types. However, if the
module O would export the pointer variable b, the pointer base type would be
exported too and would have to be consistently imported then. The compiler
therefore marks each type whose private part is inconsistently imported, and
waits to report an error until this private part is really used or until this type is
exported.
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Comparing with the Old Symbol File

Contrary to the layer model, the object model does not require the history of
development to ensure compatibility between a recompiled module and older
clients. For this reason, the compiler does not need to read the old symbol file
of a recompiled module. However, it is desirable that the compiler wams the
programmer if an interface modification may invalidate clients. So, if the old
symbol file is available, the compiler reads it to compare the new interface to
the old one. If the interface is different, the compiler reports an error and does
not register the new symbol file, unless the programmer explicitly allows the
generation of a new symbol file by specifying a compiler option.

The compiler reads the old symbol file using the same routines as for
symbol files of imported modules. it computes the fingerprints of old objects
and structures that are also present in the new version of the interface. As in the
layer model, a global record variable impCtxt manages context information that
is discarded after each import of a symbol file. The field ref of this record is a
table associating reference numbers with already loaded structures. The field
pvfp holds the fingerprint value of each structure already in the symbol table
until the fingerprints of the structures being loaded can be computed. The field
minr is used to delay this fingerprinting until a strongly connected component
of a type graph is completely loaded. The boolean field self indicates whether
the symbol file being loaded is the symbol file of the module being compiled or
of any other imported module.

Here is an excerpt from the routine that intemnalizes structures:

PROCEDURE InStruct(VAR typ: Struct);
VAR mno: SHORTINT; ref: INTEGER; tag: LONGINT; name: OPS.Name;
t: Struct; obj, old: Object;
BEGIN
tag := OPM.SymRInt();
IF tag # Sstruct THEN typ := impCtxt.ref{-tag]
ELSE
ref := impCtxt.nofr; INC(impCtxt.nofr);
IF ref < impCtxt.minr THEN impCtxt.minr := ref END ;
InMod(mno); InName(name); obj := NewObj();
IFname =" THEN
IF impCixt.self THEN old := NIL
ELSE  ( insert an anonymous object, used to mark type descs »)
objt.name :="@";
Insertimport(obj, GlbMod[mno).right, old); (% old = NIL x)
objt.name := "
END;
typ := NewStr(Undef, Basic)
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ELSE  (* insert a named object )
obj+.name := name; Insertimport(obj, GlbMod[mno].right, old);
IFold # NILTHEN (% recalculate fprints to compare with old fprints x)
FPrintObj(old); impCtxt.pvfplref} := old+.typ+.pvip;
IF impCtxt.self THEN  (x do not overwrite old typ x)
typ := NewStr(Undef, Basic)
ELSE  (x overwrite old typ for compatibility reason x)
typ := old+.typ; typaJink := NiL; typr.sysflag := 0;
typ+.fpdone := FALSE; typ+.idfpdone := FALSE
END
ELSE typ := NewStr(Undef, Basic)
END
END;
impCtxt.ref{ref] := typ; impCtxt.old[ref] := old;
typr.ref := ref + maxStruct;  (x ref >= maxStruct means not exported yet x)
typ+.mno := mno; typ+.allocated := TRUE;
typ+.strobj := obj; obj+.mode := Typ; obj+.typ := typ;
obj+.mnolev := -mno; obj+.vis := internal;  (* name not visible yet here x)

read structure into impCtxt. ref{ref]

IF ref = impCtxt.minr THEN  ( strongly connected component is complete x)
WHILE ref < impCtxt.nofr DO
t := impCtxt.ref(ref]; FPrintStr(t);
obj := tr.strobj;
IF obj+.name # " THEN FPrintObj(obj) END ;
old := impCtxt.old[ref];
IF old # NIL THEN tr.strobj == old; ( restore strobj »)
IF impCtxt.self THEN
IF oldr.mnolev < 0 THEN
IF old+.history # inconsistent THEN
IF old+.fprint # obj+.fprint THEN
old+.history := pbmodified
ELSIF impCixt.pviplref] # t+.pvfp THEN
old+.history := pvmodified
END
(* ELSE remain inconsistent »)
END
ELSIF old+.fprint # obj+.fprint THEN
old+.history := pbmodified
ELSIF impCtxt.pviplref] # t+.pvip THEN
old+.history := pvmodified
ELSIF old+.vis = internal THEN
old+.history := same (¥ may be changed to "removed” in InObj )
" ELSE old4 history := inserted (% may be changed to "same” in InObj )
END
ELSE
(* check private part, delay error message until really used x)
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IF impCtxt.pvip[ref] # t+.pvfp THEN old+.history := inconsistent END ;
IF old+.fprint # obj+.fprint THEN FPrintErr(old, 249) END
END
ELSIF impCtxt.self THEN obj+.history := removed
ELSE obj+.history := same
END;
INC(ref)
END;
impCtxt.minr := maxStruct
END
END
END InStruct;

Record types need type descriptors for type tests and dynamic allocation at run
time. The linker uses the name of the type to find and link type descriptors over
module boundaries. If the type is anonymous, then the private fingerprint is
used to identify the descriptor. A client using a type descriptor marks the type
object as used (see next section). For this reason, the procedure InStruct creates
anonymous objects for anonymous imported types.

The own symbol file is read after the parsing of the source text and the
construction of the syntax tree. So, the objects and structures loaded from the
old symbol file do not need to be kept after the fingerprint comparison. They
are hence not inserted into the symbol table. It is important that declared
structures and objects are not overwritten with possibly obsolete versions of
them still contained in the old symbol file.

The result of the comparison is stored into a new object field called history.
Structures have no history field, because only named structures are compared.
So, each result of a structure comparison can be stored in the object containing
the canonical name of the structure. This field history may hold 6 different
values listed along with their meanings:

inserted

The object is not present in the old symbol file. This is the default value.
- same

The fingerprints of the new and old objects are identical, as well as the
public and private fingerprints of their respective structures.

pbmodified
The fingerprints of the new and old objects differ.

pvmodified
The fingerprints of the new and old objects are identical, as well as the
public fingerprints of their respective structures, but the private finger-
prints of their structures differ.
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removed
The object is present in the old symbol file, but has been removed in the
new interface.

inconsistent
The type object is imported from different symbol files with different
private structures. This is not a problem if the public part only is used.

It is not possible to know whether the name of a type object was exported
when reading its structure from the symbol file. One has to wait until the
corresponding obiject is found or until the end of the symbal file is reached. So,
if the new version of the object is not exported, the field history is tentatively set
to same when the old structure is read, which is correct if the old object is not
found. However, if the old object is found later on (see the next procedure),
that means that it was exported and that its export mark has been removed in
the new interface. Therefore, the field history is modified from same to removed.
On the other hand, if the new version is exported, the field history is
tentatively set to inserted when the old structure is read, which is correct if the
old object is not found, because it was not exported and an export mark has
been inserted in the new interface. However, if the old version is found, that
means that it was exported and the field is therefore modified from inserted to
same.
Of course, the field history cannot be set to same if the fingerprints of the old
and new objects are different. Here is the routine that internalizes objects:

PROCEDURE InObj(mno: SHORTINT): Object;
VAR, s: INTEGER; ch: CHAR; obj, old: Object; typ: Struct;
tag: LONGINT; ext: ConstExt; -
BEGIN
tag := impCixt.nextTag;
IF tag = Stype THEN
InStruct(typ); obj := typ+.strobj;
IF ~impCixt.self THEN obj+.vis := external END  ( type name is visible now x)
ELSE
obj := NewObj();

read obj
END;
FPrintObj(obj);
IF (obj».mode = Var) &
((objr.typ+.strobj = NIL) OR (obj+.typ+.strobj+.name = ™)) THEN

(% compute a global fprint to avoid structural type equivalence for anonymous types x)
OPM.FPrint(impCtxt.reffp, objs.typ+.ref — maxStruct)
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END;
IF tag # Stype THEN
Insertimport(obj, GlbMod[mno].right, old);
IF impCtxt.self THEN
IF old # NIL THEN
(% obj is from old symbol file, old is new declaration x)
IF old+.vis = internal THEN old+.history := removed
ELSE FPrintObj(old);  ( FPrint(obj) already called )
IF obj.fprint # old+.fprint THEN
old+.history := pbmodified
ELSIF obj+.typ+.pvip # old+.typ+.pvip THEN
old+.history := pvmodified
ELSE old+.history := same
END
END
ELSE obj+.history := removed
END
END
ELSE (x obj already inserted in InStruct *)
IF impCtxt.self THEN
IF obj.vis = internal THEN obj+.history := removed
ELSIF obj+.history = inserted THEN obj+.history := same
END
END
END;
RETURN obj
END InObj;

As explained in the section on anonymous types and name equivalence, two
variables of two different anonymous types may have the same fingerprints. It is
therefore impossible to detect such an interface modification as the following:

VAR
ax, bx: ARRAY 4 OF INTEGER;
cx: ARRAY 4 OF INTEGER;

which is then modified to:

VAR
ax: ARRAY 4 OF INTEGER;
b, cx: ARRAY 4 OF INTEGER;

All three variables a, b, and ¢ have the same fingerprints in both versions, but a
and b are not assignment-compatible any longer in the second version. The
compiler computes a global fingerprint on the symbol file in order to detect
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such an interface modification. The global fingerprint is simply a combination
of all structure reference numbers of anonymous types of exported variables
appearing in the file. So, the global fingerprint for the first version is

16016017
whereas the fingerprint of the second version is

16017017
which is different (remember that the reference numbers from O to 15 are
reserved for predefined types).

The procedure InStruct sets the field history in all type objects the procedure
loads, but the procedure /nObj sets the field history only in objects loaded from
the old symbol file. Other nontype objects are imported only once from other
modules than the module being compiled. These objects have no history,
cannot be inconsistent, and cannot be reexported. The field history is checked
when a structure or an object is externalized into the new symbol file:

PROCEDURE OutStr(typ: Struct);
VAR strobj: Object;
BEGIN
IF typ.ref < expCixt.ref THEN OPM.SymWint(-typ+.ref)
ELSE
OPM.SymW Int(Sstruct);
typr.ref := expCtxt.ref; INC(expCtxt.ref);
IF expCixt.ref >= maxStruct THEN err(228) END ;
OutMod(typ+.mno); strobj := typ+.strobj;
IF (strobj # NIL) & (strobj+.name # ™) THEN OutName(strobj+.name);
CASE strobj+.history OF
| pbmodified: FPrintErr(strobj, 252)
| pvmodified: FPrintErr(strobj, 251)
| inconsistent: FPrintErr(strobj, 249)
ELSE (% checked in OutObj or correct indirect export »)
END
ELSE OPM.SymWCh(0X)
END; i

write typ
END
END OutStr;
PROCEDURE OutObj(obj: Object);
VAR |, j: INTEGER; ext: ConstExt;
BEGIN
IF obj # NILTHEN

OutObj(obj+.left);
tF obj+.mode IN {Con, Typ, Var, tProc, XProc, CProc, IProc} THEN
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IF obj+.history = removed THEN FPrintErr(obj, 250)
ELSIF obj.vis # internal THEN

CASE obj+.history OF

| inserted: FPrintErr(obj, 253)

| same: (% ok *)

| pbmodified: FPrintErr(obj, 252)

| pvmodified: FPrintErr(obj, 251)

END;

write obj
END
END;
OutObj(obj+.right)

END
END OutObj;

The procedure FPrintErr gives an eror only the first time it is called, to avoid a
large list of redundant emors. The emor message includes the name of the
concemed object, so that the programmer can decide either to allow the
generation of a new symbol file (recompilation with option) or to edit the
object declaration. The option e allows an interface to be extended only. This
guarantees that no client will be invalidated. The option s allows an interface to
be modified, which does not exclude a client invalidation. Depending on the
options, the procedure FPrintEmr suppresses the output of some emors. Here is
the list of the possible error messages:

249: X is not consistently imported, recompile imports
250: X is no longer visible, compile with \s

251: X is redefined (private part only), compile with \s
252: X is redefined, compile with \s

253: Xis new, compile with \e

X is replaced by the effective object name. The error number is listed here for
comparison with the code listed above, but is not visible in the real message.

Object File Format
The compiler has to write linking information into the object file, so that the

linking loader can resolve extemal references. This information may have the
form of a fix-up chain linking all the instructions that access an imported
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variable, for example. The linking loader follows this chain and inserts the
absolute address in the code. The imported variable may be of a record or array
type, and may then be accessed with an offset. Each address is formed by
adding the absolute address of the variable to the offset, which is written into
the code array of the object file together with the link to the next instruction.

Depending on the target architecture, it might not always be possible to
store both the variable offset (typically 32-bit unsigned) and the link (typically
16-bit signed for 32K aligned instructions, i.e. 128KB of code per module for
RISC architectures). This is not a problem with the MIPS processor [28] which
needs two instructions to access a 32-bit address. Since the first instruction
loading the upper half of the address is implicitly known (LUI, Load Upper
Immediate) and since its target register is also the base register of the next
instruction, all 32 bits of this first instruction are used to code the offset. The 16
bits coding the lower half of the address in the second instruction can be used
for the link. If the target architecture does not allow such a compression or if
the restriction of 128KB of code per module is too severe, a separate table can
replace the chain in the code array.

In the original model, as well as in the layer model, a single fix-up chain is
sufficient for all variable accesses of a module, because the offset of each
variable is known from the symbol file. This is different in the object model: the
offset of an imported variable is not known at compile time, because the offset
is a context-dependent attribute not listed in the symbol file. Therefore, a
separate fix-up chain is necessary for each imported object.

This has repercussions on the code generator of OP2. Indeed, the module
OPL has to manage a chain for each imported object whose access needs fix-up
at link time. The root of the chain is stored in the field linkadr of the object.
Since type descriptors may also be accessed over module boundaries, they also
need a chain. This is why the procedure InStruct creates objects for anonymous
types.

The linking loader checks the consistency of each imported object by
comparing the fingerprint of the object listed in the exporting module with the
fingerprint of the object listed in the importing module. If a mismatch is
detected, the module is unloaded and an error is reported.

The object file needs therefore an export section and an import section. The
object file format may be slightly different from one target architecture to the
other. The format presented here is used in the Oberon System running on
MIPS-based workstations. The export section (export block ExpBIk) consists of
a list of exported items:
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ExpBlk = 82X {EConst| EType | EVar | EProc | ECProc | EStruct | TDesc | LinkProc} OX.

EConst = 1X name fprint.

EType = 2X name fprint.

Evar = 3Xname fprint offset.

EProc = 4X name fprint entry.

ECProc = 5X name fprint.

EStruct = 6X name pbfprint pvfprint.

TDesc = 8X (name | OX pvfprint) link recsize ( -1 | basemod (name | OX pvfprint))
nofmth nofinhmth nofnewmth nofptr {mthno entry} {ptroff}.

LinkProc = 9X entry link.

The format of each item depends on the kind of object as indicated by the first
byte. Although the value of an exported constant (EConst) is not linked in client
modules but inserted at compile time in the code, its fingerprint must never-
theless be checked at link time, because the client might use an obsolete value.

A type object (EType) is exported with its name and fingerprint. Remember
that structure objects (EStruct) have a public fingerprint and a private fingerprint
and must be listed separately to type objects. Each exported variable (Evar) also
lists its offset. Since offsets of global (exported or nonexported) variables are
known at compile time, a single chain links them all. The root of this chain
appears in the header of the object file (see appendix). For some target
architectures, the compiler could take advantage of pc-relative addressing for
global variables.

Exported procedures (EProc) are listed with their relative entry point. No
fix-up chain is necessary for global (exported or nonexported) procedures called
in the module of their declarations, because pc-relative addressing is used.
However, assignments of global procedures to variables use absolute addresses
inserted by the linker (LinkProc). Code procedures (ECProc) are not linked, but
are very similar to constants, since their “value’, the byte-stream to be inserted
into the code at the call site, is present in the symbol file.

The export section also contains information for allocating type descriptors
(TDesc). Type descriptors are not checked for consistency, because the infor-
mation listed here is not used by client modules or is already checked by
structure fingerprints (hidden pointer fields, for example). Type descriptors are
listed in the export section for convenience only: the same traversal of the
symbol table generates information for exported objects and for type descrip-
tors. They could be listed in a separate section.

For each type descriptor, a fix-up chain (/ink) links the instructions referen-
cing the type descriptor (type tests and calls to NEW). Also, information is
provided for allocating and initializing the type descriptor (record size, base
record, new methods, pointer offsets). The type extension table (used for
run-time type tests) is copied from the type descriptor of the base record and
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the own type is then inserted in the new table. Similarly, the method dispatch
table is copied from the base type descriptor — nofinhmth lines are copied to
the new table consisting of nofmth lines — and the entry address (entry) of the
new methods (nofrewmth) are inserted into the lines corresponding to the
method number (mthno), possibly overriding copied entry addresses from the
base type descriptor.

Note that record types declared in procedures may also need type descrip-
tors. However, such a type descriptor is always listed without its name in the
object file, in order to avoid a possible name collision with a descriptor of a
globally declared type. An anonymous descriptor is identified by its private
fingerprint. This explains the presence of anonymous types as base type of an
extended type in the production TDesc above. In the same production, the
number -7 means that the type is not extended. Otherwise the module
declaring the base type is specified by its index basemod in the list of imported
modules (/mpBlk below) and the base type is identified by its name or its
private fingerprint, if it is anonymous (0X).

If several exported anonymous types have the same private fingerprint, the
linker allocates only one type descriptor and uses it for all of these types in a
client module. The linker picks the first anonymous type descriptor with the
required private fingerprint in the export section. Remember that structural type
equivalence replaces type name equivalence for anonymous types used over
module boundaries without affecting memory integrity.

The import section of the object file consists of an import block and a use
block. The import block lists the names of imported modules:

impBlk = 81X {name}.

The use block contains as many lists of used items as there are modules in the
import block, and in the same order. Each list is OX-terminated and enumerates
used items imported from the corresponding module of the import block. Each
item is listed with its name, its fingerprint (except for type descriptors) and, if
necessary, the root of its fix-up chain (/ink):

UseBlk = 89X {{UConst ]| UType | UVar | UProc | UCProc | UpbStr | UpvStr | LinkTD} OX}.
UConst = 1X name fprint.

UType = 2X name fprint.

Uvar = 3Xname fprint link.

UProc = 4X name fprint link.

UCProc = 5X name fprint.

UpbStr = 6X name pbfprint.

UpvStr = 7X name pvfprint.

LinkTD = 8X (name | OX pvfprint) link.
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The object file lists only the imported objects that are really used. A new
boolean field used is declared in the object descriptor ObjDesc and is set to true
if the object is accessed by the symbol table handler. Examining the root of the
chain in an object is not sufficient to decide whether this object is used or not:
an imported constant, for example, is never linked.

Remember that structures are sometimes checked separately from objects.
Clients may use the public part of a structure only, and sometimes the private
part too. Two new boolean fields, pbused and pwused, are declared in the
structure descriptor StrDesc. The front-end sets the field pbused when a variable
of a named pointer type pointing to the named structure is dereferenced. The
field pvused is set when the structure is

+ the base record of an extending record

« the element type of an (open) array

« the type of a declared variable or of a record field

« the type of a formal value parameter

« the type of the destination of an assignment

« the actual parameter of a call to the standard function SIZE

In other words, a client module that does not use a structure in any of these
cases is not dependent on the private part of this structure. Therefore, such a
client is not invalidated when the private part of this structure is modified.

Linker and Run-Time Data Structures

In the Oberon System, a module is loaded from its object file into the main
store when a command of this module is invoked for the first time, or when a
client module of this module is being loaded. A loaded module then remains in
memory for the rest of the session, unless the user explicitly unloads it.

The declarations of the run-time data structures necessary to represent
loaded modules in the Oberon heap are the following:

TYPE
Name = ARRAY 32 OF CHAR;

Export = RECORD
name: Name;
fprint, adr: LONGINT;
mode: INTEGER
END;
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Module = POINTER TO ModuleDesc;
ModuleDesc = RECORD
next: Module;
name: Name;
refcnt: INTEGER;
exports: POINTER TO ARRAY OF Export;
imports: POINTER TO ARRAY OF Module;
tdescs, data, code: POINTER TO ARRAY OF LONGINT;

END;

A loaded module is represented by a module descriptor and a module block.
Module descriptors are fixed-size records (ModuleDesc) linked to form the
module list. Each descriptor contains several attributes of the module, such as
its name, its reference count (used for module unloading) and different
pointers to the different sections of its module block. The module block is a
juxtaposition of sections containing the module code and global data, the list
of imported modules, the list of type descriptor addresses, and so on. The size
of each section is determined at load time. The size of the module block is
therefore different for each module.

The array of Export nodes is particular to the object model. It replaces an
array of layer fingerprints and an array of procedure entry addresses in the layer
model. These arrays are used for consistency checking and for module linking.
Loading, linking, and consistency checking of a module M involves the follow-
ing steps:

1. Open the object file of M, read the import block, and recursively load,
link, and check each module imported from M.

2. Search for module M in the module list; if it is found, then it has been
correctly loaded through an explicit call to the loader during the initiali-
zation of a module loaded in step 1, quit.

3. Allocate a module descriptor and a module block for M on the heap;
load the various sections of the object file into the cormesponding
sections of the module block, except for the use block, which is not
stored in the module block, but discarded after step 4.

4. For each item scanned from the use block in the object file, find the
corresponding exported item in the Export array of the comesponding
imported module, compare the fingerprints of both items, patch the item
references in the code of M with the absolute address obtained from the
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field adr of Export; if the item is not found or if the fingerprints differ,
report an error, unload the module M, and quit.

5. Initialize the type descriptors and call the initialization part of module M.

These steps are identical in the original model and in the layer model, except
for step 4. Contrary to the object model, both other models do not require used
items to be searched in the export section, since variable offsets and procedure
entry numbers are known from the symbol file at compile time already. Also,
type descriptors are accessed indirectly through global pointers. However, the
number of references to be patched is the same in all three models.

if the same order is used for items in use blocks as for items in export
sections, step 4 can be executed by two parallel sweep phases, one on each list
of used items and one on each comesponding export section of imported
modules. For this reason, the compiler writes the items into the various lists in
the object file in alphabetical order. Consequently, the execution time of step 4
is linearly proportional to the sum of used items and of exported items in
imported modules (see the next chapter for benchmarks).

The procedure FindExp searches for a named item in an export section of an
imported module. The procedure takes the mode, name, and fingerprint of the
item as parameter, and retums the address of the item, which is a dummy
address for types or constants. The pointer variable curexp indicates the current
position of the sweep phase in the export array and limexp indicates the limit of
the amay (pointer arithmetic is used for efficiency reasons). The contents of the
variables curexp and limexp are preserved over successive calls to the procedure
FindExp:

VAR curexp, limexp: POINTER TO Export;

PROCEDURE FindExp(mode: INTEGER; VAR name: Name; fprint: LONGINT; VAR adr:
LONGINT);
BEGIN
LooP
IF curexp = limexp THEN object not found; EXIT END ;
IF (curexp.name = name) & (curexp.mode = mode) THEN
IF curexp.fprint # fprint THEN fingerprint mismatch END ;
adr := curexp.adr,
INC(S.VAL(LONGINT, curexp), SIZE(Export));
EXIT
END;
INC(S.VAL(LONGINT, curexp), SIZE(Export))
END
END FindExp;
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The procedure searching type descriptors is slightly more complicated, because
a type descriptor may be anonymous. In that case, the type descriptor is
identified through its private fingerprint. Anonymous type descriptors are listed
together at the beginning of the UseBlk section and of the array of Export nodes
(because they have the "smallest” possible name: 0X), but they are not sorted
according to their fingerprint values. This requires to restore the current position
(curtd) of the sweep phase at the beginning of the list, each time an anony-
mous type descriptor has been searched.

TYPE TDescPtr = pointer to type descriptor,
VAR curtd, limtd: LONGINT;

PROCEDURE FindTDesc(VAR name: Name; fprint: LONGINT; VAR adr: TDescPtr);
© VAR save: LONGINT; td: TDescPtr;
BEGIN save := curtd;
LOOP
IF curtd = limtd THEN tdesc not found; EXIT END ;
S.GET(curtd, td);
IF td.name = name THEN
IF (td.pvfprint = fprint) OR (fprint = 0) THEN
adr := td; INC(curtd, 4); EXIT
END;
IF name # ™ THEN fingerprint mismatch; EXIT END
END;
INC(curtd, 4)
END;
IF name = " THEN curtd := save END
END FindTDesc;

Remember that the fingerprint of a named type descriptor is not checked. In
that case, the procedure FindTDesc is called with 0 as fprint value.

When an error occurs, both the mode and name of the item are written to
exported variables of the loader, so that a clear emor message can be generated
by the system to inform the user of the exact problem.



Chapter 7

Efficiency Considerations and Conclusions

Both the layer model and the object model have been implemented in the
version of OP2 generating native MIPS code. This version of the compiler is
used in the Oberon System implementations for MIPS-based workstations,
namely DECoberon for Digital Equipment DECstations and SGloberon for Silicon
Graphics workstations [29]. After a period of testing and comparison, the object
model has become the standard and is now distributed with these Oberon
System implementations in place of the original model.

The first section of this chapter compares the new models to the original
one, in terms of efficiency and implementation costs. Possible improvements to
the object model are proposed in the second section. The third section draws
the conclusions of this thesis.

Implementation Costs and Measurements

In the following, different cost factors such as compilation time, symbol and
object file size, linking and loading time, and run-time memory requirements
are measured and compared for all three models. The Oberon’s line drawing
system, called Draw [12, Chap. 13], is used for the benchmarks. This graphics
editor is a typical Oberon application consisting of 5 modules representing a
total of 46200 bytes of compiled MIPS code for 1684 lines of Oberon code:

Table 7.1 Modules of the Draw graphics editor

~ Module Code Source Imports Exports
Graphics 14736 566 47 92
GraphicFrames 12448 483 104 29
Draw 7656 287 95 15
Rectangles 4560 125 56 8
Curves 6800 223 35 9

Total 46200 1684
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The last two columns in table 7.1 reflect the number of imported and used
items, as well as the number of exported items. An item can be an object, a
type, or a type descriptor. These numbers are particularly relevant in the object
model, since an imported item increases the linking time, whereas an exported
item requires run-time memory. Furthermore, both imported and exported
items consume space in the object file, as shown in the following table:

Table 7.2 Object file size

Module Orig. Model Layer Model ~ Object Model
Graphics 18256 18270 (+0.08%) 19552 (47%)
GraphicFrames 14532 14570 (+0.26%) 16027 (+10%)
Draw 9319 9337 (+019%) 10526 (+13%)
Rectangles 5491 5503 (+021%) 6156 (+12%)
Curves 7942 7948 (+0.08%) 8383 (+6%)

Average +0.16% +9.2%

As expected, the size increase due to the layer model is almost unnoticeable,
especially as each module had only one layer for the benchmarks. Every
additional layer takes only 4 bytes in the object file.

The object model is more greedy. Each import or export of an individual
object costs 10 bytes on average in the object files of the modules above. This
number depends on the identifier length and therefore on the programming
style.

The relative increase of 9.2% is rather pessimistic, because the modules of
Draw import and export many objects in proportion to their small code size.
The same measurements on all modules of the Oberon base system report an
average increase of 6%.

Table 7.3 shows the size of the symbol files in each model. The size
reduction is due to the new symbol file format, which is more compact.
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Table 7.3 Symbol file size

Module Orig. Model  Layer Model Object Model
Graphics 2193 2100 (-42%) 1975 (-9.9%)
GraphicFrames 1402 1362 (-28%) 1243 (-113%)
Draw 225 227 (+09%) 205 (-89%)
Rectangles 642 639 (-05%) 571 (-111%)
Curves 660 654 (-09%) 585 (-114%)

Average -2.7% -10.6%

The difference between the layer model and the original model is small,
because the space occupied by the fingerprints in the layer model is compen-
sated by the encoding of integers. In contrast, the object model does not store
fingerprints in the symbol file. The cumulated effect of integer encoding and
elimination of context-dependent attributes like variable offsets is clearly visible
in the last column.

The largest part of the original compiler is left unchanged by the implemen-
tation of either the layer model or the object model. The compilation tasks
affected by modifications are the reading and writing of symbol files, storage
allocation, and generation of the object file, but the lexical analysis, syntax
analysis, and code generation are (almost) not modified. All three models
generate identical code, with the exception of the object model, which elimi-
nates an indirection in the code accessing type descriptors.

Table 7.4 shows the time necessary to compile all five modules of Draw,
using the different models. Besides the total execution time, the time spent in
each of the different compilation tasks is listed separately.

The measurements have been done on a DECstation 5000 Model 200
running at 25MHz with 24MB of RAM and a 332MB hard disk with 16ms
average seek time. All times are elapsed time expressed in milliseconds (the sum
of user time and system time would not include the disk access time). Due to a
rather low clock resolution of about 16ms, compilations were repeated several
times. Displayed results are therefore average values.
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Table 7.4 Compilation time of all 5 Draw modules in ms

Compilation task Orig. Model  Layer Model Object Model
Reading symbol files 380 326 412
Parsing & tree 933 932 943
Reading own sym file - 43 54
Sym file generation 59 42 23
Storage allocation 14 - 10
Code generation 303 304 293
Writing object file 634 642 652
Total 2323 2289 2387
-1.5% +2.8%

Although the symbol files are more compact in the object model than in the
original model, reading the symbol files takes more time (+8%) with this model.
The reason is that the object model immediately computes the fingerprints of
the items that are imported several times from different symbol files. Avoiding
these recomputations by storing the fingerprints in the symbol file would be a
bad choice. Indeed, the symbol files, which are now 10% smaller than in the
original model, would be about 20% larger, i.e. about 10% larger than in the
original model. Since the time necessary to read a symbol file is proportional to
the file size, the time difference would be higher than the current 8%.

In the layer model, the old symbol file is read before parsing the source text.
After each declaration of a global object, the scope graph of the old symbol file
is traversed to find the old version of the just declared object. This symbol table
lookup is necessary to keep the object in the same interface layer, in order not
to invalidate clients. This lookup is neither done in the original model, nor in
the object model. However, the time difference is too small to be noticeable.

The time indicated for generating the symbol file does not include the time
necessary for writing this file to the disk, because, in the benchmarks, the
symbol file was identical to the old one and hence not registered. On the other
hand, this time includes the time necessary to compare the new interface to the
old one. Each model uses a different technique: the object model compares the
fingerprints of old and new objects, the layer model the fingerprints of old and
new layers, and the original model the byte-streams of the old and new files.

One can see that the bytestream comparison is the more expensive
technique because it involves the reading of a file, but it is largely compensated
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by the fact that the original model does not need to intemalize the own symbol
file into the symbol table.

In the layer model, storage allocation is intertwined with symbol file
generation and is a multi-pass process. Therefore, the time indicated for the
symbol file generation includes the time for storage allocation. In contrast,
storage allocation in the object model is always done in a single pass, without
differentiating exported objects from nonexported objects (remember that the
allocation order is not relevant, since context-dependent attributes are not
stored in the symbol file), and without possible object reallocation as in the
layer model.

The total time for symbol file generation, symbol file intemalization, and
storage allocation is nearly the same for all three models. Also, the cost of code
generation is identical in all three models. The object model produces larger
object files and computes the fingerprint of used items, which explains the time
difference for object file generation.

In order to determine the impact of the number of interface layers on the
compilation time in the layer model, measurements have been done with 8
layers per module interface. No noticeable difference could be observed,
because of the noise induced by unpredictable cache effects and file buffering.

Table 7.5 shows the loading and linking time of the Draw modules. Here
too, the same operation was repeated several times. However, the precision of
the measurements is better here, because fewer files and smaller code were
involved.

Table 7.5 Loading and linking time of the Draw modules in ms
Module (buffered) Original Model  Layer Model Object Model

Graphics 411 41.2 46.6
GraphicFrames 331 33.2 395
Draw 23.6 24.0 28.8
Rectangles 15.7 16.0 19.3

" Curves 199 20.1 222
Total 1334 1345 156.4
+0.8% +17%

Total (not buffered) 421 421 456

+0% +8%
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Modifications in the object file format are reflected in the structure of the
linking loader. Since the layer model only replaces a key by a list of fingerprints
in the export section of an object file and a key by both a number and a
fingerprint in the import section, the modifications in the linker are minimal.
Consequently, the loading and linking time are the same in the original model
and in the layer model.

The last column of the table indicates that the object model is more
expensive. However, the prominent slow-down of 17% is biased. Indeed, the
consecutive loading and linking of the same module, in order to get more
precision, results in a buffering of the object files by the underlying operating
system. If object files are not buffered, which is usually the case when a module
is loaded, the loading time increases by a large amount, whereas the linking
time remains constant. The percentage of overhead therefore decreases from
17% to 8%, which corresponds approximately to the object file size increase in
the object model. The cost of a more complicated linking technique is hence
negligible in comparison to the cost of loading larger object files.

Memory requirements at run time are almost the same for the original
model and for the layer model, as shown in the following table:

Table 7.6 Run-time memory requirements in bytes

Module Orig. Model  Layer Model Object Model
Graphics 17888 17920 21696
GraphicFrames 14272 14304 15424
Draw 9600 9632 10208
Rectangles 5504 5536 5824
Curves 8032 8064 8352
Total 55296 55456 61504
+0.29% +112%

Here again, the object model is more greedy, since a description of each
exported item is kept in memory to allow clients to be linked later on. Each
description includes the item mode, name, address, and fingerprint, which
occupies a total of 44 bytes, whereas the corresponding information occupies
only 4 bytes for each procedure entry in the other models. The size of
debugging information is included in the numbers above and is the same in all
three models, about 5KB in total.
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The last table reflects the implementation costs of each model in the OP2
compiler. The code size of the MIPS version is listed for each module of the
compiler. The self-compilation time is also displayed.

Table 7.7 Compiler size and self-compilation time
Orig. Model  Layer Model Object Model

Code size (bytes)
OPM 4776 4344 4800
OPS 7600 7600 7600
oPT 16280 17296 20264
oPB 39072 39144 39200
orp 24400. 24696 24496
OPL 28000 28408 30856
oPC 33896 34280 34496
orv 18072 20832 18120
oP2 3592 3592 3696
Total 175688 180192 183528
+2.6% +4.5%
Source size (lines) 7085 7344 7516
+3.6% +6.1%
Self-compilation (ms) 7476 7696 7731
+2.9% +3.4%

The overhead in both code size and compilation time of about 4% stays within
very tolerable limits.

One point has not been brought up yet: all three models write exported
objects in alphabetical order to the symbol file. Intemalizing a symbol file into
the symbol table therefore results in a degenerated tree. Measurements have
shown that using degenerated trees instead of balanced trees for imported
objects costs 0.8% of the total compilation time. Rebalancing these trees is
therefore not recommended, especially as this operation would also cost
execution time. Contrary to other models, the object model does not require
the objects being written in a canonical order to the symbol file. However, this
order simplifies the detection of interface modifications conceming exported
variables of an anonymous type (see precedent chapter).
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Outlook

Currently, the object model has also been adopted by two other Oberon
implementations based on OP2, namely HP-Oberon [31] for Hewlett-Packard
PA-RISC workstations and a commercial Oberon programming environment. It
is also planned that other Oberon implementations from ETH will switch to the
object model.

Migrating from the original model to the object model does not only require
modifications in the compiler and in the module loader, but also in some
associated tools. For example, the object file decoder must be adjusted to the
new object file format. Similarly, the module browser, which generates text
from symbol files, is replaced by a portable version based on the revised symbol
file format, which is identical on all platforms. The browser first calls module
OPT of the compiler to internalize a symbol file and then generates the
corresponding interface text while traversing the loaded symbol table.

Automating Recompilations

One can imagine further tools to help the programmer to restore consistency in
a system after an inconsistency has been detected. The compiler and the
module loader produce error messages containing the name of the faulty
object. This facilitates the identification of the module needing a recompilation.
However, recompiling this module may in tum require further client recom-
pilations. This phenomenon is known as trickle-down recompilation. A tool
could help the programmer to find the optimal recompilation sequence. The
tool would take a list of modules as parameter. The top modules of a hierarchy
of modules would be sufficient. The tool would then analyze the dependences
between these modules and the modules imported by them and retumn a list of
modules to be recompiled in topological order.

The structure of this tool would be very similar to the one of the module
loader. The tool would recursively read object files and check fingerprints.
Module names and export sections of the corresponding object files would be
kept in an intemnal data structure, whereas code and data sections would not be
loaded. In order to predict trickle-down recompilations, it would be necessary
to analyze the effect of a recompilation onto a module interface. The tool
would therefore call the compiler to load symbol files (fingerprint checking in
intemalizing routines would have to be disabled) in order to calculate the new
fingerprint values for exported objects.
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This tool would generate the compile command with the list of modules to
be recompiled, or call the compiler to automate recompilations. However, a
fully automated recompilation would not be possible in case of a source code
invalidation, which would require the intervention of the programmer for
editing changes. ‘

Inserting New Type-Bound Procedures

As in the layer model, the revelation of hidden fields or hidden methods is
impossible in the object model without invalidating clients. As explained
before, a modification of the Oberon scope rules for record fields would be
necessary to avoid field name collisions in extending record types. Contrary to
record fields, the revelation or insertion of type-bound procedures would not
pose any problems in client modules. Indeed, an existing type-bound procedure
would just override an equally named type-bound procedure newly inserted in a
base record.

The fingerprint of a record type would not contain information about type-
bound procedures (methods) any longer, so that its value remains unchanged
when type-bound procedures are inserted or revealed. Each type-bound proce-
dure would have its own fingerprint. Method table indices (method number)
would not be attributed to type-bound procedures any longer, since such a
number is a context-dependent attribute that could be modified by the in-
sertion of a new type-bound procedure. The total number of type-bound
procedures for a record type would be determined at link time only, since
record types being extended by this record might have more type-bound
procedures than expected.

Method tables would have to include the method names in addition to the
method addresses, so that method tables for extending records can be con-
structed at link time using the method tables of the extended records, and so
that a table index can be attributed to each imported method. This would
require a fix-up of each extemal method call at link time. All the calls to the
same method would be linked by a fix-up chain. An entry in the use block of
the object file would list the root of this chain, as well as the name of the
type-bound procedure, the name of the static type of the receiver, and the
fingerprint value. The fix-up would consist in finding the index of this type-
bound procedure in the method table of the receiver type using the method
name, and to insert this index in the code.

This improvement in flexibility would result in larger object files, more work
at link time, and greater run-time memory requirements. It is not clear whether



140

this improvement would be really useful in practice. As an example, one can
imagine a class hierarchy of graphical objects being unable to print themselves
in a first release. The insertion of a print method in the base class would not
invalidate derived classes. However, this method would be useless until derived
classes override it with their own method knowing how to print derived objects.

Similarly, the improvement in flexibility introduced by the distinction be-
tween public and private fingerprints for record types has not really been
demonstrated yet. This distinction does not cost as much as the improvement
described above would, but it is not for free, since additional fingerprints take
space in object files and run-time data structures. Also, some compiler routines
could be simplified if the distinction would not have to be done. Hopefully, the
utilization of the object model in long-term Oberon projects will provide an
answer.

Multiple Interfaces

A symbol file plays two roles in Oberon. First, it describes the part of the
module symbol table needed by the compiler to perform type checking over
module boundaries. Second, it is a compressed representation of the module
interface that can be made available in readable form to the programmer of
client modules by the browser. In this last respect, the symbol file often
documents the interface at a level of abstraction that is too low for most of the
clients. As proposed by J. Gutknecht [32], multiple interfaces should reflect the
services provided by modules at different levels of abstraction.

The object model is best suited to support multiple interfaces. One can
imagine a symbol file editor that would allow the programmer of a module to
remove some particular objects from the module interface before distributing
the edited symbol file to less trustworthy clients. For example, the programmer
could hide procedures manipulating sensitive data structures that these clients
should not use. This symbol file editor would work without any modifications
either in the current compiler or in the module linker.

Note that multiple interfaces are possible without requiring an additional
tool if the source code of a module is available, which is usually the case in this
context. Indeed, the programmer can remove export marks in the text of a
module before recompiling it, thereby producing a slimmed version of the
symbol file for this module.

The layer model is less appropriate for this kind of interface editing. The
programmer would have to be careful only to remove entire layers of objects
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from the top of the layer stack of an interface. A symbol file editor is therefore
recommended for the layer model.

Applying the Models to Other Languages

Both presented models could also be applied to compilers for other strongly-
typed programming languages. The layer model is rather universal and could
rapidly be adapted to other languages using symbol files or some canonical
representation of module interfaces. More work would probably be necessary
for the object model, since the fingerprint computation is highly dependent on
the type system of the language. For example, fingerprints would not include
type names in a language favoring structural type equivalence instead of type
name equivalence. Furthermore, the computation of the fingerprint for a recur-
sive type might require several traversals of the cyclic type graph if the cycle
cannot be easily cut as in Oberon. However, the principles of fingerprint
computation presented in this thesis are applicable to other languages. Context-
dependent attributes of an object should not be included in the fingerprint of
this object, because such attributes depend on the history of development of
the module declaring the object. It is preferable that fingerprints do not depend
on history in order to avoid invalidations caused by the accidental loss of this
history.

Another problem could arise for implementing the consistency check at link
time if a standard linker must be used. In that case, fingerprint values could be
checked by some code inserted in the initialization part of each module by the
compiler. As an altemative, the fingerprint could be appended to the name of
each item of the object file needing link editing. The linker would not be able
to link an inconsistent item since its name would be different in the exporting
and importing modules due to the different fingerprint value. A similar tech-
nique is proposed by M. A. Ellis and B. Stroustrup [33] to increase the safety of
function linkage in the C++ language. The string appended to the function
name simply encodes the type of every formal parameter of the function, by
using one character for each predefined type or the complete name for each
user-defined structure. However, the string does not reflect the internal structure
of a formal parameter type and is only used for functions. The authors admit
that this technique has severe limitations and is just a step in the right
direction, contrary to the object model, which improves the flexibility of
separate compilation, which is safe already.
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Conclusions

The objective of this work was to allow modules to be extended by new
exported items without requiring a recompilation of client modules and with-
out sacrificing type safety at link time. This has been achieved by increasing the
resolution of consistency checking at compile time and at link time.

The first presented model, the layer model, organizes every module interface
as a stack of extension layers growing as new items are exported from the
module. This approach has the severe drawback that the history of development
of each module is included in the symbol file of this module. If this history
information gets lost, the recompilation of an unchanged module may never-
theless invalidate clients.

This problem is solved by the second model, the object model, which
increases the resolution of consistency checks from the layer level to the object
level. Each object receives at compile time a fingerprint containing its type
information. The linking loader checks the fingerprints of exported and used
objects for equality.

Both models attain the envisaged goal, but the object model has proven
more practical than the layer model. Besides the fact that the history of
development is not retained in the object model, this model also allows the
elimination of obsolete objects without invalidating clients not using these
objects, which is impossible in the layer model.

In comparison to other work, the models do not require clients to be known
at compile time in order to ensure consistency. This is particularly important in
today's systems of modules that do not live in closed programs as in the past,
but in object-oriented environments open to new clients and ready to accept
new functionality at any time.

The new models are integrated in the compiler and linking module loader
and do not require a database, dictionary, or similarly centralized information
recording, thereby avoiding maintenance problems. The only context infor-
mation is present in the form of symbol files, which are unavoidable for
separate compilation. These symbol files can always be reconstructed from the
source text, since they include neither timestamps nor arbitrary keys. Further-
more, the consistency checking is not an optional operation performed by a
separate tool, but is performed unconditionally at link time by the linking
loader itself.

At a modest implementation cost, both presented models combine the
flexibility of module extension in an open environment with the security offered
by separate compilation. However, the object model is preferred to the layer
model, since it does not depend on the history of development.



Appendix A: Layer Model File Formats

Names are sequences of characters terminated by OX. Lower case identifiers
denote numbers. A digit appended to an identifier indicates the length of the
number in bytes (LSByte first). Otherwise, the number is compressed into a
variable number of bytes by the procedure WriteNum of the Oberon module
Files (LSByte first, base 128, cleared MSBit is stop bit, see below). The binary
representation of a set is interpreted as an integer word and is coded by
WriteNum. Floating point numbers are in IEEE format (LSByte first).

PROCEDURE WriteNum(x: LONGINT);
BEGIN
WHILE (x < - 64) OR (x > 63) DO
Write(CHR(x MOD 128 + 128)); x :==x DIV 128

END;
Write(CHR(x MOD 128))
END WriteNum;
Symbol File
SymFile = OFAX Module {{Object} FPrint}.
Module = 0] ((negmno layerno | MNAME name) {FPrint} END).
FPrint = FPRINT value.
Constant = CHAR value:
| BOOL (FALSE | TRUE)
] (SINT ] INT| LINT | SET) value
| REALvalue:4
| LREALvalue:8
| STRING name
| NIL
Object = Constant name
TYPE Struct
ALIAS Struct name

(XPRO | IPRO) Signature entryno name

|

[

| (RVAR]VAR) Struct offset name

[

| CPRO Signature len {code:1} name.
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Field
Method
Signature

Struct

MNAME
FPRINT
END
TYPE
ALIAS
VAR
RVAR
VALPAR
VARPAR
FLD
RFLD
HDPTR
HDPRO
TPRO

[

HDTPRO =

]

((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.

(TPRO Signature name | HDTPRO) methno entryno.

Struct {(VALPAR | VARPAR) Struct offset name} END.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25,
26.
27.
28.
29.
30.

negref

STRUCT Module name [SYS value]

( PTRStruct

|  ARR Struct nofElem

| DARR Struct

| REC Struct size align descAdr nofMeth {Field} {Method} END
| PRO Signature).

XPRO = 31. predefined refs:
IPRO = 32,
CPRO = 33. BYTE = 1.
STRUCT = 34. BOOL 2.
SYS = 35, CHAR 3.
PTR = 36. SINT = 4,
ARR = 37. INT = 5.
DARR = 38 LINT = 6.
REC = 39 REAL = 7.
PRO = 40. LREAL = 8.
SET = 9
STRING = 10.
boolean constants: NIL = 11.
FALSE = OX. NOTYP = 12.
TRUE = 11X POINTER = 13.
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MIPS Object File

ObjFile

OFtag

HeaderBlk

EntryBlk
CmdBlk
PtrBIk
ImpBlk
LinkBlk
ConstBlk
CodeBlk

TypeBlk

RefBlk

Mode
Var
VarPar

Form
Byte
Bool
Char
Sint
Int
Lint
Real
LReal
Set
String
Pointer

OFtag HeaderBlk EntryBlk CmdBlk PtrBlk ImpBlk LinkBlk ConstBlk CodeBlk
TypeBlk RefBlk.

OF8X 36X.

refsize:4 nofentr:2 nofcom:2 nofptr:2 nofrec:2 nofmod:2 noflink:2
datasize:4 consize:2 codesize:2 noflayer:2 {fprint:4} modname.

82X {pc:2}.

83X {name pc:2}.

84X {off:4}.

85X {noflayer:2 [fprint:4] name}.
86X {mod:1 entry:1 pc:2}.

87X {con:1}.

88X {instr:4}.

89X {recsize:4 tdadr:2 basemod:2 baseadr:2 nofmth:2 nofinhmth:2
nofnewmth:2 nofptr:2 name {mthno:2 entno:2} {ptroff:4}}.

8AX {OF8X procend savedr savedf frame callarea name
{Mode Form adr name}}.

Var | VarPar.
1X.
3X.

Byte | Bool | Char | Sint| Int| Lint | Real | LReal | Set | String | Pointer.

= 1X
= 2X

3X.
4X.
5X.
6X.
7X.
8X.
9X.
0AX.

= 0DX.



Appendix B: Object Model File Formats

Names are sequences of characters terminated by OX. Lower case identifiers
denote numbers. A digit appended to an identifier indicates the length of the
number in bytes (LSByte first). Otherwise, the number is compressed into a
variable number of bytes by the procedure WriteNum of the Oberon module
Files (LSByte first, base 128, cleared MSBit is stop bit, see below). The binary
representation of a set is interpreted as an integer word and is coded by
WriteNum. Floating point numbers are in IEEE format (LSByte first).

PROCEDURE WriteNum(x: LONGINT);
BEGIN
WHILE (x < - 64) OR (x> 63) DO
Write(CHR(x MOD 128 +128)); x :==x DIV128
END;
Write(CHR(x MOD 128))
END WriteNum;

Symbol File

SymFile OFBX Module {Object}.

Module

0| negmno | MNAME name.

CHAR value:

BOOL (FALSE | TRUE)

(SINT | INT | LINT | SET) value
REAL value:4

LREAL value:8

STRING name

NIL.

Constant

Object Constant name

TYPE Struct

ALIAS Struct name

(RVAR { VAR) Struct name
(XPRO | IPRO) Signature name

CPRO Signature len {code:1} name.
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Field = ((RFLD | FLD) Struct name | (HDPTR | HDPRO)) offset.
Method = (TPRO Signature name | HDTPRO) methno.
Signature = Struct {(VALPAR | VARPAR) Struct offset name} END.
Struct = negref
| STRUCT Module name [SYS value]
( PTRStruct
| ARR Struct nofElem
| DARR Struct
| REC Struct size align nofMeth {Field} {Method} END
[ PRO Signature).
MNAME = 16. XPRO = 31. predefined refs:
not used 17. IPRO = 32
END = 18 CPRO = 33. BYTE = 1.
TYPE = 19. STRUCT = 34. BOOL = 2.
ALIAS = 20. SYS = 35, CHAR 3.
VAR = 21. PTR = 36. SINT = 4
RVAR = 22. ARR = 37. INT 5.
VALPAR = 23, DARR = 38. LINT 6.
VARPAR = 24, REC = 39, REAL = 7.
FLD = 25, PRO = 40. LREAL = 8.
RFLD 26. SET = 9,
HDPTR = 27. STRING = 10.
HDPRO = 28. boolean constants: NIL = 1.
TPRO = 29. FALSE = OX. NOTYP = 12.
HDTPRO = 30. TRUE = X POINTER = 13.
MIPS Object File
ObjFile = OFtag HeaderBlk ImpBlk ExpBlk CmdBIk PtrBlk ConstBIk CodeBlk UseBlk
RefBlk.
OFtag = OF9X 36X.
HeaderBlk = refsize:4 nofexp:2 noftdesc:2 nofcom:2 nofptr:2 nofimp
newreclink newsyslink newarrlink datalink datasize consize codesize modname.
ImpBlk = 81X {name}.
ExpBik = 82X {EConst | EType | EVar | EProc | ECProc | EStruct | TDesc | LinkProc} OX.
EConst = 1X name fprint.
EType = 2X name fprint.
EVar = 3X name fprint offset.
EProc = 4X name fprint entry.
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ECProc
EStruct
TDesc

LinkProc
Cmdslk
PtrBIk
ConstBlk
CodeBlk

UseBlk
UConst
UType
UVar
UProc
UCProc
UpbStr
UpvStr
LinkTD

RefBlk

Mode

Var
VarPar

Form

Byte
Bool
Char
Sint
Int
Lint
Real
LReal
Set
String
Pointer

5X name fprint.

6X name pbfprint pvfprint.

8X (name | OX pvfprint) link recsize (-1 | basemod (name | OX pvfprint))
nofmth nofinhmth nofnewmth nofptr {mthno entry} {ptroff}.

9X entry link.

83X {name entry}.
84X {off}.

87X {con:1}.

88X {instr:4}.

89X {{UConst | UType | UVar | UProc | UCProc | UpbStr | UpvStr | LinkTD} 0X}.
1X name fprint.

2X name fprint.

3X name fprint link.

4X name fprint link.

5X name fprint.

6X name pbfprint.

7X name pvfprint.

8X (name | OX pvfprint) link.

8AX {OF8X procend savedr savedf frame callarea name
{Mode Form adr name}}.

Var | VarPar.

X
3X.

Byte | Bool { Char | Sint| Int| Lint| Real | LReal | Set | String | Pointer.

1X.
2X.
3X.
4X.
5X.
6X.
7X.
8X.
9X.
0AX.
0DX.
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