

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

796

УДК (681.310)

БЫСТРОЕ МОДЕЛИРОВАНИЕ ЦИФРОВЫХ

СХЕМ С ИСПОЛЬЗОВАНИЕМ ИХ СТРОЧНОГО
ОПИСАНИЯ НА ЯЗЫКЕ ALEX

Ш.Е. Бозоян

Государственный Инженерный Университет Армении
Армения, 375009, Ереван, ул. Теряна, 105

E-mail: bozoyan@rau.am

В.С. Егиазарян
Российско-Армянский Государственный Университет

Армения, 375051, Ереван, ул. Овсепа Эмина, 123
E-mail: pmi@rau.am

С.П. Погосяан

Российско-Армянский Государственный Университет
Армения, 375051, Ереван, ул. Овсепа Эмина, 123

E-mail: psamvel@gmail.com

Ключевые слова: язык Alex, язык Verilog, моделирование интегральных схем,
тестирование, верификация
Key words: language Alex, language Verilog, circuits simulation, testing, verifica-
tion

Приведен метод быстрого моделирования цифровых схем, использующий
строчное представление схем на языке Alex. Использование этого языка обу-
словлено тем, что в описании схемы на языке Verilog не отражается логика мо-
делирования. Язык Verilog дает возможность описать схему, перечисляя все
элементы схемы и их связи между ними в произвольном порядке. Это приводит
к тому, что становится необходимым приведение описания схемы с языка
Verilog в промежуточный вид более удобного для моделирования. В качестве
промежуточного языка описания выбран язык Alex, который полностью отра-
жает логику моделирования.
FAST SIMULATION OF DIGITAL CIRCUITS USING THEIR LINE
DESCRIPTION IN LANGUAGE ALEX / Sh.E. Bozoyan (State Engineering Uni-
versity of Armenia, 105 Teryan, Yerevan 375009, Armenia, E-mail:
bozoyan@rau.am), V.S. Egiazaryan (Russian-Armenian State University, 123
Hovsep Emin, Yerevan 375051, Armenia, E-mail: pmi@rau.am), S.P. Poghosyan
(Russian-Armenian State University, 123 Hovsep Emin, Yerevan 375051, Armenia,
E-mail: psamvel@gmail.com). A method for fast simulation of digital circuits using
line description of circuit on language Alex is described. Use of this language is
based on the fact, that in the description of circuit in Verilog language does not reflect
the simulation logic. The Verilog language provides a possibility to describe a circuit
by enumerating all elements of circuit and connections between them in an arbitrary
order. This brings us to the fact, that it is necessary to translate the description from
language Verilog to intermediate representation that is more convenient for simula-
tion. As an intermediate representation for a description language, it was taken the
Alex language, which fully reflects the simulation logic.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

797

1. Введение

Благодаря достижениям в области технологии изготовления интегральных

схем (ИС) неуклонно уменьшаются как число дефектов, так и минимальный
размер элемента кристалла. Это дает возможность разрабатывать и выпускать
все более сложные и насыщенные кристаллы. Однако с ростом плотности ком-
поновки ИС быстро усложняются и проблемы верификации и тестирования для
выявления потенциальных ошибок: кристалл сверхбольшой интегральной схе-
мы (СБИС) может содержать миллионы внутренних схемных узлов, которые
недоступны для непосредственного управления и наблюдения через контакты
ввода-вывода этого кристалла. Задачи верификации и тестирования могут ока-
заться исключительно трудными, а затраты времени и усилий на решение про-
блем тестирования могут привести к значительному возрастанию себестоимости
производства СБИС.

Основной составной частью верификации и тестирования является функ-
циональное моделирование схемы. Данная работа посвящена разработке спосо-
ба быстрого моделирования схем из логических и запоминающих элементов.
Метод базируется на использование языка строчного описания схем Alex.

2. Представление схем в памяти

Для этой цели был создан проект ifs (infrastructure), где были определены

все используемые структуры данных. Схемы в памяти задаются с помощью
структуры ifs::design.

2.1. ifs::design
Структура ifs::design представляет собой совокупность модулей. Она дает

возможность создавать новые модули, удалять модули, получать модуль по
имени и копировать модули по предварительно заданному префиксу. При соз-
дании структуры ifs::design в нем создаются все примитивные модули, как and,
nand, or, nor, xor, xnor, not, buf и dff. Кроме этого создаются модули из стандарт-
ных библиотек для языка Verilog (and2, and3, and4, … or2, or3, or4, …), где вме-
сте с именем модуля четко прописывается количество входов.

2.2. ifs::module

Структура ifs::module представляет собой смысловое описание модулей
языка Verilog в памяти. Модули различаются по типу – module, primitive и gate.
Модуль также содержит множество контактов, связей и объектов.

Контакт описывает либо вход или выход модуля. Связь описывает внутрен-
ние связи модуля. Объект – это применение другого модуля в этом модуле.

2.3. ifs::object

Это базисный тип для всех остальных типов, описывающий все общие ат-
рибуты объектов, такие как тип объектов - module, instance, net, port, in-
stance_port и их имена.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

798

2.4. ifs::connector
Структура ifs::connector это абстрактный тип контактов. Она предназначена

для участия в цепях и играет роль контактов в цепях. Connector имеет атрибут
Net, который ссылается на ту цепь, которая содержит эго. Имеет также вирту-
альные методы для определения типа контакта.
• внешний (is_external) – один из входных или выходных портов модуля
• внутренний (is_internal) – входной или выходной контакт размещенного

элемента.
Также дает возможность определить является ли этот контакт входным

(is_input) или выходным (is_output).

2.5. ifs::port
Описывает 0x входы и выходы модуля. Имеет атрибут, определяющий тип,

который может быть одним из следующих – input, output или inout.

2.6. ifs::net
Описывает 0x цепи модуля. Содержит совокупность всех контактов (connec-

tors), которые участвуют в цепи. Дает возможность добавить новые или удалить
старые контакты.

2.7. ifs::instance_port

Описывает контакты размещенных модулей, которые тоже могут участво-
вать в цепях. Имеет ссылки на объект размещенного модуля, т.е. на ifs::instance
и на действительный вход или выход (port) этого модуля.

2.8. ifs::instance

Описывает размещенный объект модуля. Представляет собой ссылки на
размещенный модуль и на тот модуль в котором он был размещен. Содержит
также совокупность внутренних контактов размещенного модуля, которые на-
ходятся на этом объекте.

3. Формат Bench

Формат используется для описания эталонных схем ISCAS85 / ISCAS89 /
ITC99 [4-6]. Это наиболее легкий способ описания по сравнению с языком опи-
сания схем Verilog. Он предназначен для описания схем только на одном (flat)
уровне, означающем что схема состоит только из примитивных логических эле-
ментов.

В описании допускается использование комментариев. Эти строки начина-
ются с ‘#’ символа. В эталонных схемах это используется для указания количе-
ства входов и выходов. Также указывается количество использованных логиче-
ских элементов.

В начале описываются входы схемы с помощью ключевого слово INPUT
(«имя входа»). Потом перечисляются все выходы с помощью ключевого слово
OUTPUT(«имя выхода»).

Описание запоминающих элементов имеет следующий вид:
«выход» = DFF («вход»)

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

799

Здесь «вход» является входом для запоминающего элемента, а «выход» –
выходом.

Потом описываются остальные элементы следующим образом –
«выход» = «логический элемент» («вход1»[, «вход2», «вход3»,

…«входN»])
Здесь «входN» является N-ым входом для логического элемента, а «выход»

– выходом.

3.1. Пример схемы заданный на формате Bench
(эталонная схема S27 из ISCAS89)

4 inputs
1 outputs
3 D-type flipflops
2 inverters
8 gates (1 ANDs + 1 NANDs + 2 ORs + 4 NORs)

INPUT(G0)
INPUT(G1)
INPUT(G2)
INPUT(G3)

OUTPUT(G17)

G5 = DFF(G10)
G6 = DFF(G11)
G7 = DFF(G13)

G14 = NOT(G0)
G17 = NOT(G11)

G8 = AND(G14, G6)

G15 = OR(G12, G8)
G16 = OR(G3, G8)

G9 = NAND(G16, G15)

G10 = NOR(G14, G11)
G11 = NOR(G5, G9)
G12 = NOR(G1, G7)
G13 = NOR(G2, G12)

4. Моделирование комбинационных схем, заданных

с помощью формата Bench

Этот предварительный метод моделирования был создан для проверки ре-

зультатов основной программы. Он имеет очень простой способ работы, поэто-
му можно положится на его результаты и считать их правильными.

Так как в комбинационных схемах не встречаются запоминающие элемен-
ты, то если создать все зависимости выходов от питающих их входов, то граф
схемы будет ациклическим. Поэтому, множество выходов можно частично упо-
рядочить.

Например из записи

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

800

G9 = NAND(G16, G15)

получаются следующие отношения – (G9, G16) и (G9, G15). Полученный таким
образом класс можно частично упорядочить известным алгоритмом топологи-
ческой сортировки (в программе была использована реализация topological_sort
из библиотеки boost). Алгоритм в результате выдает список, где элемент A из
отношения (A, B) находится в списке левее B. Это означает, что вычисляя спра-
ва налево можем, не нарушая зависимости, вычислить все выходные элементы,
а также внешние выходы (которые находятся левее всех остальных элементов).

Допустим, что у нас уже есть отсортированное таким образом множество
записей. Для ускорения вычислений эти записи мы будем транслировать в экви-
валентные выражения в языке программирования C++. Например из вышепри-
веденной схемы (не считая запоминающие элементы) мы получим следующий
отрезок программы:

G14 = !G0;
G8 = (G14 && G6);
G16 = (G3 || G8);
G12 = !(G1 || G7);
G15 = (G12 || G8);
G9 = !(G16 && G15);
G11 = !(G5 || G9);
G17 = !G11;
G10 = !(G14 || G11);
G13 = !(G2 || G12);

Таким образом полученная программа и будет играть роль программы си-

мулятора, которая будет получать входные данные из файла и полученные ре-
зультаты выходных данных запишет в другой файл.

Эту программу легко можно преобразовать таким образом, чтобы она под-
держивала также и схемы с запоминающими элементами.

5. Язык Verilog HDL (Hardware Description Language)

Этот язык является на сегодняшний день одним из самых распространен-
ных языков описания схем. Он имеет разнообразные способы представления,
начиная с простого описания при помощи логических элементов (netlist), и за-
канчивая так называемым behavioral-описанием, которое очень похоже на язык
программирования C++, где могут встречаться элементы условного перехода,
циклы и т.д.

Язык Verilog имеет возможность описания как цифровых так и аналоговых
схем. Сейчас распространяется Verilog AMS (Analog Mixed Signal) - новый ва-
риант языка, который используется для описания смешанных, аналого-
цифровых схем.

В дальнейшем будем рассматривать цифровые схемы в netlist форме языка
Verilog.

5.1. Распознавание схемы на языке Verilog

Целью этой задачи является распознавание схем, заданных на языке Verilog,
то есть конвертирование Verilog-схемы в структуры памяти. Все остальные ал-
горитмы уже напрямую будут работать с этими структурами.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

801

Для распознавания формата был использован транслятор VL2MV, который
переводит из Verilog-формата в BLIF-MV. При этом транслятор VL2MV был
модифицирован для перевода Verilog-формата в структуры для представления
схемы в памяти. Во время трансляции делается еще одно преобразование, кото-
рое облегчает дальнейшее использование: все шины встречающиеся в Verilog
описании раскрываются, то есть, вместо описания A[15:0] создаются 16 отдель-
ных сигналов – с именами A[15], A[14], … , A[1], A[0].

5.2. Пример схемы, описанный на языке Verilog

В следующем рисунке (рис. 1) приведено описание схемы на языке Verilog
вычисляющее сумму двух двубитовых чисел. Схема описывается модулем пер-
вого уровня - two_bits_adder, который получает два числа – A2A1 и B2B1 и в
результате вычисляет их сумму в CS2S1. Этот модуль в свою очередь использу-
ет четыре однобитных сумматора one_b1, one_b2, one_b22 и one_cb. Однобит-
ный сумматор на входе получает два бита – A и B, и вычисляет их сумму в CS.
Для этой цели были использованы 6 логических элементов – 2 отрицания (not),
3 и (and) и 1 или (or).

Рис. 1. Пример схемы, заданный на языке Verilog.

6. Приведение иерархического модуля к одному уровню

Так как мы рассматриваем упрощенную форму Verilog (схемы состоят

только из логических элементов), то, очевидно, мы ничего не потеряем, если

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

802

приведем иерархический модуль к одному уровню. Это намного облегчит зада-
чу симулятора, потому что уже все элементы, используемые в схеме, будут
примитивными, и не будет вложенных модулей. Кроме того, это позволит нам
оптимизировать полученный модуль, где могут встречаться много неиспользо-
ванных выходных сигналов.

На рис. 2 приведена схема two_bits_adder до преобразования, а на рис. 3 –
после преобразования.

Рис. 2. Схема до преобразования.

Отчетливо видно, что значение сигнала one_cb.C (на рис. 3 находится в пра-

вом нижнем углу) не используется, потому и можно его игнорировать и вообще
не вычислять.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

803

Рис. 3. Схема после преобразования.

7. Язык Alex

7.1. Почему Alex?
Одним из недостатков языка Verilog [3] является то, что в описании схемы

на этом языке не отражается логика моделирования. Он дает возможность опи-
сать схему перечисляя все использованные элементы и их связи в произвольном
порядке. Это приводит к тому что становится необходимым приведение описа-
ния из языка Verilog в промежуточный вид, более удобного для моделирования.
В качестве промежуточного языка описания выбран язык строчного описания
цифровых схем Alex [1, 2]. Для облегчения создания симулятора внесены неко-
торые модификации в язык Alex.
• описание ветвящихся элементов было выделено из записи в отдельную за-

пись, так как мы в любом случае должны их отдельно вычислить. Также
требуется, чтобы описания задавались по уровням, т.е. описание любой мет-
ки ветвления должно встречаться до описания элемента, где она будет ис-
пользован;

• описания выходных сигналов производится отдельно;
• в описание добавлены скобки, чтобы сделать возможным распознавание

формата Alex стандартными средствами создании компиляторов lex/yacc.

7.2. Описание сумматора двух двубитных чисел на языке Alex
Ниже приведен пример использования языка Alex для описания устройства

вычисляющий сумму двух двубитных чисел:

*B_1 = B_1
*A_1 = A_1
*B_2 = B_2
*A_2 = A_2
*C_1 = and(2)(*A_1(0)(),*B_1(0)())
*C_2 = and(2)(*A_2(0)(),*B_2(0)())
*S2x = or(2)(and(2)(*A_2(0)(), not(1)(*B_2(0)())),

and(2)(not(1) (*A_2(0)()), *B_2(0)()))
*C_3 = and(2)(*S2x(0)(),*C_1(0)())
C_C = or(2)(and(2)(*C_2(0)(), not(1)(*C_3(0)())),

and(2)(not(1) (*C_2(0)()), *C_3(0)()))
S_1 = or(2)(and(2)(*A_1(0)(), not(1)(*B_1(0)())),

and(2)(not(1) (*A_1(0)()), *B_1(0)()))
S_2 = or(2)(and(2)(*S2x(0)(), not(1)(*C_1(0)())),

and(2)(not(1) (*S2x(0)()), *C_1(0)()))

7.3. Синтаксис языка Alex (используется формат yacc)
BODY : DESCRIPTION
 | DESCRIPTION BODY
 ;

DESCRIPTION : BRANCH_DEFINITION
 | DFF_DEFINITION
 | OUTPUT
 ;

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

804

OUTPUT : YYVARIABLE YYEQ MODEL
 ;

BRANCH_DEFINITION : YYSTAR YYVARIABLE YYEQ MODEL
 ;

DFF_DEFINITION : YYSHARP YYVARIABLE YYEQ MODEL
 ;

MODEL : GATE_NAME YYLEFT YYNUMBER YYRIGHT
 YYLEFT ARGUMENTS_LIST YYRIGHT
 | INPUT
 | BRANCH
 ;

INPUT : VARIABLE_NAME
 ;

BRANCH : YYSTAR VARIABLE_NAME YYLEFT YYNUMBER YYRIGHT

BRANCH_INPUT
 ;

BRANCH_INPUT : YYLEFT YYRIGHT
 | YYLEFT MODEL YYRIGHT
 ;

GATE_NAME : YYAND
 | YYNAND
 | YYOR
 | YYNOR
 | YYXOR
 | YYNOT
 | YYBUF
 | YYDFF
 ;

VARIABLE_NAME : YYVARIABLE
 ;

ARGUMENTS_LIST : ARGUMENT
 | ARGUMENT YYCOMMA ARGUMENTS_LIST
 ;

ARGUMENT : MODEL
 | BRANCH
 | INPUT
 ;

7.4. Перевод схемы в промежуточный язык Alex
Для того, чтобы в результате получилось описание схемы по уровням, мы

используем волновой алгоритм, где началом будут входы а концом выходы. Ал-
горитм работает следующим образом:

Все входы получают свои представления на языке Alex и добавляются к
фронту волны.

Все входы элементов типа DFF помечаются как имеющие представление
(хотя они еще реально не имеют представления). Находятся все элементы, кото-
рые питаются с фронта волны, т.е. все входы уже имеют представления на языке
Alex, следовательно мы уже можем получить представление единственного вы-

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

805

хода этого элемента. После этой операции данный выход также добавляется к
фронту волны.

Так продолжается, пока все выходы схемы не получат представления на
языке Alex. В итоге, создается окончательное их представления, так как все вы-
ходы элементов DFF уже будут иметь представления.

7.5. Логический синтез схемы, описанной на языке Аlex

Теперь допустим, что нам дано представление какого-нибудь выхода на
языке Alex. Очевидно, что для любого такого отрезка, если разность количества
всех встречающихся элементов и количества всех их входов равна 1, то это бу-
дет подсхемой нашей первоначальной схемы, другими словами, является вхо-
дом для некоторого элемента.

Этот факт позволяет нам очень легко делать логический синтез: заменить
формулы на эквивалентные, но более короткие.

Для перечисления таких тождеств используются следующие обозначения:

Вместо имен элементов используются следующие символы:

and <-> '&'
nand <-> '$'
or <-> '|'
nor <-> '#'
xor <-> '^'
not <-> '!'

А любой другой символ, если он встречается в формуле несколько раз, то

это означает, что в этих местах должны стоять одинаковые выражения.

##ab#ca = |a&bc
nor(2)(nor(2)(a, b), nor(2)(c, a)) = or(2)(a, and(2)(b, c))

##ab#ac = |a&bc
nor(2)(nor(2)(a, b), nor(2)(a, c)) = or(2)(a, and(2)(b, c))

##ba#ca = |a&bc
nor(2)(nor(2)(b, a), nor(2)(c, a)) = or(2)(a, and(2)(b, c))

##ba#ac = |a&bc
nor(2)(nor(2)(b, a), nor(2)(a, c)) = or(2)(a, and(2)(b, c))

|&a!b&!ab = ^ab
or(2)(and(2)(a, not(1)(b)), and(2)(not(1)(a), b))) = xor(2)(a, b)

|&a!b&b!a = ^ab
or(2)(and(2)(a, not(1)(b)), and(2)(b, not(1)(a)))) = xor(2)(a, b)

|&!ab&a!b = ^ab
or(2)(and(2)(not(1)(a), b), and(2)(a, not(1)(b)))) = xor(2)(a, b)

|&!ab&!ba = ^ab
or(2)(and(2)(not(1)(a), b), and(2)(not(1)(b), a))) = xor(2)(a, b)

$$a!b$b!a = ^ab
nand(2)(nand(2)(a, not(1)(b)), nand(2)(b, not(1)(a))) =
xor(2)(a, b)

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

806

$$!ba$b!a = ^ab
nand(2)(nand(2)(not(1)(b), a), nand(2)(b, not(1)(a))) =
xor(2)(a, b)

$$!ba$!ab = ^ab
nand(2)(nand(2)(not(1)(b), a), nand(2)(not(1)(a), b)) =
xor(2)(a, b)

$$a!b$!ab = ^ab
nand(2)(nand(2)(a, not(1)(b)), nand(2)(not(1)(a), b)) =
xor(2)(a, b)

#!a#ba = a
nor(2)(not(1)(a, nor(2)(b, a))) = a

#!a#ab = a
nor(2)(not(1)(a, nor(2)(a, b))) = a

##ba!a = a
nor(2)(nor(2)(b, a), not(1)(a))) = a

##ab!a = a
nor(2)(nor(2)(a, b), not(1)(a))) = a

!!a = a
not(1)(not(1)(a)) = a

7.6. Моделирование схемы, описанной на языке Аlex
Рассматривается алгоритм для моделирования цифровых схем, используя

преимущества языка Alex. Результат моделирования также может быть исполь-
зован для сверки с результатами сгенерированного кода, рассматриваемого
позже.

По ходу создаются три вектора, где соответственно сохраняются текущие
значения входных сигналов, ветвящихся сигналов и сигналов, являющихся вы-
ходами элементов DFF.

Каждый раз, когда входам задаются новые значения, все эти данные стира-
ются и начинается новый цикл вычислений.

Моделирование производится по уровням (в порядке, описанном в файле).
Каждый раз, получая новые описания на языке Alex, сначала необходимо их

синтезировать, потом уже моделировать.
Допустим уже смоделировано некоторое количество уровней и сейчас рас-

сматривается следующая строка – описание выхода ветвящегося или запоми-
нающего элемента.

Моделирование производится справа налево. Для этой строки создается
вектор уже вычисленных значений. Рассматривается очередной элемент. Если
он является входным или ветвящимся элементом, то в начало вектора добавля-
ется значение этого элемента. А если это функция, то проверяется наличие дос-
таточного количества входов для этого элемента в векторе и вычисляется значе-
ние функции. После вычисления функции удаляется соответствующее количе-
ство входов из вектора, после чего в начало вектора добавляется значение
функции.

Так продолжается до завершения строки. Если все было сделано правильно,
то проверяем, чтобы в конце в векторе осталось только одно значение, которое
и является результатом моделирования этой строки.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

807

> Taking inputs
A_1 = 1
A_2 = 0
B_1 = 1
B_2 = 1

> Simulation ...
B_1 = B_1(0)
B_1 = B_1(0)
B_1 = 1
A_1 = A_1(0)
A_1 = A_1(0)
A_1 = 1
B_2 = B_2(0)
B_2 = B_2(0)
B_2 = 1
A_2 = A_2(0)
A_2 = A_2(0)
A_2 = 0
C_1 = and(2)*A_1(0)*B_1(0)
C_1 = and(2)*A_1(0)*B_1(0)
C_1 = and(2)*A_1(0) 1
C_1 = and(2) 11
C_1 = 1
C_2 = and(2)*A_2(0)*B_2(0)
C_2 = and(2)*A_2(0)*B_2(0)
C_2 = and(2)*A_2(0) 1
C_2 = and(2) 01
C_2 = 0
S2x = or(2)and(2)*A_2(0)not(1)*B_2(0)and(2)not(1)*A_2(0)*B_2(0)
S2x = xor(2)*A_2(0)*B_2(0)
S2x = xor(2)*A_2(0) 1
S2x = xor(2) 01
S2x = 1
C_3 = and(2)*S2x(0)*C_1(0)
C_3 = and(2)*S2x(0)*C_1(0)
C_3 = and(2)*S2x(0) 1
C_3 = and(2) 11
C_3 = 1
C_C = xor(2)*C_2(0)*C_3(0)
C_C = xor(2)*C_2(0) 1
C_C = xor(2) 01
C_C = 1
S_1 = xor(2)*A_1(0)*B_1(0)
S_1 = xor(2)*A_1(0) 1
S_1 = xor(2) 11
S_1 = 0
S_2 = xor(2)*S2x(0)*C_1(0)
S_2 = xor(2)*S2x(0) 1
S_2 = xor(2) 11
S_2 = 0

> Outputs are
C_C = 1
S_1 = 0
S_2 = 0

Здесь можно заметить, что сигнал S2x был синтезирован и получил более

короткое описание.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

808

8. Перевод описания схемы с языка Alex на язык Verilog

Эта задача преследует одну цель – проверить, насколько транслирование из

языка Verilog в Alex проведено безошибочно. Это проверяется с помощью од-
ного из существующих симуляторов. Сначала симулятор работает с оригиналь-
ной версией Verilog-схемы, потом с транслированной версией. Если результаты
совпадают на довольно большом количестве входных данных, то с большой
уверенностью можем сказать, что наш перевод из языка Verilog на Alex прове-
ден безошибочно.

Дедуктивное построение языка Alex и доказательство теоремы о записи [3]
дают возможность осуществить синтаксический контроль правильности описа-
ния схемы на языке Alex.

Для трансляции требуется одна переменная – для хранения глубины в опи-
сании и два стека – имен выходов и пар (функция, кол. Входов).

Рассмотрим главные алгоритмические шаги в процессе трансляции.
1) Если во время чтения из файла встречаются строки «переменная =»,

«*переменная =» или «#переменная =», то добавляется переменная к стеку
имен и переходим к чтению ее описания.

2) Если во время чтения из файла встречается строка «элемент (число)», то
• увеличивается глубина на 1;
• добавляется ко второму стеку пару (элемент, число);
• если глубина больше 1, то добавляется к первому стеку имен выходов

сгенерированное имя с префиксом _U;
• рекурсивно распознается список входов «(вход1, вход2, …)»;
• проверяется, пусты ли стеки;
• берется верхняя функция из второго стека – F;
• проверяется, чтобы количество имеющихся входов было больше или

равно количеству входов функции. (обозначается через C);
• берется верхнее имя из первого стека – O;
• пишется – «F сгенерированное имя с префиксом __I (О, последние C – 1

входы)»;
• удаляется из вектора последние C – 1 входов;
• уменьшается глубина на 1;
• добавляется О к списку аргументов;

3) Если встречаются входы или ветвящиеся элементы, то они добавляются к
списку аргументов.

Пример: Рассмотрим следующую строку Alex и попытаемся шаг за шагом

выполнить шаги алгоритма.

C_C = or(2)(and(2)(*C_2(0)(), not(1)(*C_3(0)())), and(2)(not(1)

(*C_2(0)()), *C_3(0)()))

Таблица 1. В таблице показывается процесс перевода с языка Alex на язык
Verilog.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

809

Стек вы-
ходов

Стек <функция,
кол. входов>

Глубина Входы Полученный результат

C_C = or(2)(and(2)(*C_2(0)(), not(1)(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
C_C 0
or(2)(and(2)(*C_2(0)(), not(1)(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
C_C or, 2 1
(and(2)(*C_2(0)(), not(1)(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U1
C_C

and, 2
or, 2

2

(*C_2(0)(), not(1)(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U1
C_C

and, 2
or, 2

2 C_2

not(1)(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U2
__U1
C_C

not, 1
and, 2
or, 2

3 C_2

(*C_3(0)())), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U2
__U1
C_C

not, 1
and, 2
or, 2

3 C_3
C_2

)), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U2
__U1
C_C

not, 1
and, 2
or, 2

2 __U2
C_3
C_2

not __I1 (__U2, C_3)

), and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U1
C_C

and, 2
or, 2

1 __U1
__U2
C_2

not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)

and(2)(not(1) (*C_2(0)()), *C_3(0)()))
__U3
C_C

and, 1
or, 2

2 __U1 not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)

(not(1) (*C_2(0)()), *C_3(0)()))
__U4
__U3
C_C

not, 1
and, 2
or, 2

3 __U1 not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)

(*C_2(0)()), *C_3(0)()))
__U4
__U3
C_C

not, 1
and, 2
or, 2

3 C_2
__U1

not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)

), *C_3(0)()))
__U4
__U3
C_C

not, 1
and, 2
or, 2

2 __U4
C_2
__U1

not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)
not __I3 (__U4, C_2)

*C_3(0)()))
__U3
C_C

and, 2
or, 2

2 C_3
__U4
__U1

not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)
not __I3 (__U4, C_2)

))
__U3
C_C

and, 2
or, 2

1 __U3
C_3
__U4
__U1

not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)
not __I3 (__U4, C_2)
and __I4 (__U3, __U4, C_3)

)
C_C or, 2 0 __U3

__U1
not __I1 (__U2, C_3)
and __I2 (__U1, C_2, __U2)
not __I3 (__U4, C_2)
and __I4 (__U3, __U4, C_3)
or __I5 (C_C, C_2, __U1, __U3)

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

810

9. Трансляция с языка Alex в C++

и моделирование схемы

Как уже было сказано, одним из преимуществ языка Alex является то, что в

его записи содержится логика моделирования. При описании схемы по уровням
в любой записи встречаются или входные элементы, или ветвящиеся элементы,
чьи описания уже встречались до этого. Т.е. значение функции можно вычис-
лить одним проходом справа - налево.

Очевидно, что если имеется любое выражение, например a+b, то намного
быстрее будет найдено его значение если мы составим программу, вычисляю-
щую это выражение, нежели мы сами будем производить распознавание этого
выражения в программе. Таким образом мы можем избежать лишних операций
и сразу составлять программы, смысл работы которых и будет моделирование
схемы.

Например:
Схема S27 моделируется с помощью следующего сгенерированного кода

C++:

#include <iostream>
#include <fstream>
#include <stdlib.h>
#include "../inputs_reader.hxx"
#include "../signal.hxx"
using namespace alex;

inputs_reader ir;
bool __clock__ = true;
 signal br[22];
 signal brn[22];
 signal in[21];
std::ofstream out("output.dat",std::ios::out);
void model_inputs ()
{
 ir.read ("G0", in[11]);
 ir.read ("G1", in[13]);
 ir.read ("G2", in[20]);
 ir.read ("G3", in[19]);
}
void simple0()
{
 br[10] = !(in[11]);
 br[12] = !(in[13] || br[14]);
 br[15] = (br[10] && br[16]);
 br[17] = !(br[18] || !((in[19] || br[15]) && (br[12] ||
br[15])));
 br[21] = !(br[17]);
 out << br[21];
}
void simple ()
{
 simple0 ();
}
void dff0()
{

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

811

 brn[18] = (!(br[10] || br[17]));
 brn[16] = (!(br[18] || !((in[19] || br[15]) && (br[12] ||
br[15]))));
 brn[14] = (!(in[20] || br[12]));
}
void dff ()
{
 dff0 ();
}

int main()
{
 srand (0);
 ir.init();
 int start_time = time(0);
 int k = 0;
 for (; k < ir.get_number_of_tests(); ++k) {
 model_inputs ();
 simple ();
 if (__clock__) {
 dff ();
 }
 out << std::endl;
 br[18] = brn[18];
 br[16] = brn[16];
 br[14] = brn[14];
 __clock__ = !__clock__;
 }
 out.close();
 int delta_time = time(0) - start_time;
 std::cout << "Took " << delta_time
 << " sec" << std::endl;
 return 0;
}

10. Сравнение программы AlexSim с программой
ModelSim v5.5

Для сравнений результатов времени моделирования предлагаемого симуля-

тора AlexSim с симулятором ModelSim V5.5 рассматривались несколько эта-
лонных схем [4, 5], создавались так называемые testbench-и для их моделирова-
ния. Они также пишутся на языке Verilog, но уже в behavioral форме и предна-
значены для определения входов схемы в каждом такте симуляции и записи вы-
ходов в файл. Входные данные тоже записываются в файл, чтобы в дальнейшем
можно было ввести их в нашу программу и проверить идентичность результа-
тов.

Таблица 2. В таблице приведены сравнения программы AlexSim с программой
ModelSim 5.5. Все входные значения при моделировании брались из генератора
случайных чисел. Количество наборов во всех случаях = 1.000.000. Экспери-
менты были выполнены под операционной системой RedHat Linux 9.0 на ПК с
мощностью 1800Mhz.

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

812

Имя
схемы

Кол.
входов/
выходов

Кол. Эле-
ментов

Время си-
муляции

ModelSim-а
(с.)

Время симуляции
программы AlexSim
(компиляция/время
симуляции) (с.)

Отношение
времен симу-

ляции

c1355 41 / 32 546 60 4 / 2.7 22,22
c1908 33 / 25 880 115 3 / 2.9 39,66
c2670 233 / 140 1193 154 28 / 16.1 9,57
c3540 50 / 22 1669 204 5 / 5.4 37,78
c499 41 / 32 202 28 3 / 3.6 7,78
c5315 178 / 123 2307 393 22 / 15.4 25,52
c6288 32 / 32 2416 417 9 / 8.5 49,06
c7552 207 / 108 3512 967 26 / 22.6 42,79
s1196a 14 / 14 547 57 2 / 1.9 30,00
s1196b 14 / 14 547 56 3 / 1.8 31,11
s1238a 14 / 14 526 57 2 / 1.9 30,00
s1238 14 / 14 526 56 3 / 1.9 29,47
s13207 62 / 152 8589 2106 15 / 16.0 131,63
s1423 17 / 5 731 105 2 / 3.1 33,87
s1488 8 / 19 659 30 2 / 1.5 20,00
s27 4 / 1 13 7 2 / 2.0 3,50
s298 3 / 6 133 20 2 / 0.4 50,00
s344 9 / 11 175 24 2 / 0.7 34,29
s349 9 / 11 176 25 2 / 0.7 35,71
s382 3 / 6 179 27 2 / 0.5 54,00
s386 7 / 7 165 17 1 / 0.7 24,29
s400 3 / 6 185 27 2 / 0.7 38,57
s420 18 / 1 234 30 2 / 1.4 21,43
s444 3 / 6 202 27 1 / 0.6 45,00
s510 19 / 7 217 13 2 / 1.4 9,29
s526a 3 / 6 215 26 1 / 0.6 43,33
s526 3 / 6 214 26 2 / 0.6 43,33
s5378 35 / 49 2958 288 8 / 7.5 38,40
s713 35 / 23 412 46 2 / 2.3 20,00
s820 18 / 19 294 22 2 / 1.5 14,67
s832 18 / 19 292 22 2 / 2.0 11,00
s838 34 / 1 478 58 2 / 2.6 22,31
s9234 36 / 39 5808 639 10 / 8.9 71,80
s953 16 / 23 424 53 2 / 1.7 31,18
B01_C 7/7 54 7 2/0.4 17.5
B02_C 5/5 32 5 1/0.4 12.5
B03_C 34/34 190 16 1/2.2 7.27
B04_C 77/74 803 73 3/5.4 13.51
B05_C 39/60 1032 127 4/4.4 28.86
B06_C 11/14 65 6 2/0.6 10
B07_C 50/57 490 42 3/3.4 12.35
B08_C 30/25 204 19 2/2.0 9.5
B10_C 28/23 223 20 2/2.0 10
B11_C 38/37 801 75 3/3.8 19.73
B12_C 128/125 1197 73 5/10.8 6.75
B13_C 63/63 415 33 2/4.2 7.85
B14_C 277/299 10343 5563 69/85 65.44
B15_C 485/519 9371 2290 81/55 41.63
B17_C 1452/1512 33741 11370 370/550 20.67
B20_C 522/512 20716 16460 150/145 113.51
B21_C 522/512 21061 16620 150/150 110.8
B22_C 767/757 30686 24880 239/415 59.95

Труды VI Международной конференции «Идентификация систем и задачи управления» SICPRO ‘07 Москва 29 января - 1 февраля 2007 г.
Proceedings of the VI International Conference “System Identification and Control Problems” SICPRO ‘07 Moscow January 29 - February 1, 2007

813

Список литературы

1. Бозоян Ш.Е. Язык описания функциональных схем // Изв. АН СССР. Техническая киберне-

тика. 1978. № 4. С. 158-166.
2. Бозоян Ш.Е., Егиазарян В.С., Новый подход к модельно-ориентированному проектирова-

нию систем на чипах // Электронный журнал «ИССЛЕДОВАНО В РОССИИ». 2003. С.
1386-1395. http://zhurnal.ape.relarn.ru/articles/2003/115.pdf.

3. Pabmitkar S. Verilog HDL: Guide to Digital Design and Synthesis // SunSoftPress, Prentice Hall,
1996. P. 105-117.

4. Hansen M., Yalcin H., Hayes J.P. Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse
Engineering // IEEE Design and Test. 1999. Vol. 16, No 3. P. 72-80.

5. Brgles F., Bryan D. Kozminski K. Combinational profiles of sequential benchmark circuits // In-
ternational symposium of circuits and systems ISCAS-89. 1989. P. 1929-1934.

6. ITC’ 99 Benchmarks (2nd release). http://www.cad.polito.it/ tools/itc99.htm.

