

Ofront
TM

Oberon-2 to C Translator, Version 1.0

User Guide

SOFTWARE TEMPL

ii

Copyright (c) SOFTWARE TEMPL, 1995

All rights reserved.

Author:

Dr. Josef Templ

Lüfteneggerstr. 8/44

4020 Linz, Austria

fon/fax: (++Austria) 732 / 77 89 54

This text has been produced with ETH-Oberon V4 compiled with Ofront 1.0.

Ofront is a trademark belonging to SOFTWARE TEMPL.

All other trademarks belong to their respective owners.

SOFTWARE TEMPL is an authorized Sun Software Partner

i

Contents

1 Introduction 1

1.1 Typographic Conventions 2

1.2 What is Ofront? 2

1.3 Intended Use 4

2 Getting Started 7

2.1 Command-line Version 7

2.2 Integrated Version 11

2.3 Principles of Operation 11

2.4 Cross Translation 15

3 C-Compilation and Linking 17

3.1 SunOS 4.x (SPARC) 18

3.2 SunOS 5.x (SPARC) 19

3.3 DEC Ultrix (MIPS) 20

3.4 HP-UX (PA-RISC) 21

3.5 IBM AIX (RS/6000) 23

3.6 SGI IRIX 5 (MIPS) 24

3.7 Linux (i386) 25

4 Module SYSTEM 27

4.1 The Static Role 27

4.2 Interfacing with C 28

4.2.1 Name Mapping 29

4.2.2 Pointers 29

4.2.3 Parameter Substitution inside Strings 30

4.2.4 Exporting Code Procedures 30

4.2.5 Return Types and Includes 31

4.2.6 Debugging 33

4.3 The Dynamic Role 34

5 Module Args 35

6 Exception Handling 37

7 Module Loading 43

8 Garbage Collection and Finalization 47

0

Appendix

A Supported Architectures and Compilers 49

B Available Libraries 51

C The Programming Language Oberon-2 55

D Grammar of Oberon-2 85

E Limitations of the Implementation 89

F Ofront Error Messages 91

1

1 Introduction

This document serves as a guide for users of Ofront, the industry’s

leading Oberon-2 to C translator. The reader of this guide is expected to

have at least a basic understanding of the programming language

Oberon and to be able to use the C compiler and linkage editor on the

respective target platform. It is also expected that the user of the

integrated version (cf. 2.2) has some knowledge about the ETH Oberon

system.

For an introduction to the programming language Oberon, please refer

to

Wirth N. and Reiser M. (1992). Programming in Oberon. Steps beyond

Pascal and Modula-2. Addison-Wesley, Wokingham, ISBN

0-201-56543-9.

This book is also available in German as

Wirth N. und Reiser M. (1994). Programmieren in Oberon. Das neue

Pascal. Addison-Wesley, Bonn, ISBN 3-89319-675-9.

For a thorough description of the ETH Oberon system, consult

Reiser M. (1991). The Oberon System. User Guide and Programmer’s

Manual. Addison-Wesley, Wokingham, ISBN 0-201-54422-9.

For a description of object-oriented programming in general and

object-oriented programming using Oberon-2 type-bound procedures in

particular, refer to

Mössenböck H. (1993). Object-oriented Programming in Oberon-2.

Springer Verlag, ISBN 3-540-56411-X.

This book is also available in German as

Mössenböck H. (1993). Objektorientierte Programierung in Oberon-2.

Springer Verlag, ISBN 3-540-57789-0

2

1.1 Typographic Conventions

This document uses the following typographic conventions:

Table 1.1 Typographic Conventions

typeface/prefix Meaning Example

Abcdef plain text This document uses

Abcdef name Ofront

% Abcdef C shell command % strip oberon
$ Abcdef grammar rule $ options = ["−" {option}].
Abcdef programs PROCEDURE P;

names from a program SYSTEM_halt
program output pos 10 err 3

Abcdef pseudo-code the Oberon main event loop

1.2 What is Ofront?

Ofront is a tool that translates Oberon-2 programs into semantically

equivalent C programs. Full error analysis is performed on the Oberon

input program and in case of no errors up to three files are generated as

output.

an Oberon symbol file (suffix .sym)

a C header file (suffix .h)

a C body file (suffix .c)

The C header and body files follow widely used C programming

conventions. Ofront is also capable of generating main programs by

translating the body of a module into a C main function. In this case

only the body file is generated.

Ofront does not invoke the C compiler or linkage editor. This may be

done in separate shell scripts or make files and is inherently dependent

on the C compiler and linkage editor being used.

Although normally not read by the user, the C code generated by

Ofront is kept as readable as possible, nicely formatted, should not

produce any C compiler error messages or warnings and is tuned for

efficient execution. In fact, an Oberon program translated by Ofront can

be expected to execute as fast and read as well as an equivalent

hand-coded C program.

The following list and the subsequent explanations give an overview

of the most important highlights of Ofront.

3

Highlights full Oberon-2 language support

extensible module interfaces

fast translation

parameterization for arbitrary C compilers, ANSI and K&R

highly compact and efficient run-time system

automatic garbage collection

advanced heap management (growth on demand, finalization)

commands and modules preserved

dynamic loading of modules or subsystems

interfacing with C or other foreign languages

clean and human-readable C code, no warnings

information hiding preserved in the generated header files

multiple libraries available

command-line version and integrated development environment

Ofront supports the full Oberon-2 language standard as proposed by

ETH Zurich. In addition to pure Oberon, this includes the

FOR-statement, type-bound procedures, open arrays as pointer base

types, ASSERT, more flexible string literals and nested comments.

Recent advances in compilation technology are included in Ofront to

allow fine-grained interface checking rather than the more traditional

per module interface checks. Ofront does not require recompilation of

all clients of a module if the interface of a module changes. Only those

clients which are actually affected by a change need to be recompiled.

Since extending the interface of a module does not invalidate any

clients, no recompilation is needed in this case.

Ofront provides fast translation of Oberon modules into C code. The

additional Ofront step is therefore almost negligible when compared

with C compilation and linking. Translation speed is more than 150,000

lines of Oberon code per minute on a 60 MHz HP 9000 Model 712, for

example.

In order to support a wide range of C compilers, Ofront is

parameterizable to support virtually all existing C compilers, be they

ANSI or Kernighan/Ritchie (K&R) style compilers.

4

Ofront includes a highly compact and efficient run-time system that

provides auxiliary routines for managing dynamic type information,

exceptions, modules, commands, the Oberon heap, and an automatic

garbage collector. Heap management and garbage collection are built

upon C malloc and scale themselves to the actual memory requirements

by means of an extensible heap. Ofront’s memory management is

significantly more efficient than native malloc. For Sun/SPARC, for

example, storage allocation is about a factor of 10 faster and the

complete run-time system needs less than 10 KB of object code.

Ofront allows interfacing between Oberon and C or other foreign

languages by means of in-lined code procedures. This provides for

flexible parameter mapping and avoids any run-time overhead. Since

Ofront programs are translated to C, they can be called from C or other

foreign languages as well; thus interfacing actually works in both

directions.

Ofront produces clean and human-readable C code by indentation of

nested statements, a set of Ofront-related macros that define operations

which are not directly available in C, and by avoidance of unnecessary

parentheses. In many cases this allows the usage of C tools such as the

debugger without getting lost in the generated code. The

correspondence between the original Oberon code and the C code is

always obvious.

Ofront follows widely used C programming conventions by producing

two C files, a header and a body file. The header file contains the

module interface to be used in #include control lines. Information

hiding is preserved in the C header files; i.e., they contain only

information about exported objects or record fields.

1.3 Intended Use

Ofront should be considered a complementary tool to already existing

Oberon compilers which produce native machine code. It is intended to

be used if at least one of the following properties is desired:

Strong optimizations should be performed on the program.

Oberon programs should be written for a computer which does not

feature a native-code Oberon compiler (yet).

5

Linking with existing C programs is essential.

Stand-alone programs are desired.

 Shared object libraries should be generated.

You know Oberon and have to learn C.

The translation of Oberon programs to C makes thousands of person

years invested into aggressively optimizing C compilers available to the

Oberon community. Oberon compilers that optimize equally well can

only be expected when Oberon is as wide-spread as C.

Virtually all computers feature a descent C compiler; some machines

still come with a C compiler bundled with the OS. The detour over C

assures that portability of Oberon programs even to exotic machines is

not an issue when selecting the programming language for a project.

The translation to C allows bidirectional interfacing with libraries

written in C, i.e. calling C from Oberon and calling Oberon from C.

This subject is not as trivial as might be expected, but with some

experience and care, interfaces can be realized in a very short time.

Using the C compiler as a code generator assures that Oberon programs

are translated into some standard object file format rather then into an

Oberon-specific format, which requires a special environment to

execute the programs. The standard object files can be linked with a

standard linkage editor which produces stand-alone Oberon programs.

The use of standard object files also supports interfacing with C

libraries or other programming languages that follow an operating

system’s standard object file format and calling conventions.

In addition to statically linked applications, many operating systems

(e.g. SunOS, HPUX, AIX) support the use of shared object libraries. In

this case object files can be shared between multiple applications,

which reduces memory requirements and loading time. Using C as code

generator enables the generation and use of shared object libraries for

Oberon programs. Typically a set of modules (sometimes called a

"subsystem") is linked into one shared object library. Since shared

object libraries are usually mapped into memory by using demand

paging, the loading time only depends on the amount of code accessed

during startup of an application, not on the static size of a library.

6

More and more students are being educated with Oberon. Many of them

have to use C in their industrial careers. Ofront can be immensely

helpful to see the correspondence between Oberon programs and/or

data types and their C counterparts. In effect, Ofront can be used as a

sort of interactive electronic C teacher. This was also one of the reasons

why readability of the generated code was one of Ofront’s design goals.

7

2 Getting Started

Ofront comes in different flavors. For Unix platforms both an

integrated environment and a command-line version is available. The

integrated version runs inside ETH-Oberon and the command-line

version runs as a stand-alone program that can be executed directly

from a shell. For PCs and Macintoshes versions running as a subsystem

of Oberon/F (TM) and as a separate environment are provided. These

latter versions follow the respective platform’s user interface

conventions and provide online documentation for first-time users.

All versions have exactly the same features; in particular, they have

the same set of options which we therefore describe only once in

Section 2.1. Ofront is capable of generating code for different C

compilers. Therefore it requires a file which parameterizes the

translation process. This file is called Ofront.par. For details on

parameterization and cross translation see Section 2.4.

The command-line version is provided for those users who prefer to

use their traditional ASCII text editor (e.g., emacs or vi) or to embed

Oberon in standard Unix programming tools such as shell scripts or

make files. The integrated Unix versions allow using the standard

Oberon text editors, which, although puristic at first glance, provide

much more functionality than plain ASCII editors. The Ofront

command-line version accepts source files either as plain ASCII texts,

as Oberon V4 texts, or as Oberon System 3 texts.

2.1 Command-line Version

The command-line version of Ofront is represented by command ofront,
which accepts an arbitrary number of input file parameters. Every file is

expected to contain one Oberon module. Oberon source files typically

(but not necessarily) have the file name extension .Mod. Options

affecting the translation process may be specified immediately after the

command name or after a file name. The former apply to all files, the

latter only to the preceeding one; thus, the order in which file names

and options are specified is important. Specifying an option twice

nullifies the effect of the option. This might be used to override a global

option for an individual file. The following EBNF grammar specifies

Ofront’s command line syntax. Note that options must not contain

whitespace.

$ command = "ofront" options {filename options}.

8

$ options = ["−" {option}].
$ option = "m" | "s" | "e" | "i" | "r" | "x" | "a" | "p" | "t".

ofront performs full error analysis on the Oberon input modules and

writes error and completion messages to the standard output device. No

C code is generated if errors are detected. The exact meaning of the

error numbers is listed in file OfrontErrors.Text and in the appendix.

ofront looks for its input files in the directories specified by the

environment variable OBERON, which is expected to contain a

colon-separated list of path names. The following example shows how

to set the OBERON environment variable under the Unix C-shell. If the

OBERON environment variable does not exist, files are looked up only

in the current working directory. Files that contain a "/" character in

their path name are always looked up relative to the current working

directory and independent of the OBERON environment variable.

% setenv OBERON .:..:/usr/local/Oberon

The meaning of the individual options is defined as follows:

m generate a main module (default off)

This option signals Ofront that the module body should be

translated into a C main function, which is the entry point of an

application. Every application consists of exactly one main module.

Modules which are intended to be included in a library should never

be compiled with option m.

s allow changing the symbol file (default off)

The interface of an Oberon module is represented in a compact and

efficient form in the module’s symbol file (suffix .sym). Changing

the symbol file of a module therefore means changing the interface

of the module. Examples of such a change are to insert, rename, or

delete an exported type, variable, or procedure. Those clients, which

depend on the changed feature, have to be adapted to the new

interface and recompiled. Note that, unlike earlier Modula-2 or

Oberon-2 compilers, only those clients of the module that depend on

the changed feature(s) need to be recompiled, not all modules which

import the changed service module. The new fine-grained interface

checking supports the evolution of software over time much better

than its coarse-grained predecessor. To avoid unintended interface

changes, this option is turned off by default.

9

e allow extending the module interface (default off)

This option is similar to s but restricts interface changes to

extensions. For example, it is possible to export additional global

variables or procedures if option e is specified. Renaming or

deleting a procedure or variable is not allowed. To avoid unintended

interface extensions, this option is turned off by default.

 i include header and body prefix files (default off)

Specifying this option enables the inclusion of C code that is

prepended to the generated header and body files. For a module M,

the header and body prefix files are expected to be named M.h0 and

M.c0 respectively. Non-existing prefix files are silently ignored.

r check value ranges (default off)

Specifying this option turns on value range checking such as

checking if SHORT of a LONGINT variable is in the INTEGER value

range. Since this option is not related to memory integrity, it is

turned off by default.

x check array indices (default on)

Specifying this option turns off array index bounds checking. Since

index checks are inlined and consist only of a single unsigned

compare, they are very fast and it is normally not necessary to turn

them off in order to get good performance. Furthermore, optimizers

can remove index checks in many places without giving up security.

a check assertions (default on)

Specifying this option turns off run-time checking of ASSERT
statements. Use this option only in carefully tested production code

when utmost efficiency is required. An unchecked assertion is

nothing but a comment.

p pointer initialization (default on)

Specifying this option turns off automatic pointer initialization.

Note that Oberon does not specify the value of local pointer

variables before they are assigned a value. Even with pointer

initialization, it is not correct to make assumptions about the initial

value of a pointer. In particular, it is not allowed to assume that they

are set to NIL. Pointer initialization is a technique to ensure

memory integrity even in case of erroneous programs and/or to

detect uninitialized pointers as soon as possible.

10

t check type guards (default on)

Specifying this option turns off run-time type guard checking. Since

type guard checks are very efficient anyway and undetected type

guard failures can easily destroy memory integrity, we recommend

using this option only in very rare cases such as low-level modules

where every machine cycle counts.

Example % ofront M1.Mod
M1.Mod translating M1 298

The generated output contains the name of the file, the name of the

module and the size in bytes of the generated C body file. In case of an

error or if a warning is issued, the text position (not line number) and an

error number are written to the standard output device. The meaning of

the error number can be looked up in file OfrontErrors.Text or in the

appendix.

% ofront −e M1.Mod M2.Mod M3.Mod −m
M1.Mod translating M1 298
M2.Mod translating M2 extended symbol file 340
M3.Mod translating M3 main program 230

showdef The command showdef is provided to allow decoding Ofront symbol

files. showdef xxx decodes the symbol file of module xxx and displays it

in human-readable form on the standard output device.

Example % showdef Args
DEFINITION Args;

 VAR
 argc−: LONGINT;
 argv−: LONGINT;

 PROCEDURE Get(pos: INTEGER; VAR val: ARRAY OF CHAR);
 PROCEDURE GetInt(pos: INTEGER; VAR val: LONGINT);
 PROCEDURE Pos(s: ARRAY OF CHAR): INTEGER;

END Args.

The showdef command corresponds to the Browser.Showdef command

in the integrated version.

11

2.2 Integrated Version

The integrated version of Ofront is represented by command

Ofront.Translate and accepts the same options and parameters as the

command line version. Note that options are preceded by a "\" character

on Unix platforms and that the "*" character refers to the star-marked

text in Oberon. This text can be translated right from the editor without

storing the text to a file first. The following EBNF grammar specifies

the Ofront.Translate command.

$ command = "Ofront.Translate" options {("*" | filename) options } "˜".
$ options = ["\" {option}].
$ option = "s" | "e" | "m" | "i" | "a" | "p" | "x" | "t".

The input files are searched in exactly the same way as in the

command-line version, i.e., using the environment variable OBERON.

This environment variable is also used by the ETH-Oberon V4 system

(activated by the command oberon), which (under Unix) runs as an

X-client. As usual for X-clients, oberon supports the −d (display) and

−g (geometry) command-line options and the DISPLAY environment

variable. For more details about using the integrated version please

refer to the oberon (1) manual page and the online documentation

included in the distribution.

Examples Ofront.Translate *\s ˜
Ofront.Translate \er M1.Mod M2.Mod M3.Mod\m ˜

2.3 Principles of Operation

Working with Ofront involves several steps to achieve a running

application. The following gives an overview of this process. Chapter 3

goes into details of particular combinations of C compilers and

operating systems.

Figure 2.1 Sequence of processing steps

Ofront C compiler Linker

a.outmodule

12

Ofront The first step is to run Ofront, which produces as its output the input to

the C compiler. This process is shown in Figures 2.2 and 2.3 for a

module M. In case of an error, no output files are written and existing

files with the same names are preserved. In case of success, existing

files with the same name are overwritten.

Ofront creates new files in the current working directory and looks up

old files (e.g., symbol files) in all directories listed in the OBERON
environment variable, which is expected to contain a list of path names

delimited by colons.

Figure 2.2 Translation of a normal module

Ofront

module M
symbol file M.sym

header file M.h

body file M.c
Ofront.par

*.sym

M.h0

M.c0
optional M.h0, M.c0

In the case of translating a main module (by specifying option m), only

a body file is generated. A main module cannot be imported by other

modules since it is the distinguished root of a module hierarchy. Files

M.sym and M.h are therefore deleted if they exist.

If option i is in effect, the files M.h0 and M.c0 would be used as a

prefix of the output files M.h and M.c. Missing prefix files are treated as

if they were empty.

13

Figure 2.3 Translation of a main module

Ofront

main module M

body file M.c

Ofront.par

*.sym

optional M.c0

M.c0

C compiler The second step, C compilation, unavoidably needs some knowledge

about a system’s C compiler in order to fully exploit Ofront. One point

is the optimization level that is desired for a given module. It is also

possible to C-compile without optimizations but with debugging

enabled. Selecting the appropriate debugging and/or optimization level

is the first decision when C-compiling. The second decision is whether

the module should be statically linked or put into a shared object library

from where it can be linked dynamically. On a system featuring shared

object libraries (sometimes also called dynamic link libraries), object

files normally must be in a certain format, which is often called

"position independent". This ensures that the generated object code can

be mapped into the address space of a process at an arbitrary position.

Most compilers must be instructed explicitly to generate position

independent code. Due to the variety of the C compiler options, the

Ofront and C steps are not integrated. However, the two steps (or three

if you also consider linking) can be automated by writing appropriate

shell scripts.

Linker Most systems allow putting object files into an archive or into a shared

object library. Archives are used for static linking of applications, i.e. if

the code of the archived modules should be copied into the executable

of the application. Shared object libraries are used if the code of one or

several modules should be shared among multiple applications. This

leads to significantly reduced executables, but on the other hand to

dependencies on the shared object library. The executable is no longer

self-contained. Due to the reduced code size and the possibility of

14

creating truly extensible applications, shared object libraries are gaining

importance nowadays while static archives are declining.

For shared object libraries, we distinguish two linking strategies:

dynamic linking and run-time linking. Dynamic linking is equivalent to

static linking except that some parts of an application reside outside the

application’s executable in a shared object library. As with static

linking, all parts of the application must be known in advance.

Run-time linking means that an arbitrary library which is not known in

advance can be loaded at run time and thereby truly extends an

application. Technically speaking, run-time linking is realized by

providing a programmatic interface to the dynamic linker. Clearly,

run-time linking is needed for Oberon in order to achieve the effect of

dynamic module loading. Unfortunately, not all operating systems

support run-time linking yet; most operating systems support dynamic

linking, and all support static linking.

Subsystems Typically, a group of modules that together provide an abstraction (e.g.,

a graphics editor) can be linked into a shared object library. In

principle, every single module can be regarded as a shared object

library, but this is not usually the granularity expected by an operating

system’s dynamic loader and might lead to inefficiencies. As an

example, the libraries that contain all modules of the Oberon V4 system

are provided as shared object libraries (e.g. libOberonV4.so for SunOS

5.x). For a complete Oberon system there must only be a simple main

module which initializes some global data structures and starts the

Oberon main event loop (cf. example module Configuration.Mod). The

size of this main program is just a couple of lines and a few KB of

object code if it is linked dynamically with the appropriate Oberon

library.

When packing more than one module into a subsystem, the problem

of retrieving such modules at run time arises. There must be a mapping

from a module name to the package that contains this module. The

simplest way of providing such a mapping is to follow an appropriate

naming convention for all modules that together form a subsystem. All

module names should start with a common prefix which identifies the

subsystem. We propose to use the first transition from lower case to

non-lower case characters in a module name as the end of this common

prefix. If, for example, there is a package named Dialog that provides

graphical user interface building blocks, all modules of the form

DialogFrames, DialogBoxes, Dialog1, etc, would be recognized as

belonging to this subsystem and can be loaded at runtime from the

Dialog subsystem. Note that in a software system that might be

15

extended from different persons it is a good idea to use unique module

name prefixes anyway in order to avoid name clashes. Chapter 7 gives a

concrete example of a run-time linking strategy including source code.

On a platform that supports run-time linking, after the oberon
application is started, the module list contains only those modules

which are directly or indirectly imported by the main module or which

are loaded explicitly during the initialization process. When activating a

command, e.g. Edit.Open, module Edit will be loaded (mapped) as well

and become a member of the module list. Thus dynamic loading of

modules is preserved.

On a platform that only supports static or dynamic linking, all

modules which are to be available to the application must be imported

by the main module either directly or indirectly. After starting such an

application, all modules are contained in the module list right from the

beginning.

2.4 Cross Translation

Ofront allows cross-translation of Oberon modules to a variety of target

systems by means of the parameter file Ofront.par. Parameter files for

various C compilers are provided and named Ofront.xxx.par where xxx
identifies the target platform. The parameter file for the Intel 960
architecture, for example, would be named Ofront.i960.par. A list of

available parameter files is given in the appendix. If your C compiler is

not listed, you have two possibilities:

Use a prameterization file for a C compiler that has the same

characteristics as yours. To generate code for a specific C compiler,

simply rename the appropriate parameter file to Ofront.par.

Generate a new parameter file. A C program ofrontparam.c is

included, which, when compiled and executed, will output the

characteristic attributes of the C compiler used to compile it.

ofrontparam.c includes SYSTEM.h; thus you have to make sure that

the C compiler uses the appropriate version of this include file.

% cc ofrontparam.c; a.out > Ofront.par; rm a.out

Note that for successful cross-translation all modules must be translated

against the right symbol files, i.e., against symbol files that are

generated while using the same parameter file. Otherwise the size and

16

alignment of various data types might be inconsistent.

If there is no precompiled run-time system provided for your target

architecture, you will have to translate and cross-compile the module

SYSTEM.Mod first. (If the source text of module SYSYEM is not

included in your version of Ofront, contact your Ofront distributor.)

Translation should be done using the −i option, since the body prefix

file SYSTEM.c0 must be included. For maximum efficiency, run-time

checks should be disabled for module SYSTEM. Ofront will neither

produce a .sym nor a .h file when translating module SYSTEM. C

compilation of SYSTEM.c should always be done using the highest

optimization level available with a particular C compiler.

% ofront SYSTEM.Mod −iapx
% cc −O −c SYSTEM.c

For particular application domains, such as real time systems or

multiprocessor environments, modifications of the standard run-time

system might be necessary. Please note that it is not allowed to

redistribute the original or modified SYSTEM module as source or object

code without the prior written permission of SOFTWARE TEMPL. This

limitation is intended to prevent incompatibilities between the original

and possibly modified run-time system versions. It is of course allowed

to link a modified SYSTEM object file statically with your application

and distribute it.

17

3 C-Compilation and Linking

This chapter contains a description of C compilation and linking in

selected combinations of C compilers and operating systems which

might serve as prototypes for other combinations. The reader should be

familiar with at least one C compiler and linker; i.e., this chapter is not

an introduction to the field of compiling and linking programs for a

particular platform. Most compilers and linkers provide an

overwhelming number of arguments and options, some of them may be

combined, others not. As a rule of thumb, however, most of these

options can be ignored.

For every compiler/platform combination, an example is presented

that shows how to compile and link the Oberon V4 module library as a

shared library (if possible) and how to create a main executable

program that is dynamically linked with the library. The starting point

is that all library modules have been translated to C and are available in

the current working directory. Module Configuration.Mod has not been

translated yet and is intended to become the main executable program.

Therefore this is the only module that will not be part of the generated

library. On platforms that do not support run-time linking, the file

Configuration.Max.Mod is used; it imports all modules which should be

available in the executable.

hello world The following program shows how the generated library libOberonV4
can be used to create a simple command-line program. Module Console
is used to write output to the standard output device. The cc command

requires specification of the referenced library, which is platform

dependent in general. Options −L and −l are supported by most

C-compilers, though.

MODULE hello;
IMPORT Console;
BEGIN Console.String("hello world"); Console.Ln
END hello.

% ofront hello.Mod −m; cc hello.c −L. −lOberonV4 −o hello
% hello
hello world

18

3.1 SunOS 4.x (SPARC)

SunOS 4.x does support dynamic linking and a limited form of run-time

linking. The main restriction is that SunOS 4.x does not allow that

shared object libraries which are loaded at runtime (by means of a

dlopen call) depend on shared object libraries which are themselves

loaded at runtime. Such cases can lead to loading shared libraries

multiple times into main memory causing inconsistencies in a program

due to multiple instances of global variables. The mentioned limitations

are removed in SunOS 5.x (Solaris2). We deliberately refrain from

using the run-time linking facilities of SunOS 4 but use dynamic

linking to reduce the size of an application.

The following example shows how to create a shared library

libOberonV4.so.1.0 and a dynamically linked executable named oberon.

% cc −O −PIC *.c −Qproduce .o

C compilation for shared object libraries requires option −pic or −PIC
(position independent code). The difference is that −pic only works for

small libraries. If debugging should be enabled rather than

optimizations, specify option −g instead of −O. Option −Qproduce .o
prevents invocation of the linker and leaves the output of the compiler

in object files with suffix .o.

% ld *.o −lm −o libOberonV4.so.1.0

The system’s linkage editor ld combines the *.o files to a shared object

library named libOberonV4.so.1.0. External references that refer to

statically bound objects (e.g., the functions of libm) must be resolved in

the ld command; references to shared libraries (e.g., libX11) can be

resolved when linking the main executable. The C library

(/usr/lib/libc.so.x.y) is imported automatically and need not be specified

explicitly.

C compilation for static archives or statically linked applications is

normally done without option −PIC; although it would also work with

−PIC, but the code is slightly faster without it.

A dynamically linked executable can be created by the cc command

simply by replacing the −Qproduce .o option with a specification of the

generated object file (−o oberon) as in

% ofront Configuration.Max.Mod −m
% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon

19

In this case, the executable is dynamically linked if shared versions of

the referenced libraries are available. Option −L is used to specify

additional directories that contain shared libraries or static archives.

Option −l specifies libraries or archives to be used to resolve external

references.

The environment variable LD_LIBRARY_PATH may be used to specify a

colon-separated list of path names to be used by the dynamic linker to

search for libraries at both linking and loading time. A typical setting

for LD_LIBRARY_PATH would be

.:/usr/local/Oberon/lib:/usr/openwin/lib.

If object files (or static archives) are specified explicitly as in

% cc Configuration.c *.o −lm −lX11 −o fatoberon

the object files *.o would be statically linked into the executable

fatoberon. Use options −Bstatic and −Bdynamic for controlling the static

or dynamic linking of modules in SunOS 4.

3.2 SunOS 5.x (SPARC)

SunOS 5.x (Solaris2) supports both dynamic linking and run-time

linking. There is no need to explicitly instruct the compiler to generate

position-independent code since this is the default mode. The system’s

linkage editor (ld) may be used to combine object files into shared

object libraries as shown in the following example.

% cc −c −fast *.c
% ld −G *.o −o libOberonV4.so
% ofront Configuration.Mod −m
% cc Configuration.c −L. −lOberonV4 −lm −lX11 −ldl −o oberon

The first step runs the C compiler for all .c files but supresses linking

(option −c). Optimizations for execution speed are turned on by option

−fast. The second step invokes the linkage editor. Option −G specifies

generation of a shared object library. The last step compiles the main

executable and links it dynamically to libOberonV4. Additional libraries

and directories can be specified with options −l and −L as usual. The

environment variable LD_LIBRARY_PATH may be used to specify a colon

separated list of path names to be used by the dynamic linker to search

for libraries at both linking and execution time. In addition, a run path

20

may be written into the executable (use option −R or environment

variable LD_RUN_PATH). The run path provides a default path list if

LD_LIBRARY_PATH is not present at run time. A typical setting for

LD_LIBRARY_PATH (or the −R option) would be

.:/opt/Oberon/lib:/usr/openwin/lib.

ocl In order to extend for example the Oberon V4 system by an additional

module at runtime, the script ocl as shown below is provided for

Solaris2. It translates an Oberon module to C, compiles it, and links it

into a shared library consisting of exactly one Oberon module. The

module may then be loaded at runtime at the first time a command of

the module is to be executed. Note that you have to link additional

libraries using the −l option in the ld command in case that the module

references those libraries.

#!/bin/csh
#
compile and link an Oberon module
#
SYNOPSIS
ocl moduleName [ofrontOption [ccOption]]
#
use the single character "−" to skip ofrontOption
example: ocl hello − −g

translate .Mod to .c
ofront $1.Mod $2

compile .c to .o
cc −c $3 $1.c

link .o into lib$1.so; use option −l to link appropriate libraries
ld −G −L. −lOberonV4 $1.o −o lib$1.so

remove unnecessary files and show result
rm $1.c $1.o; ls −l lib$1.so

3.3 DEC Ultrix (MIPS)

DEC/Ultrix (V4.2A) only supports static linking. Object file archives

can be created and maintained by means of the ar command. The

21

linkage editor ld combines object files and archives to self-contained

executables. In order to generate an executable command oberon, it

suffices to use the compile-and-link mode of the cc command as shown

below:

% ofront Configuration.Max.Mod −m
% cc *.c −lm −lX11 −o oberon

To create a static archive named libOberonV4.a, the archiving tool ar
may be used. The strip command strips off symbolic information

contained in the executable, making it slightly smaller.

% ar qs libOberonV4.a *.o
% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon
% strip oberon

3.4 HP-UX (PA-RISC)

HP-UX allows both dynamic linking and run-time linking. In order to

use dynamic or run-time linking, the C compiler (cc) must be instructed

explicitly to generate position independent code (option +z or +Z for

very large libraries). The linker (ld) must be instructed to generate a

shared library instead of a normal executable (option −b). The

following commands show how to create libOberonV4.sl and the

executable oberon under HP-UX:

% cc −Aa +z −O −c *.c
% ld −b −z *.o −lc −lm −L/usr/lib/X11R5 −lX11 −o libOberonV4.sl
% ofront Configuration.Mod −m
% cc −Aa −Wl,+s Configuration.c −L. −lOberonV4 −ldld −o oberon

The first step compiles all .c files found in the working directory.

Option −Aa specifies ANSI semantics to be used in cases where ANSI C

differs from older HP C compilers. +z specifies generation of

position-independent code. Option −O requires performing level-two

optimizations (same as +O2). Option −c avoids invoking the linker after

C compilation.

The second step generates a shared library (option −b) and enables

NIL-checking (option −z) to be done by the hardware. Library inclusion

is specified by means of the −L and −l options. −o specifies the name of

the generated output file.

22

The third step compiles the main executable and generates an

executable named oberon, which is dynamically linked with library

libOberonV4.sl. It is important to include library libdld.sl (by means of

option −ldld) in order to enable run-time linking. Option −Wl,+s
indicates passing option +s to the linker. +s means that the environment

variable SHLIB_PATH (a colon-separated list of path names) should be

consulted for dynamic library loading.

ocl In order to extend for example the Oberon V4 system by an additional

module at runtime, the script ocl as shown below is provided. It

translates an Oberon module to C, compiles it, and links it into a shared

library consisting of exactly one Oberon module. The module may then

be loaded the first time a command of the module is to be executed.

Note that you have to link additional libraries using the −l option in the

ld command in case that the module references those libraries.

#!/bin/csh
#
compile and link an Oberon module
#
SYNOPSIS
ocl moduleName [ofrontOption [ccOption]]
#
use the single character "−" to skip ofrontOption
example: ocl hello − −g

translate .Mod to .c
ofront $1.Mod $2

compile .c to .o
cc −Aa −c +z $3 $1.c

link .o into lib$1.sl; use option −l to link appropriate libraries
ld −b −z −L. −lOberonV4 $1.o −o lib$1.sl

remove unnecessary files and show result
rm $1.c $1.o; ls −l lib$1.sl

23

3.5 IBM AIX (RS/6000)

AIX supports dynamic linking but not run-time linking. Note that the

load system call is not sufficient for run-time linking. A separate library

(libdl.a) is available from a third party vendor (HELIOS Software

GmbH, Germany, e-mail: jum@helios.de) that provides run-time

linking facilities similar to the one found in SunOS. The AIX linkage

editor may either be invoked by the ld or the cc command.

% cc −c −O *.c
% cc −o libOberonV4.o −bM:SRE −bE:V4.exp −lX11 −lm −lc −L. −ldl \
−e _nostart *.o
% cc Configuration.c libOberonV4.o

The first step compiles all .c files with optimizations being switched on

(−O) and supresses linking (option −c). There is no need to explicitly

instruct the compiler to generate position independent code. The second

step links all .o files to a shared library libOberonV4.o. Option −bM:SRE
sets the shared object flag in the generated object file. Option

−bE:V4.exp specifies file V4.exp to be used as an export list. Export lists

start with the #! sign and list all names of exported objects. Options

−lX11 −lm −lc specify that three additional libraries (libX11, libm, and

libc) should be linked. Option −e _nostart specifies that the shared

object does not have an entry point that is to be given control after

loading it.

A separate tool (genexp) to generate the export lists for a set of

modules is provided with Ofront for AIX. genexp takes an arbitrary

number of module names (possibly including a filename extension) as

input and writes the export list to the standard output device. For

example

% genexp *.sym > V4.exp

ocl In order to extend for example the Oberon V4 system by an additional

module at runtime, the script ocl as shown below is provided. It

translates an Oberon module to C, compiles it, and links it into a shared

library consisting of exactly one Oberon module. The module may then

be loaded at runtime the first time a command of the module is to be

executed. Note that you have to link additional libraries using the −o
option in the second cc command in case that the module references

those libraries.

24

#!/bin/csh
#
compile and link an Oberon module
#
SYNOPSIS
ocl moduleName [ofrontOption [ccOption]]
#
use the single character "−" to skip ofrontOption
example: ocl hello − −g

translate .Mod to .c
ofront $1.Mod $2

generate an export file
genexp $1 > $1.exp

compile .c to .o
cc −c $3 $1.c

compile .o to lib*.o; use option −o to link to appropriate libraries
cc $1.o −o lib$1.o −bM:SRE −bE:$1.exp −e _nostart libOberonV4.o

remove unnecessary files and show result
rm $1.c $1.o $1.exp; ls −l lib$1.o

3.6 SGI IRIX 5 (MIPS)

IRIX 5.3 supports dynamic linking and a limited form of run-time

linking. The programmatic interface to the runtime linker and the

limitations are exactly the same as in SunOS 4.x. The main restriction is

that IRIX 5.3 does not allow shared object libraries which are loaded at

runtime (by means of a dlopen call) to depend on shared object libraries

which are themselves loaded at runtime. Such cases can lead to loading

shared libraries multiple times into main memory causing

inconsistencies in a program due to multiple instances of global

variables. We deliberately refrain from using the run-time linking

facilities of IRIX 5.3 but show how to use dynamic linking to reduce

the size of an application.

% cc −O −c *.c

25

C compilation for shared object libraries does not require a flag for

position independent code since this is set implicitly. Option −O
specifies level 2 optimizations and −c suppresses linking after C

compilation.

% ld *.o −lc −lm −lX11 −o libOberonV4.so

The system’s linkage editor ld combines the *.o files to a dynamically

linked shared object library named libOberonV4.so. Additional libraries

are referenced by means of the −l option. A dynamically linked

executable can be created by the cc command as shown below.

% ofront Configuration.Max.Mod −m
% cc Configuration.c −L. −lOberonV4 −o oberon

At runtime, the environment variable LD_LIBRARY_PATH, a

colon-separated list of path names, is used to specify the directories in

which the dynamic linker looks for shared object libraries.

3.7 Linux (i386)

Linux (Yggdrasil, Fall 1994 distribution) supports dynamic linking

similar to SunOS 4.x but with even more stringent limitations. All

shared object libraries must be assigned a world-wide unique address

range in order to avoid conflicts with other shared libraries. In addition,

special tools are needed to generate shared libraries. The situation is

expected to change with the introduction of the ELF object file format

for Linux and version 2.7.0 of gcc, which supports generation of

position independent code. So far, we deliberately refrain from using

shared object libraries for Linux and show how to produce a static

archive and a traditionally linked application only. Note that existing

shared libraries, such as libc or libX11 will nevertheless be linked

dynamically.

% cc −O −c *.c
% ar libOberonV4.a *.o
% ranlib libOberonV4.a
% cc Configuration.c −L. −lOberonV4 −lm −lX11 −o oberon
% strip oberon

26

27

4 Module SYSTEM

The pseudo module SYSTEM plays a dual role in Ofront. First, it serves

as an escape mechanism to unsafe and system-dependent language

constructs (the static role) and second, it serves as the container of

run-time routines (the dynamic role). The following sections explain

both roles of module SYSTEM together with a mechanism to interface

Oberon with C or other foreign languages.

4.1 The Static Role

Ofront’s SYSTEM module is identical to that described in "Programming

in Oberon" (see Ch. 1) except that it does not allow direct access to

registers or condition codes. If these features are desired in a program,

external or in-line expanded assembly language routines have to be

used. For interfacing with foreign language procedures, see Section 4.2.

The following definition describes all objects exported by module

SYSTEM. Note that type Any stands for an arbitrary type, type Int stands

for an arbitrary integer type, and type Scalar for an arbitrary

unstructured type.

DEFINITION SYSTEM;

 TYPE
 BYTE = Octet;
 PTR = POINTER TO Any;

 PROCEDURE ADR (x: Any): LONGINT;
 PROCEDURE BIT (adr, n: LONGINT): BOOLEAN;
 PROCEDURE GET (adr: LONGINT; VAR x: Scalar);
 PROCEDURE LSH (i: Int; n: LONGINT): Int;
 PROCEDURE MOVE (sadr, dadr, n: LONGINT);
 PROCEDURE NEW (VAR p: PTR; n: LONGINT);
 PROCEDURE PUT (adr: LONGINT; x: Scalar);
 PROCEDURE ROT (i: Int; n: LONGINT): Int;
 PROCEDURE VAL (T: Type; x: Any): T;

END SYSTEM.

In addition to these exported objects, import of module SYSTEM enables

specification of various flags for types or procedures. A type flag

28

always follows the first keyword that is used to construct the type and

consists of an integer constant enclosed in brackets, as in the following:

TYPE
P = POINTER [1] TO PDesc;

PROCEDURE WriteString(s: ARRAY [1] OF CHAR);

The meaning of type flags is defined in Table 4.1.

Table 4.1 Type flags

RECORD 1 untagged record
ARRAY 1 do not copy value array parameters
POINTER 1 untraced pointer, implied by RECORD [1]
type flag meaning

For procedures, Ofront allows a "-" sign after the keyword PROCEDURE
in a procedure declaration to indicate that this procedure is an in-lined

C code sequence. The in-lined code is written in quotation marks after

the procedure heading as in the following example:

PROCEDURE −malloc(size: LONGINT): LONGINT
"((LONGINT)malloc(size))";

Ofront translates such procedures into macro definitions which are

subject to C preprocessing.

#define Mymodule_malloc(size) ((LONGINT)malloc(size))

Obviously, this mechanism provides a way to interface Oberon with

foreign languages such as C or assembly language, as explained in more

detail in Section 4.2.

4.2 Interfacing with C

In order to allow reuse of existing libraries written in C or other foreign

languages (including assembly language), Ofront provides a mechanism

to interface with such languages. The requirements on this mechanism

are at least that it should not introduce unjustified run-time overhead

and that it should allow a flexible way of mapping Oberon to C

parameters, which are not always identical. Realistically, it cannot be

expected that mixing different languages is as simple as staying within

29

only one language. The general rule is that if you want to be 100%

compatible with C, then you have to use C. Nevertheless, Ofront’s way

of interfacing with C allows writing interfaces with very little

programming effort.

The basic idea is to use in-lined code procedures implemented as C

macro definitions as shown in Section 4.1. This mechanism has been

successfully used to connect the X11 library, the C library and

mathematical functions to Oberon.

Please observe the following pitfalls in order to succeed, and note that

for inexperienced users it is a good idea to look at the generated macro

or even at the preprocessed C code before trusting a code procedure. An

important rule for writing a C macro is to put arguments in parentheses

to avoid semantic changes due to the application of precedence rules

after macro expansion has taken place.

4.2.1 Name Mapping

Somehow Oberon names must be mapped to C names used in the

in-lined code procedures. Since code procedures translate to macros, the

C macro preprocessor can be used to perform this name mapping on all

parameters of the macro. Thus it is possible to use Oberon names inside

the code procedures as far as parameters of the procedure are

concerned. The following gives a nontrivial example:

PROCEDURE −externalFunction(if: BOOLEAN) "externalFunction(if)"

Note that "if" is not a valid parameter name in C but a reserved

keyword. Ofront translates the parameter to if_ and passes this symbol

to the macro activation. The preprocessor then substitutes the if inside

the code procedure with if_ in the in-lined C code and everything works

as expected. Obviously the name if must not be used as the C keyword if
inside the code procedure.

For names of objects not passed as parameters, please look in Section

4.2.6 and in the generated C code. The rule for global names is that they

are always prefixed by the module name followed by an underscore.

4.2.2 Pointers

Dynamic data structures in Oberon and C differ in the way storage is

released. Oberon uses automatic garbage collection, whereas C uses

30

explicit release of storage blocks. To avoid corrupting Oberon’s or C’s

memory management, never assign a C pointer to an Oberon pointer

unless the pointer points to a valid Oberon heap object or the Oberon

pointer is a local variable. Assign an Oberon pointer to a C pointer only

if you are sure that the C program does not release the storage block.

Note also the possibility of using pointer types with type flag [1] (cf.

Section 4.1) for specifying pointers that are not traced by Oberon’s

garbage collector. These pointers cannot be used to anchor an Oberon

heap object but can refer to an external storage block which is subject to

explicit deallocation as it is the case in C.

4.2.3 Parameter Substitution inside Strings

The C preprocessor only works on whole tokens, and a string literal is

considered a token. Thus macro substitution normally does not take

place inside a string. There is, however, one noteworthy exception to

this rule. Some pre-ANSI C preprocessors do perform parameter

substitution in strings that are contained in a macro definition. For the

not so rare case of calling the printf function with a string as argument,

for example, one should always check that no macro parameter occurs

as a token within the string. The following example is erroneous since

the s inside the string literal might be substituted with the actual

argument s.

PROCEDURE −error(s: ARRAY OF CHAR) 'printf("error: %s", s)';

A formulation that works for all compilers would be

PROCEDURE −error(x: ARRAY OF CHAR) 'printf("error: %s", x)';

4.2.4 Exporting Code Procedures

When exporting a code procedure, note that this might easily lead to

name clashes at the point where the code procedure is used. The

following example shows a problematic situation:

PROCEDURE P;
VAR sin: LONGREAL;

BEGIN
sin := Math.sin(x);

31

...
END P;

If Math.sin is an exported code procedure defined as

PROCEDURE −sin*(x: REAL): REAL "sin(x)";

then preprocessing sin := Math.sin(x) would result in sin := sin(x), which

clearly uses the name sin ambiguously. The quintessence is that code

procedures should only be exported if the names involved are very

unlikely to produce a name clash or if efficiency is of highest priority.

Otherwise a wrapper procedure should be exported that passes the

parameters to the code procedure as shown below:

PROCEDURE −Sin(x: REAL): REAL "sin(x)";

PROCEDURE sin*(x: REAL): REAL;
BEGIN RETURN Sin(x)
END sin;

The careful reader might have noticed that the above example would

not work correctly were there not additional provisions to get the return

type of the external function sin right. Section 4.2.5 deals with this

problem.

4.2.5 Return Types and Includes

By definition, the return type of a C function that has no prototype in

the current scope is int, which is incorrect in the above example (sin)

since the return type of sin is float or double. We have to declare a

function prototype that provides the correct return type. As an

alternative, we could also include a header file which contains such a

declaration.

Ofront allows specification of special files that are included at the

beginning of the generated header and body files. Such files are called

prefix files since they prefix the generated output files. The prefix files

of a module M are expected to be called M.h0 and M.c0 for the header

and the body, respectively. Inclusion of prefix files must be enabled

explicitly by specifying option i.
Prefix files can be of particular importance if combined with

conditional inclusion (#ifdef) since they allow keeping an Oberon

32

module portable even if it depends, for example, on particular

definitions of the underlying Unix variant.

Example To get the return type of function Math.sin right, module Math must be

translated with option i and a file Math.c0 must be provided that

contains either an include control line for an appropriate header file

(math.h) or that contains the extern declarations directly. The second

form has the advantage that "name space pollution" is reduced to a

small number of explicitly specified identifiers; it has the disadvantage

of possible inconsistencies with math.h and it requires additional typing

if more than one function is involved.

% Ofront Math.Mod −i

Math.c0:
#include <math.h>

or

Math.c0:
extern double sin();

Since it is sometimes inconvenient to provide an additional file for only

one or two declarations, Ofront also allows specification of control

lines and extern declarations directly in the Oberon source text. This is

done by means of looking at the contents of a code procedure and

translating those that start with # or extern directly into the

corresponding control line or extern declaration. Note that such code

procedures are useful only as declarations; they should never be called.

The code procedure

PROCEDURE −includemath() "#include <math.h>";

would be translated into the include control line

#include <math.h>

The code procedure

PROCEDURE −externsin() "extern double sin();";

33

would be translated into the declaration

extern double sin();

It is highly recommended to use these facilities only in very few

low-level modules (if at all) since they are inherently unportable and

potentially unsafe. They also lead to name space pollution, i.e. they can

produce name clashes. If code procedures are exported or if header

prefix files are used, this may even affect client modules.

4.2.6 Debugging

Due to the translation of Oberon programs to C programs, any C

debugging tool including core dump analyzers or fancy run-time

debuggers can be used to inspect Oberon programs. However,

debugging happens on the level of the generated C code, not at the

Oberon language level. This fact is addressed by one of Ofront’s design

goals, viz. to generate human readable C code. Provided some basic

knowledge of C, it is always obvious which Oberon statement

corresponds to which C statement. The following name mappings

should be kept in mind when accessing Oberon objects from within a C

debugging tool:

The name of a global variable or global procedure is prefixed by

the module name followed by an underscore.

Constructs which have no direct counterpart in C such as NEW or

COPY are expressed by macros or functions with the same name

prefixed with __ (double underscore). These macros are defined in

file SYSTEM.h.

The names of predefined Oberon types are unchanged.

The names of local variables and parameters are unchanged except

for those which conflict with C keywords. These are postfixed with

an underscore.

Local types, local procedures and anonymous types receive unique

names through appending serial numbers.

Examples Oberon C meaning

Args.Get Args_Get global procedure
Args.argv Args_argv global variable
INTEGER INTEGER predefined type
i, j, k, if i, j, k, if_ local variables
p, q, default p, q, default_ value parameters

34

*p, *q, *default_ VAR parameters
s s, s__len an array parameter s with its length

in s__len
r *r, r__typ a VAR−parameter record r

with dynamic type r__typ
s[i] s[i] array element with index i
r.f r.f record field f

(*r).f record field f of VAR parameter r
p↑ *p dereferenced pointer
p.f, p↑.f p−>f field f of record p↑
NEW(p) __NEW(p, T) allocate variable p↑ of type T
M.P(x) M_P(x) call procedure M.P
o.P(x) __M_T0_P(o, x) macro to call type bound procedure P
o.P↑(x) M_T0_P(o, x) super call, statically bound

4.3 The Dynamic Role

Module SYSTEM plays a second role in Ofront. It acts as a run-time

system for applications generated by Ofront. All run-time routines are

contained in an object file called SYSTEM.o and all exported names in

this file are prefixed with "SYSTEM_" in order to guarantee globally

unique names. The contents of SYSTEM.o is not important for using

Ofront. However, it is important that SYSTEM.o be linked either

statically or dynamically to every application generated with Ofront.

Due to the compactness of Ofront’s run-time system, this increases the

size of statically linked applications by only about 10 KB of object

code.

Run-time routines are provided for operations not directly available

in C. Among them are: heap management, automatic garbage

collection, a finalization registry, a registry for modules, commands and

types, and primitives for exception handling (cf. Chapters 6, 7, 8).

35

5 Module Args

Module Args provides access to a program’s command line arguments

and environment variables.

DEFINITION Args;
 VAR argc−, argv−: LONGINT;
 PROCEDURE Get(n: INTEGER; VAR val: ARRAY OF CHAR);
 PROCEDURE GetInt(n: INTEGER; VAR val: LONGINT);
 PROCEDURE Pos(s: ARRAY OF CHAR): INTEGER;
 PROCEDURE GetEnv(var: ARRAY OF CHAR; VAR val: ARRAY OF CHAR);
END Args.

argc and argv provide direct access to the argument count and argument

vector. Note that argc is at least 1 since by convention the first argument

is the name by which the program was invoked. argv is defined as the C

pointer char *argv[]; i.e., it refers to an array of character pointers.

Every character array is terminated by a null character.

Get(n, val) returns the nth argument as string val. val remains unchanged

if the argument does not exist. Get(0, val) returns the name by which the

program was invoked. The argument is silently truncated to the length

of val.

GetInt(n, val) returns the nth argument as integer val. val remains

unchanged if the argument does not exist or if it is not an integer

number.

Pos(s) searches for argument s and returns its position if it exists;

otherwise it returns argc. Pos is useful for looking up a particular option

as shown below.

GetEnv(var, val) returns the value of environment variable var if it exists;

otherwise val remains unchanged. val is silently truncated in case of

overflow.

Example The following statement sequence looks for a display argument which

is specified either by the environment variable DISPLAY or as the

command line argument following −d or −display. The string "unix:0" is

used as a default value.

36

DISPLAY := "unix:0";
Args.GetEnv("DISPLAY", DISPLAY);
Args.Get(Args.Pos("−d") + 1, DISPLAY);
Args.Get(Args.Pos("−display") + 1, DISPLAY);

37

6 Exception Handling

Oberon does not define exception handling in the language itself since

this is highly platform- and/or application-specific. If appropriate

libraries are used for developing Oberon programs with Ofront, the low

level details of exception handling should be hidden from the

programmer. Only if such libraries are not available or if you are going

to develop such a library, the following is relevant.

Halt In order to implement a particular exception handling mechanism,

module SYSTEM provides a hook into a simple trap handling framework

and two variables which hold additional information. Whenever an

explicit run-time check fails or if HALT is called from a program,

procedure SYSTEM_HALT gets called. Note that Ofront implements

run-time checks simply by calling HALT with a negative parameter. In

turn, this triggers an upcall of the procedure installed in SYSTEM_Halt,
which represents a customizable trap dispatcher. If this procedure

returns or if there is no such procedure installed, the process is exited

with a call to exit(n) where n is the HALT parameter.

void (*SYSTEM_Halt)(); hook for a trap dispatcher

LONGINT SYSTEM_halt; holds the value of x in HALT(x)
LONGINT SYSTEM_assert; holds the value of x in ASSERT(cond, x)

On Unix platforms, for example, exception handling essentially means

signal handling since an exception is communicated to a process by

sending a signal. Unix programs may use this mechanism and install a

SYSTEM_Halt procedure that turns the call into a signal 4 (illegal

instruction) sent to the process. By installing a Unix signal handler and

examining the two variables SYSTEM_halt and SYSTEM_assert listed

below, exception handling can be realized. The advantage of such a

solution in the realm of Unix systems is that exceptions which are not

detected by explicit tests but generated directly by the CPU (e.g., a zero

divide) or sent by another process (e.g. an interrupt signal) also result in

sending a signal. In any case, if the procedure installed in SYSTEM_Halt
returns, the process is exited with a call to exit(n) where n is the HALT
parameter.

lock Two additional variables allow to protect regions that are not reentrant

from keyboard interrupts (e.g. by typing Ctrl_C or a Break character on

the controlling terminal or by sending a signal 2 to a Unix process).

Non-reentrant procedures can for example be found in the X11 library.

Calls of functions of this library can easily kill the calling process if a

38

previous display operation has been interrupted and left the connection

to the X-server in an inconsistent state. Other examples of non-reentrant

procedures are Ofront’s heap management and garbage collection

procedures since they work _ by definition _ on a global data structure.

LONGINT SYSTEM_lock;
BOOLEAN SYSTEM_interrupted;

The variable SYSTEM_lock represents a lock that is incremented

whenever a critical region is entered and decremented when it is left. If

a keyboard interrupt happens to occur and SYSTEM_lock is greater than

zero, only the boolean flag SYSTEM_interrupted must be set to TRUE, no

other action that possibly leads to reentering the critical region should

occur. When the critical region is left and SYSTEM_lock decremented to

zero, this flag might be checked to see if an interrupt is "pending" and if

so, __HALT(−9) can be used to issue a "deferred" interrupt signal. It is

important that SYSTEM_interrupted is set to FALSE (either before posting

the delayed interrupt signal or inside the signal handler) in order to

prevent unintended postings of deferred interrupt signals at the end of

other critical regions.

Example The following example shows an exception handler for the ETH Oberon

system. The call Kernel.siglongjmp(Kernel.trapEnv, 1) at the end of

procedure Trap transfers control to Oberon’s main event loop, provided

that an appropriate context has been stored in variable Kernel.trapEnv.

The mechanism used for saving the execution context and transferring

control across procedure calls is Unix’s sigsetjmp/siglongjmp. The

example involves four modules: one that implements the signal handler

(System), one that sets up the environment that is to be restored after

handling a signal (Oberon), one that shows how to use the locking

mechanism in order to safely access non-reentrant procedures (Display)

and one that provides the low level facilities (Kernel).

MODULE System;
...
VAR trapLevel: INTEGER;

PROCEDURE −signal(sig: LONGINT; func: Unix.SignalHandler)
"signal(sig, func)";

PROCEDURE −halt(): LONGINT "SYSTEM_halt";
PROCEDURE −assert(): LONGINT "SYSTEM_assert";
PROCEDURE −lock(): LONGINT "SYSTEM_lock";

39

PROCEDURE −resetHalt() "SYSTEM_halt = −128";
PROCEDURE −setIntd(v: BOOLEAN) "SYSTEM_interrupted = v";
PROCEDURE −FinalizeAll() "SYSTEM_FINALL()";

PROCEDURE Trap(sig, code: LONGINT; scp: Unix.SigCtxPtr);
BEGIN

signal(sig, Trap);
IF trapLevel = 0 THEN

trapLevel := 1;
CASE sig OF
| 2:

IF lock() > 0 THEN (* delay interrupt until lock = 0 *)
setIntd(TRUE); trapLevel := 0; RETURN

ELSE Out.String("INTERRUPT")
END

| 3:
FinalizeAll(); Unix.Exit(0)

| 4:
CASE halt() OF
| 0: (* silent halt *)

resetHalt(); trapLevel := 0;
Kernel.siglongjmp(Kernel.trapEnv, 1)

| −1: Out.String("ASSERT(");
Out.Int(assert(), 1); Out.String(") FAILED")

| −2: Out.String("INDEX OUT OF RANGE")
| −3: Out.String("FUNCTION WITHOUT RETURN")
| −4: Out.String("INVALID CASE")
| −5: Out.String("TYPE GUARD FAILED")
| −6: Out.String("IMPLICIT TYPE GUARD FAILED")
| −7: Out.String("WITH GUARD FAILED")
| −8: Out.String("VALUE OUT OF RANGE")
| −9: setIntd(FALSE); Out.String("DELAYED INTERRUPT")
ELSE

IF (halt() > 0) & (halt() < 256) THEN
Out.String("HALT("); Out.Int(halt(), 1); Out.Char(")")

ELSE Out.String("ILLEGAL INSTRUCTION")
END

END ;
resetHalt()

| 8:
Out.String("ARITHMETIC EXCEPTION, code = ");
Out.Int(code, 1)

40

| 10:
Out.String("BUS ERROR")

| 11:
Out.String("SEGMENTATION VIOLATION")

| 13:
Out.String("UNCONNECTED PIPE")

ELSE
Out.String("SIGNAL "); Out.Int(sig, 0)

END ;
Out.Ln

END ;
trapLevel := 0;
Kernel.siglongjmp(Kernel.trapEnv, 1)

END Trap;
...
BEGIN

trapLevel := 0;
signal(2, Trap); (* keyboard interrupt *)
signal(3, Trap); (* quit *)
signal(4, Trap); (* illegal instruction *)
signal(8, Trap); (* arithmetic error *)
signal(10, Trap); (* bus error *)
signal(11, Trap); (* segmentation violation *)
signal(13, Trap) (* unconnected pipe *)

END System.

MODULE Oberon;
...
PROCEDURE Loop*;
BEGIN

res := Kernel.sigsetjmp(Kernel.trapEnv, 1);
LOOP

the Oberon main event loop, which is to be reentered upon a trap

END
END Loop;

...
END Oberon.

41

MODULE Display;
...
PROCEDURE −Lock() "SYSTEM_lock++";
PROCEDURE −Unlock() "SYSTEM_lock−−; if (SYSTEM_interrupted &&
SYSTEM_lock == 0) __HALT(−9)";

PROCEDURE CopyBlock*(SX, SY, W, H, DX, DY, mode: INTEGER);
BEGIN

Lock();
call of non−reentrant X−library routines
Unlock()

END CopyBlock
...

END Display.

MODULE Kernel;
...

VAR trapEnv*: Unix.JmpBuf;

PROCEDURE −sigsetjmp*
(VAR env: Unix.JmpBuf; savemask: LONGINT): LONGINT

"sigsetjmp(env, savemask)";

PROCEDURE −siglongjmp*(VAR env:Unix. JmpBuf; val: LONGINT)
"siglongjmp(env, val)";

PROCEDURE −SetHalt*(p: PROCEDURE(n: LONGINT));
"SYSTEM_Halt = p";

PROCEDURE Halt(n: LONGINT);
VAR res: LONGINT;

BEGIN res := Unix.Kill(Unix.Getpid(), 4)";
END Halt;

BEGIN SetHalt(Halt)
END Kernel.

42

43

7 Module Loading

Module SYSTEM provides a registration service for Oberon modules. It

deliberately does not provide dynamic linking facilities itself since this

is platform- and possibly application-specific. Dynamic loading as

provided, for example, by module Modules in ETH Oberon systems can

be built on top of this registration service. For every module, Ofront

generates an exported function named after the module and followed by

the suffix __init. This function is the C counterpart of an Oberon module

body. Upon the first call of an init function, the module is registered

together with its commands and exported types by means of the

registration service of module SYSTEM. In addition, the module is

initialized as required by Oberon (the part of the init function that

corresponds to the Oberon module body is preceded by the comment /*

BEGIN */). Thus, when implementing dynamic linking, the only task is

to call a module’s init function, which returns a pointer to the module.

In order to get access to the list of loaded modules, module SYSTEM
provides the anchor of the module list in variable SYSTEM_modules.

Module nodes are defined as follows:

TYPE
Module = POINTER TO ModuleDesc;
Cmd = POINTER TO CmdDesc;

ModuleDesc = RECORD
next: Module;
name: ARRAY 20 OF CHAR;
refcnt: LONGINT;
cmds: POINTER TO CmdDesc;
types: LONGINT;
enumPtrs: PROCEDURE (P: PROCEDURE(p: LONGINT))
reserved1, reserved2: LONGINT

END ;

CmdDesc = RECORD
next: Cmd;
name: ARRAY 24 OF CHAR;
cmd: Command

END ;

Example An example implementation of module Modules (a component of the

ETH Oberon V4 module library) for HP-UX with a particular shared

44

library search strategy is given below. Modules which are loaded at

runtime are looked up

1. in the program’s executable

2. in the previously loaded shared libraries

3. in a shared library named after the module to be loaded

4. in a subsytem named after the module name prefix; digits treated as

upper case letters

5. in a subsytem named after the module name prefix; digits treated as

lower case letters

6. in the shared library libOberonV4.sl.

MODULE Modules;
...
PROCEDURE −include() "#include <dl.h>";

PROCEDURE −dlopen(name: ARRAY OF CHAR): LONGINT
"(long)shl_load(name, BIND_DEFERRED, 0)";

PROCEDURE −dlsym(VAR h: LONGINT; name: Name; VAR p: Command)
"if (shl_findsym((shl_t*)h, (const char*)name, TYPE_PROCEDURE, p) ==

−1) *p = 0";

PROCEDURE −Prog(): LONGINT "(long)PROG_HANDLE";

PROCEDURE −modules*(): Module
"(Modules_Module)SYSTEM_modules";

PROCEDURE Concat(s1, s2: ARRAY OF CHAR; VAR d : ARRAY OF CHAR);
VAR i, j: INTEGER;

BEGIN i := 0; j := 0;
WHILE s1[i] # 0X DO d[i] := s1[i]; INC(i); END;
WHILE s2[j] # 0X DO d[i] := s2[j]; INC (i); INC(j); END;
d[i] := 0X;

END Concat;

PROCEDURE GetSubsys1(n: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR;

BEGIN
ch := n[0]; i := 0;
WHILE (ch # 0X) & ((ch < "a") OR (ch > "z")) DO

s[i] := ch; INC(i); ch := n[i]
END ;

45

WHILE (ch >= "a") & (ch <= "z") DO s[i] := ch; INC(i); ch := n[i] END ;
IF ch = 0X THEN s[0] := 0X ELSE s[i] := 0X END

END GetSubsys1;

PROCEDURE GetSubsys2(n: ARRAY OF CHAR; VAR s: ARRAY OF CHAR);
VAR i: INTEGER; ch: CHAR;

BEGIN
ch := n[0]; i := 0;
WHILE (ch >= "A") & (ch <= "Z") DO s[i] := ch; INC(i); ch := n[i] END ;
WHILE (ch # 0X) & ((ch < "A") OR (ch > "Z")) DO

s[i] := ch; INC(i); ch := n[i]
END ;
IF ch = 0X THEN s[0] := 0X ELSE s[i] := 0X END

END GetSubsys2;

PROCEDURE ThisMod* (name: ARRAY OF CHAR): Module;
VAR m: Module; bodyname, libname, libname2: ARRAY 64 OF CHAR;

body: Command; lib, prog, all: LONGINT;
BEGIN m := modules();

WHILE (m # NIL) & (m.name # name) DO m := m.next END ;
IF m = NIL THEN

all := 0; prog := Prog(); Concat(name, "__init", bodyname);
dlsym(prog, bodyname, body);
IF body = NIL THEN dlsym(all, bodyname, body) END ;
IF body = NIL THEN

Concat("lib", name, libname); Concat(libname, ".sl", libname);
lib := dlopen(libname);
IF lib # 0 THEN dlsym(lib, bodyname, body) END

END ;
IF body = NIL THEN

GetSubsys1(name, libname);
IF libname[0] # 0X THEN

Concat("lib", libname, libname); Concat(libname, ".sl", libname);
lib := dlopen(libname);
IF lib # 0 THEN dlsym(lib, bodyname, body) END

END
END ;
IF body = NIL THEN

GetSubsys2(name, libname2);
IF libname2[0] # 0X THEN

Concat("lib", libname2, libname2);
Concat(libname2, ".so", libname2);

46

IF (libname2 # libname) THEN
lib := dlopen(libname2);
IF lib # 0 THEN dlsym(lib, bodyname, body) END

END
END

END ;
IF body = NIL THEN lib := dlopen("libOberonV4.sl");

IF lib # 0 THEN dlsym(lib, bodyname, body) END
END ;
IF body # NIL THEN

body(); m := modules();
WHILE (m # NIL) & (m.name # name) DO m := m.next END

END
END ;
IF m # NIL THEN res := 0 ELSE res := 1; COPY(name, importing) END ;
RETURN m

END ThisMod;

PROCEDURE ThisCommand*
(mod: Module; name: ARRAY OF CHAR): Command;

VAR c: Cmd;
BEGIN c := mod.cmds;

WHILE (c # NIL) & (c.name # name) DO c := c.next END ;
IF c = NIL THEN res := 2; RETURN NIL
ELSE res := 0; RETURN c.cmd
END

END ThisCommand;

END Modules.

47

8 Garbage Collection and Finalization

Conceptually speaking, the programming language Oberon is based on

an infinite heap since there is no way to explicitly deallocate dynamic

data structures. Automatic garbage collection in combination with

dynamic heap expansion is a techique to implement this feature on

today’s finite hardware. Garbage collection is performed implicitly

whenever the heap storage is exhausted. Only if there is not enough

storage to be reclaimed, is the heap extended. In addition, Ofront’s

run-time system provides the procedure SYSTEM_GC to call the garbage

collector explicitly as shown by the following code procedure:

PROCEDURE −GC(markStack: BOOLEAN)
"SYSTEM_GC(markStack)";

The parameter markStack specifies whether the run-time stack should

be consulted for the reachability analysis. As an optimization,

markStack may be set to FALSE if it can be guaranteed that no objects

are anchored on the stack, which is the case, for example, in the main

Oberon loop of the ETH Oberon system. If in doubt, always pass TRUE
for markStack.

gclock Module SYSTEM provides the variable SYSTEM_gclock for

controlling the activities of the garbage collector.

SHORTINT SYSTEM_gclock;

A value of 0 means default behavior, i.e., garbage collection before

expanding the heap, value 1 means no garbage collection with

markStack set to TRUE as it is the case if the heap storage is exhausted,

and value 2 means no garbage collection at all even if SYSTEM_GC is

called with markStack set to FALSE.

Finalization Systems based on automatic garbage collection rather than explicit

release of unused memory blocks require a mechanism to release

external resources that are connected with released objects. This

mechanism is usually called finalization. Examples are Unix file

descriptors, which could be connected with Oberon file objects.

Whenever Oberon’s garbage collector detects that a file object is no

longer used, it releases this object. Closing the associated Unix file

descriptor directly by the garbage collector would imply that the

garbage collector knows about file objects and Unix file descriptors.

Since it is not possible for the garbage collector to know in advance all

kinds of objects that have external resources associated with them, there

48

must be an extensible mechanism that allows performing such cleanup

operations.

For this purpose, Ofront provides a registration service that associates

an object with a finalization procedure. The finalization procedure is

called when the object its released. If an object is registered n times,

there are exactly n finalization procedures to be called. No assumption

about the finalization order must be made. Although possible, a

finalization procedure should never establish new references to the

finalized object since this would prevent such objects from eventually

being reclaimed by the garbage collector. Otherwise there are no

restrictions to the finalization procedure.

The following declarations show the programmatic interface of the

finalization mechanism. Procedure SYSTEM_FINALL is implicitly called

at the end of a main program.

TYPE
Finalizer = PROCEDURE(obj: SYSTEM.PTR);

PROCEDURE −RegisterFin(obj: SYSTEM.PTR; finalize: Finalizer)
"SYSTEM_REGFIN(obj, finalize)";

PROCEDURE −FinalizeAll()
"SYSTEM_FINALL()";

49

Appendix A

Supported Architectures

The following Ofront.par parameterization files have been prepared for

your convenience. Additional architectures can easily be supported by

compiling and executing the program ofrontparam.c as described in

Section 2.4.

Ofront.aix.par
RS6000/IBM AIX

Ofront.hpux.par
PA-RISC/HP-UX Series 700, 800

Ofront.i960.par
Intel i960 embedded controller with natural alignment

Ofront.irix5.par
MIPS R4000 in 32 bit mode/Silicon Graphics IRIX 5.x

Ofront.linux386.par
Intel 386/Linux

Ofront.sunos.par
SPARC V7, V8/Solaris 1 and 2

Ofront.ultrix.par
MIPS R2000/Ultrix

Supported Compilers

The following SYSTEM.h include files have been prepared and tested for

the specified compilers and platforms. Additional platforms can be

supported on demand. Please contact your Ofront distributor.

SYSTEM.cc.aix.h
the IBM XlC compiler for RS6000/AIX machines

SYSTEM.cc.hpux.h

50

the C compiler bundled with HP-UX Series 700/800 machines

SYSTEM.cc.irix5.h
the standard C compiler for MIPS R4000 based SGI IRIX 5.x
machines

SYSTEM.cc.sunos4.h
the C compiler bundled with SPARC/Solaris 1

SYSTEM.cc.sunos5.h
the Sun C compiler for SPARC/Solaris 2

SYSTEM.cc.ultrix.h
the C compiler bundled with DEC/Ultrix (MIPS based)

SYSTEM.gcc.i960.h
the gnu C compiler for cross development of i960-based

embedded systems

SYSTEM.gcc.linux.h
the gnu C compiler for Linux based PCs.

SYSTEM.gcc.sunos4.h
the gnu C compiler for SPARC/Solaris 1

51

Appendix B

Available Libraries

Unix platforms only

libOberonV4:
the ETH Oberon V4 module library consisting of a tiled window

system, an extensible text and graphics editor and a number of

extensions and utilities. Module CmdlnTexts may be used much

like module Texts, but does not import modules Display and Fonts,

thus CmdlnTexts may be used in command line programs that deal

with texts but do not open a window. libOberonV4 may be

distributed freely as long as the ETH copyright restrictions are

observed.

SYSTEM
Args
Console
Modules
Unix
Kernel
Files
X11
Display
Input
Math
MathL
Fonts
Viewers
Reals
Texts
CmdlnTexts
Oberon
MenuViewers
TextFrames
In
Out
Printer
TextPrinter

52

ParcElems
System
Edit
EdiT
EditTools
MenuElems
IconElems
ClockElems
TextPFrames
TextPreview
TableElems
StyleElems
FoldElems
Folds
ErrorElems
ChartElems
LineElems
PopupElems
StampElems
AsciiCoder
Miscellaneous
FKeys
Colors
FontToBDF
Browser
Types
Display1
KeplerPorts
KeplerGraphs
KeplerFrames
Kepler
Kepler1
Kepler2
Kepler4
Kepler5
Kepler6
Kepler7
Kepler8
Kepler9
KeplerElems
Mailer

53

libOberonS3
The ETH Oberon System 3 module library (Release 2.0) consists

of a tiled and an overlapping window system, text and graphics

editors, graphical end-user objects (including buttons, text boxes,

lists and panels) together with user interface construction tools,

and ready-to-use components for accessing Internet services such

as a world-wide-web browser, an electronic mail facility, and

clients for ftp, gopher, finger, news, and telnet.

[not yet released]

Further libraries are in preparation.

54

55

Appendix C

The Programming Language Oberon-2

H. Mössenböck, N. Wirth

Institut für Computersysteme, ETH Zürich

October 1993

1 Introduction

Oberon-2 is a general-purpose programming language in the tradition of

Pascal and Modula-2. Its most important features are block structure,

modularity, separate compilation, static typing with strong type

checking (also across module boundaries), and type extension with

type-bound procedures.

Type extension makes Oberon-2 an object-oriented language. An

object is a variable of an abstract data type consisting of private data

(its state) and procedures that operate on this data. Abstract data types

are declared as extensible records. Oberon-2 covers most terms of

object-oriented languages by the established vocabulary of imperative

languages in order to minimize the number of notions for similar

concepts.

This report is not intended as a programmer’s tutorial. It is

intentionally kept concise. Its function is to serve as a reference for

programmers, implementors, and manual writers. What remains unsaid

is mostly left so intentionally, either because it can be derived from

stated rules of the language, or because it would require to commit the

definition when a general commitment appears as unwise.

Chapter 12 defines some terms that are used to express the type

checking rules of Oberon-2. Where they appear in the text, they are

written in italics to indicate their special meaning (e.g. the same type).

2 Syntax

An extended Backus-Naur Formalism (EBNF) is used to describe the

syntax of Oberon-2: Alternatives are separated by |. Brackets [and]

denote optionality of the enclosed expression, and braces { and } denote

its repetition (possibly 0 times). Non-terminal symbols start with an

upper-case letter (e.g. Statement). Terminal symbols either start with a

56

lower-case letter (e.g. ident), or are written all in upper-case letters (e.g.

BEGIN), or are denoted by strings (e.g. ":=").

3 Vocabulary and Representation

The representation of (terminal) symbols in terms of characters is

defined using the ASCII set. Symbols are identifiers, numbers, strings,

operators, and delimiters. The following lexical rules must be observed:

Blanks and line breaks must not occur within symbols (except in

comments, and blanks in strings). They are ignored unless they are

essential to separate two consecutive symbols. Capital and lower-case

letters are considered as distinct.

1. Identifiers are sequences of letters and digits. The first character must

be a letter.

$ ident = letter {letter | digit}.

Examples: x Scan Oberon2 GetSymbol firstLetter

2. Numbers are (unsigned) integer or real constants. The type of an

integer constant is the minimal type to which the constant value belongs

(see 6.1). If the constant is specified with the suffix H, the

representation is hexadecimal otherwise the representation is decimal.

A real number always contains a decimal point. Optionally it may

also contain a decimal scale factor. The letter E (or D) means "times ten

to the power of". A real number is of type REAL, unless it has a scale

factor containing the letter D. In this case it is of type LONGREAL.

$ number = integer | real.
$ integer = digit {digit} | digit {hexDigit} "H".
$ real = digit {digit} "." {digit} [ScaleFactor].
$ ScaleFactor = ("E" | "D") ["+" | "−"] digit {digit}.
$ hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
$ digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".

Examples:

1991 INTEGER 1991
0DH SHORTINT 13
12.3 REAL 12.3
4.567E8 REAL 456700000

57

0.57712566D−6 LONGREAL 0.00000057712566

3. Character constants are denoted by the ordinal number of the

character in hexadecimal notation followed by the letter X.

$ character = digit {hexDigit} "X".

4. Strings are sequences of characters enclosed in single (’) or double

(") quote marks. The opening quote must be the same as the closing

quote and must not occur within the string. The number of characters in

a string is called its length. A string of length 1 can be used wherever a

character constant is allowed and vice versa.

$ string = ' " ' {char} ' " ' | " ' " {char} " ' ".

Examples: "Oberon−2" "Don't worry!" "x"

5. Operators and delimiters are the special characters, character pairs,

or reserved words listed below. The reserved words consist exclusively

of capital letters and cannot be used as identifiers.

+ := ARRAY IMPORT RETURN
− ↑ BEGIN IN THEN
* = BY IS TO
/ # CASE LOOP TYPE
˜ < CONST MOD UNTIL
& > DIV MODULE VAR
. <= DO NIL WHILE
, >= ELSE OF WITH
; .. ELSIF OR
| : END POINTER
() EXIT PROCEDURE
[] FOR RECORD
{ } IF REPEAT

6. Comments may be inserted between any two symbols in a program.

They are arbitrary character sequences opened by the bracket (* and

closed by *). Comments may be nested. They do not affect the meaning

of a program.

58

4 Declarations and scope rules

Every identifier occurring in a program must be introduced by a

declaration, unless it is a predeclared identifier. Declarations also

specify certain permanent properties of an object, such as whether it is a

constant, a type, a variable, or a procedure. The identifier is then used to

refer to the associated object.

The scope of an object x extends textually from the point of its

declaration to the end of the block (module, procedure, or record) to

which the declaration belongs and hence to which the object is local. It

excludes the scopes of equally named objects which are declared in

nested blocks. The scope rules are:

1. No identifier may denote more than one object within a given scope

(i.e. no identifier may be declared twice in a block);

2. An object may only be referenced within its scope;

3. A type T of the form POINTER TO T1 (see 6.4) can be declared at

a point where T1 is still unknown. The declaration of T1 must

follow in the same block to which T is local;

4. Identifiers denoting record fields (see 6.3) or type-bound

procedures (see 10.2) are valid in record designators only.

An identifier declared in a module block may be followed by an export

mark (" * " or " - ") in its declaration to indicate that it is exported. An

identifier x exported by a module M may be used in other modules, if

they import M (see Ch. 11). The identifier is then denoted as M.x in

these modules and is called a qualified identifier. Identifiers marked

with " - " in their declaration are read-only in importing modules.

$ Qualident = [ident "."] ident.
$ IdentDef = ident [" * " | " − "].

The following identifiers are predeclared; their meaning is defined in

the indicated sections:

ABS (10.3) LEN (10.3)
ASH (10.3) LONG (10.3)
BOOLEAN (6.1) LONGINT (6.1)
CAP (10.3) LONGREAL (6.1)
CHAR (6.1) MAX (10.3)
CHR (10.3) MIN (10.3)
COPY (10.3) NEW (10.3)

59

DEC (10.3) ODD (10.3)
ENTIER (10.3) ORD (10.3)
EXCL (10.3) REAL (6.1)
FALSE (6.1) SET (6.1)
HALT (10.3) SHORT (10.3)
INC (10.3) SHORTINT (6.1)
INCL (10.3) SIZE (10.3)
INTEGER (6.1) TRUE (6.1)

5 Constant declarations

A constant declaration associates an identifier with a constant value.

$ ConstantDeclaration = IdentDef "=" ConstExpression.
$ ConstExpression = Expression.

A constant expression is an expression that can be evaluated by a mere

textual scan without actually executing the program. Its operands are

constants (Ch.8) or predeclared functions (Ch.10.3) that can be

evaluated at compile time. Examples of constant declarations are:

N = 100
limit = 2*N − 1
fullSet = {MIN(SET) .. MAX(SET)}

6 Type declarations

A data type determines the set of values which variables of that type

may assume, and the operators that are applicable. A type declaration

associates an identifier with a type. In the case of structured types

(arrays and records) it also defines the structure of variables of this

type. A structured type cannot contain itself.

$ TypeDeclaration = IdentDef "=" Type.
$ Type = Qualident | ArrayType | RecordType | PointerType | ProcedureType.

Examples:

Table = ARRAY N OF REAL
Tree = POINTER TO Node

60

Node = RECORD
key : INTEGER;
left, right: Tree

END
CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)

width: INTEGER;
subnode: Tree

END
Function = PROCEDURE(x: INTEGER): INTEGER

6.1 Basic types

The basic types are denoted by predeclared identifiers. The associated

operators are defined in 8.2 and the predeclared function procedures in

10.3. The values of the given basic types are the following:

1. BOOLEAN the truth values TRUE and FALSE
2. CHAR the characters of the extended ASCII set (0X ..

0FFX)

3. SHORTINT the integers between MIN(SHORTINT) and

MAX(SHORTINT)
4. INTEGER the integers between MIN(INTEGER) and

MAX(INTEGER)
5. LONGINT the integers between MIN(LONGINT) and

MAX(LONGINT)
6. REAL the real numbers between MIN(REAL) and

MAX(REAL)
7. LONGREAL the real numbers between MIN(LONGREAL) and

MAX(LONGREAL)
8. SET the sets of integers between 0 and MAX(SET)

Types 3 to 5 are integer types, types 6 and 7 are real types, and together

they are called numeric types. They form a hierarchy; the larger type

includes (the values of) the smaller type:

LONGREAL >= REAL >= LONGINT >= INTEGER >= SHORTINT

6.2 Array types

61

An array is a structure consisting of a number of elements which are all

of the same type, called the element type. The number of elements of an

array is called its length. The elements of the array are designated by

indices, which are integers between 0 and the length minus 1.

$ ArrayType = ARRAY [Length {"," Length}] OF Type.
$ Length = ConstExpression.

A type of the form

ARRAY L0, L1, ..., Ln OF T

is understood as an abbreviation of

ARRAY L0 OF
ARRAY L1 OF
...

ARRAY Ln OF T

Arrays declared without length are called open arrays. They are

restricted to pointer base types (see 6.4), element types of open array

types, and formal parameter types (see 10.1). Examples:

ARRAY 10, N OF INTEGER
ARRAY OF CHAR

6.3 Record types

A record type is a structure consisting of a fixed number of elements,

called fields, with possibly different types. The record type declaration

specifies the name and type of each field. The scope of the field

identifiers extends from the point of their declaration to the end of the

record type, but they are also visible within designators referring to

elements of record variables (see 8.1). If a record type is exported, field

identifiers that are to be visible outside the declaring module must be

marked. They are called public fields; unmarked elements are called

private fields.

$ RecordType = RECORD ["("BaseType")"] FieldList {";" FieldList} END.
$ BaseType = Qualident.
$ FieldList = [IdentList ":" Type].

62

Record types are extensible, i.e. a record type can be declared as an

extension of another record type. In the example

T0 = RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1

(see Ch. 12). An extended type T1 consists of the fields of its base type

and of the fields which are declared in T1. All identifiers declared in the

extended record must be different from the identifiers declared in its

base type record(s).

Examples of record type declarations:

RECORD
day, month, year: INTEGER

END

RECORD
name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

6.4 Pointer types

Variables of a pointer type P assume as values pointers to variables of

some type T. T is called the pointer base type of P and must be a record

or array type. Pointer types adopt the extension relation of their pointer

base types: if a type T1 is an extension of T, and P1 is of type

POINTER TO T1, then P1 is also an extension of P.

$ PointerType = POINTER TO Type.

If p is a variable of type P = POINTER TO T, a call of the predeclared

procedure NEW(p) (see 10.3) allocates a variable of type T in free

storage. If T is a record type or an array type with fixed length, the

allocation has to be done with NEW(p); if T is an n-dimensional open

array type the allocation has to be done with NEW(p, e0, ..., en-1) where

T is allocated with lengths given by the expressions e0, ..., en-1. In

either case a pointer to the allocated variable is assigned to p. p is of

63

type P. The referenced variable p↑ (pronounced as p-referenced) is of

type T. Any pointer variable may assume the value NIL, which points to

no variable at all.

6.5 Procedure types

Variables of a procedure type T have a procedure (or NIL) as value. If a

procedure P is assigned to a variable of type T, the formal parameter

lists (see Ch. 10.1) of P and T must match (see Ch. 12). P must not be a

predeclared or type-bound procedure nor may it be local to another

procedure.

$ ProcedureType = PROCEDURE [FormalParameters].

7 Variable declarations

Variable declarations introduce variables by defining an identifier and a

data type for them.

$ VariableDeclaration = IdentList ":" Type.

Record and pointer variables have both a static type (the type with

which they are declared - simply called their type) and a dynamic type

(the type of their value at run time). For pointers and variable

parameters of record type the dynamic type may be an extension of

their static type. The static type determines which fields of a record are

accessible. The dynamic type is used to call type-bound procedures (see

10.2).

Examples of variable declarations (refer to examples in Ch. 6):

i, j, k: INTEGER
x, y: REAL
p, q: BOOLEAN
s: SET
F: Function
a: ARRAY 100 OF REAL
w: ARRAY 16 OF RECORD

name: ARRAY 32 OF CHAR;
count: INTEGER

64

END
t, c: Tree

8 Expressions

Expressions are constructs denoting rules of computation whereby

constants and current values of variables are combined to compute

other values by the application of operators and function procedures.

Expressions consist of operands and operators. Parentheses may be used

to express specific associations of operators and operands.

8.1 Operands

With the exception of set constructors and literal constants (numbers,

character constants, or strings), operands are denoted by designators. A

designator consists of an identifier referring to a constant, variable, or

procedure. This identifier may possibly be qualified by a module

identifier (see Ch. 4 and 11) and may be followed by selectors if the

designated object is an element of a structure.

$ Designator = Qualident {"." ident | "[" ExpressionList "]" | "↑" |
"(" Qualident ")"}.

$ ExpressionList = Expression {"," Expression}.

If a designates an array, then a[e] denotes that element of a whose

index is the current value of the expression e. The type of e must be an

integer type. A designator of the form a[e0, e1, ..., en] stands for

a[e0][e1]...[en]. If r designates a record, then r.f denotes the field f of r

or the procedure f bound to the dynamic type of r (Ch. 10.2). If p

designates a pointer, p↑ denotes the variable which is referenced by p.

The designators p↑.f and p↑[e] may be abbreviated as p.f and p[e], i.e.

record and array selectors imply dereferencing. If a or r are read-only,

then also a[e] and r.f are read-only.

A type guard v(T) asserts that the dynamic type of v is T (or an

extension of T), i.e. program execution is aborted, if the dynamic type

of v is not T (or an extension of T). Within the designator, v is then

regarded as having the static type T. The guard is applicable, if

1. v is a variable parameter of record type or v is a pointer, and if

2. T is an extension of the static type of v

65

If the designated object is a constant or a variable, then the designator

refers to its current value. If it is a procedure, the designator refers to

that procedure unless it is followed by a (possibly empty) parameter list

in which case it implies an activation of that procedure and stands for

the value resulting from its execution. The actual parameters must

correspond to the formal parameters as in proper procedure calls (see

10.1).

Examples of designators (refer to examples in Ch.7):

i (INTEGER)
a[i] (REAL)
w[3].name[i] (CHAR)
t.left.right (Tree)
t(CenterTree).subnode (Tree)

8.2 Operators

Four classes of operators with different precedences (binding strengths)

are syntactically distinguished in expressions. The operator ~ has the

highest precedence, followed by multiplication operators, addition

operators, and relations. Operators of the same precedence associate

from left to right. For example, x-y-z stands for (x-y)-z.

$ Expression = SimpleExpression [Relation SimpleExpression].
$ SimpleExpression = ["+" | "−"] Term {AddOperator Term}.
$ Term = Factor {MulOperator Factor}.
$ Factor = Designator [ActualParameters] | number | character |

string | NIL | Set | "(" Expression ")" | "˜" Factor.
$ Set = "{" [Element {"," Element}] "}".
$ Element = Expression [".." Expression].
$ ActualParameters = "(" [ExpressionList] ")".
$ Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
$ AddOperator = "+" | "−" | OR.
$ MulOperator = "*" | "/" | DIV | MOD | "&".

The available operators are listed in the following tables. Some

operators are applicable to operands of various types, denoting different

operations. In these cases, the actual operation is identified by the type

of the operands. The operands must be expression compatible with

respect to the operator (see Ch. 12).

66

8.2.1 Logical operators

OR logical disjunction p OR q "if p then TRUE, else q"

& logical conjunction p & q "if p then q, else FALSE"

~ negation ˜ p "not p"

These operators apply to BOOLEAN operands and yield a BOOLEAN

result.

8.2.2 Arithmetic operators

+ sum

- difference

* product

/ real quotient

DIV integer quotient

MOD modulus

The operators +, -, *, and / apply to operands of numeric types. The

type of the result is the type of that operand which includes the type of

the other operand, except for division (/), where the result is the

smallest real type which includes both operand types. When used as

monadic operators, - denotes sign inversion and + denotes the identity

operation. The operators DIV and MOD apply to integer operands only.

They are related by the following formulas defined for any x and

positive divisors y:

x = (x DIV y) * y + (x MOD y)
0 <= (x MOD y) < y

Examples:

 x y x DIV y x MOD y
 5 3 1 2
−5 3 −2 1

8.2.3 Set Operators

+ union

- difference (x - y = x * (-y))

* intersection

/ symmetric set difference (x / y = (x-y) + (y-x))

67

Set operators apply to operands of type SET and yield a result of type

SET. The monadic minus sign denotes the complement of x, i.e. -x

denotes the set of integers between 0 and MAX(SET) which are not

elements of x. Set operators are not associative ((a+b)-c # a+(b-c)).

A set constructor defines the value of a set by listing its elements

between curly brackets. The elements must be integers in the range

0..MAX(SET). A range a..b denotes all integers in the interval [a, b].

8.2.4 Relations

= equal

unequal

< less

<= less or equal

> greater

>= greater or equal

IN set membership

IS type test

Relations yield a BOOLEAN result. The relations =, #, <, <=, >, and >=

apply to the numeric types, CHAR, strings, and character arrays

containing 0X as a terminator. The relations = and # also apply to

BOOLEAN and SET, as well as to pointer and procedure types

(including the value NIL). x IN s stands for "x is an element of s". x

must be of an integer type, and s of type SET. v IS T stands for "the

dynamic type of v is T (or an extension of T)" and is called a type test. It

is applicable if

1. v is a variable parameter of record type or v is a pointer, and if

2. T is an extension of the static type of v

Examples of expressions (refer to examples in Ch.7):

1991 INTEGER
i DIV 3 INTEGER
˜p OR q BOOLEAN
(i+j) * (i−j) INTEGER
s − {8, 9, 13} SET
i + x REAL
a[i+j] * a[i−j] REAL
(0<=i) & (i<100) BOOLEAN
t.key = 0 BOOLEAN

68

k IN {i..j−1} BOOLEAN
w[i].name <= "John" BOOLEAN
t IS CenterTree BOOLEAN

9 Statements

Statements denote actions. There are elementary and structured

statements. Elementary statements are not composed of any parts that

are themselves statements. They are the assignment, the procedure call,

the return, and the exit statement. Structured statements are composed

of parts that are themselves statements. They are used to express

sequencing and conditional, selective, and repetitive execution. A

statement may also be empty, in which case it denotes no action. The

empty statement is included in order to relax punctuation rules in

statement sequences.

$ Statement = [Assignment | ProcedureCall | IfStatement | CaseStatement |
WhileStatement | RepeatStatement | LoopStatement |
ForStatement | WithStatement | EXIT | RETURN [Expression]].

9.1 Assignments

Assignments replace the current value of a variable by a new value

specified by an expression. The expression must be assignment

compatible with the variable (see Ch. 12). The assignment operator is

written as ":=" and pronounced as becomes.

$ Assignment = Designator ":=" Expression.

If an expression e of type Te is assigned to a variable v of type Tv, the

following happens:

1. if Tv and Te are record types, only those fields of Te are assigned

which also belong to Tv (projection); the dynamic type of v must

be the same as the static type of v and is not changed by the

assignment;

2. if Tv and Te are pointer types, the dynamic type of v becomes the

dynamic type of e;

3. if Tv is ARRAY n OF CHAR and e is a string of length m<n, v[i]

becomes ei for i = 0..m-1 and v[m] becomes 0X.

69

Examples of assignments (refer to examples in Ch.7):

i := 0
p := i = j
x := i + 1
k := log2(i+j)
F := log2 (* see 10.1 *)
s := {2, 3, 5, 7, 11, 13}
a[i] := (x+y) * (x−y)
t.key := i
w[i+1].name := "John"
t := c

9.2 Procedure calls

A procedure call activates a procedure. It may contain a list of actual

parameters which replace the corresponding formal parameters defined

in the procedure declaration (see Ch. 10). The correspondence is

established by the positions of the parameters in the actual and formal

parameter lists. There are two kinds of parameters: variable and value

parameters.

If a formal parameter is a variable parameter, the corresponding

actual parameter must be a designator denoting a variable. If it denotes

an element of a structured variable, the component selectors are

evaluated when the formal/actual parameter substitution takes place, i.e.

before the execution of the procedure. If a formal parameter is a value

parameter, the corresponding actual parameter must be an expression.

This expression is evaluated before the procedure activation, and the

resulting value is assigned to the formal parameter (see also 10.1).

$ ProcedureCall = Designator [ActualParameters].

Examples:

WriteInt(i*2+1) (* see 10.1 *)
INC(w[k].count)
t.Insert("John") (* see 11 *)

9.3 Statement sequences

Statement sequences denote the sequence of actions specified by the

70

component statements which are separated by semicolons.

$ StatementSequence = Statement {";" Statement}.

9.4 If statements

$ IfStatement = IF Expression THEN StatementSequence
{ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence]
END.

If statements specify the conditional execution of guarded statement

sequences. The Boolean expression preceding a statement sequence is

called its guard. The guards are evaluated in sequence of occurrence,

until one evaluates to TRUE, whereafter its associated statement

sequence is executed. If no guard is satisfied, the statement sequence

following the symbol ELSE is executed, if there is one.

Example:

IF (ch >= "A") & (ch <= "Z") THEN ReadIdentifier
ELSIF (ch >= "0") & (ch <= "9") THEN ReadNumber
ELSIF (ch = " ' ") OR (ch = ' " ') THEN ReadString
ELSE SpecialCharacter
END

9.5 Case statements

Case statements specify the selection and execution of a statement

sequence according to the value of an expression. First the case

expression is evaluated, then that statement sequence is executed whose

case label list contains the obtained value. The case expression must

either be of an integer type that includes the types of all case labels, or

both the case expression and the case labels must be of type CHAR.

Case labels are constants, and no value must occur more than once. If

the value of the expression does not occur as a label of any case, the

statement sequence following the symbol ELSE is selected, if there is

one, otherwise the program is aborted.

71

$ CaseStatement = CASE Expression OF Case {"|" Case}
[ELSE StatementSequence] END.

$ Case = [CaseLabelList ":" StatementSequence].
$ CaseLabelList = CaseLabels {"," CaseLabels}.
$ CaseLabels = ConstExpression [".." ConstExpression].

Example:

CASE ch OF
"A" .. "Z": ReadIdentifier

| "0" .. "9": ReadNumber
| " ' ", ' " ': ReadString
ELSE SpecialCharacter
END

9.6 While statements

While statements specify the repeated execution of a statement

sequence while the Boolean expression (its guard) yields TRUE. The

guard is checked before every execution of the statement sequence.

$ WhileStatement = WHILE Expression DO StatementSequence END.

Examples:

WHILE i > 0 DO i := i DIV 2; k := k + 1 END
WHILE (t # NIL) & (t.key # i) DO t := t.left END

9.7 Repeat statements

A repeat statement specifies the repeated execution of a statement

sequence until a condition specified by a Boolean expression is

satisfied. The statement sequence is executed at least once.

$ RepeatStatement = REPEAT StatementSequence UNTIL Expression.

9.8 For statements

A for statement specifies the repeated execution of a statement

sequence while a progression of values is assigned to an integer

72

variable called the control variable of the for statement.

$ ForStatement = FOR ident ":=" Expression TO Expression
[BY ConstExpression] DO StatementSequence END.

The statement

FOR v := beg TO end BY step DO statements END

is equivalent to

temp := end; v := beg;
IF step > 0 THEN

WHILE v <= temp DO statements; v := v + step END
ELSE

WHILE v >= temp DO statements; v := v + step END
END

temp has the same type as v. step must be a nonzero constant

expression. If step is not specified, it is assumed to be 1.

Examples:

FOR i := 0 TO 79 DO k := k + a[i] END
FOR i := 79 TO 1 BY −1 DO a[i] := a[i−1] END

9.9 Loop statements

A loop statement specifies the repeated execution of a statement

sequence. It is terminated upon execution of an exit statement within

that sequence (see 9.10).

$ LoopStatement = LOOP StatementSequence END.

Example:

LOOP
ReadInt(i);
IF i < 0 THEN EXIT END;
WriteInt(i)

END

Loop statements are useful to express repetitions with several exit

73

points or cases where the exit condition is in the middle of the repeated

statement sequence.

9.10 Return and exit statements

A return statement indicates the termination of a procedure. It is

denoted by the symbol RETURN, followed by an expression if the

procedure is a function procedure. The type of the expression must be

assignment compatible (see Ch. 12) with the result type specified in the

procedure heading (see Ch. 10).

Function procedures require the presence of a return statement

indicating the result value. In proper procedures, a return statement is

implied by the end of the procedure body. Any explicit return statement

therefore appears as an additional (probably exceptional) termination

point.

An exit statement is denoted by the symbol EXIT. It specifies

termination of the enclosing loop statement and continuation with the

statement following that loop statement. Exit statements are

contextually, although not syntactically associated with the loop

statement which contains them.

9.11 With statements

With statements execute a statement sequence depending on the result

of a type test and apply a type guard to every occurrence of the tested

variable within this statement sequence.

$ WithStatement = WITH Guard DO StatementSequence
{"|" Guard DO StatementSequence} [ELSE StatementSequence] END.

$ Guard = Qualident ":" Qualident.

If v is a variable parameter of record type or a pointer variable, and if it

is of a static type T0, the statement

WITH v: T1 DO S1 | v: T2 DO S2 ELSE S3 END

has the following meaning: if the dynamic type of v is T1, then the

statement sequence S1 is executed where v is regarded as if it had the

static type T1; else if the dynamic type of v is T2, then S2 is executed

where v is regarded as if it had the static type T2; else S3 is executed.

74

T1 and T2 must be extensions of T0. If no type test is satisfied and if an

else clause is missing the program is aborted.

Example:

WITH t: CenterTree DO i := t.width; c := t.subnode END

10 Procedure declarations

A procedure declaration consists of a procedure heading and a

procedure body. The heading specifies the procedure identifier and the

formal parameters. For type-bound procedures it also specifies the

receiver parameter. The body contains declarations and statements. The

procedure identifier is repeated at the end of the procedure declaration.

There are two kinds of procedures: proper procedures and function

procedures. The latter are activated by a function designator as a

constituent of an expression and yield a result that is an operand of the

expression. Proper procedures are activated by a procedure call. A

procedure is a function procedure if its formal parameters specify a

result type. The body of a function procedure must contain a return

statement which defines its result.

All constants, variables, types, and procedures declared within a

procedure body are local to the procedure. Since procedures may be

declared as local objects too, procedure declarations may be nested. The

call of a procedure within its declaration implies recursive activation.

Objects declared in the environment of the procedure are also visible

in those parts of the procedure in which they are not concealed by a

locally declared object with the same name.

$ ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
$ ProcedureHeading =

PROCEDURE [Receiver] IdentDef [FormalParameters].
$ ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.
$ DeclarationSequence = {CONST {ConstantDeclaration ";"} |

TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"} }
{ProcedureDeclaration ";" | ForwardDeclaration ";"}.

$ ForwardDeclaration =
PROCEDURE "↑" [Receiver] IdentDef [FormalParameters].

If a procedure declaration specifies a receiver parameter, the procedure

is considered to be bound to a type (see 10.2). A forward declaration

serves to allow forward references to a procedure whose actual

75

declaration appears later in the text. The formal parameter lists of the

forward declaration and the actual declaration must match (see Ch. 12).

10.1 Formal parameters

Formal parameters are identifiers declared in the formal parameter list

of a procedure. They correspond to actual parameters specified in the

procedure call. The correspondence between formal and actual

parameters is established when the procedure is called. There are two

kinds of parameters, value and variable parameters, indicated in the

formal parameter list by the absence or presence of the keyword VAR.

Value parameters are local variables to which the value of the

corresponding actual parameter is assigned as an initial value. Variable

parameters correspond to actual parameters that are variables, and they

stand for these variables. The scope of a formal parameter extends from

its declaration to the end of the procedure block in which it is declared.

A function procedure without parameters must have an empty

parameter list. It must be called by a function designator whose actual

parameter list is empty too. The result type of a procedure can be

neither a record nor an array.

$ FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" Qualident].
$ FPSection = [VAR] ident {"," ident} ":" Type.

Let Tf be the type of a formal parameter f (not an open array) and Ta the

type of the corresponding actual parameter a. For variable parameters,

Ta must be the same as Tf, or Tf must be a record type and Ta an

extension of Tf. For value parameters, a must be assignment compatible

with f (see Ch. 12).

If Tf is an open array , then a must be array compatible with f (see

Ch. 12). The lengths of f are taken from a.

Examples of procedure declarations:

PROCEDURE ReadInt(VAR x: INTEGER);
VAR i: INTEGER; ch: CHAR;

BEGIN i := 0; Read(ch);
WHILE ("0" <= ch) & (ch <= "9") DO

i := 10*i + (ORD(ch)−ORD("0")); Read(ch)
END;
x := i

76

END ReadInt

PROCEDURE WriteInt(x: INTEGER); (*0 <= x <100000*)
VAR i: INTEGER; buf: ARRAY 5 OF INTEGER;

BEGIN i := 0;
REPEAT buf[i] := x MOD 10; x := x DIV 10; INC(i) UNTIL x = 0;
REPEAT DEC(i); Write(CHR(buf[i] + ORD("0"))) UNTIL i = 0

END WriteInt

PROCEDURE WriteString(s: ARRAY OF CHAR);
VAR i: INTEGER;

BEGIN i := 0;
WHILE (i < LEN(s)) & (s[i] # 0X) DO Write(s[i]); INC(i) END

END WriteString;

PROCEDURE log2(x: INTEGER): INTEGER;
VAR y: INTEGER; (*assume x>0*)

BEGIN
y := 0; WHILE x > 1 DO x := x DIV 2; INC(y) END;
RETURN y

END log2

10.2 Type-bound procedures

Globally declared procedures may be associated with a record type

declared in the same module. The procedures are said to be bound to the

record type. The binding is expressed by the type of the receiver in the

heading of a procedure declaration. The receiver may be either a

variable parameter of record type T or a value parameter of type

POINTER TO T (where T is a record type). The procedure is bound to

the type T and is considered local to it.

$ ProcedureHeading =
PROCEDURE [Receiver] IdentDef [FormalParameters].

$ Receiver = "(" [VAR] ident ":" ident ")".

If a procedure P is bound to a type T0, it is implicitly also bound to any

type T1 which is an extension of T0. However, a procedure P’ (with the

same name as P) may be explicitly bound to T1 in which case it

overrides the binding of P. P’ is considered a redefinition of P for T1.

The formal parameters of P and P’ must match (see Ch. 12). If P and T1

77

are exported (see Chapter 4) P’ must be exported too.

If v is a designator and P is a type-bound procedure, then v.P denotes

that procedure P which is bound to the dynamic type of v. Note, that

this may be a different procedure than the one bound to the static type

of v. v is passed to P’s receiver according to the parameter passing rules

specified in Chapter 10.1.

If r is a receiver parameter declared with type T, r.P↑ denotes the

procedure P bound to the base type of T.

In a forward declaration of a type-bound procedure the receiver

parameter must be of the same type as in the actual procedure

declaration. The formal parameter lists of both declarations must match

(Ch. 12).

Examples:

PROCEDURE (t: Tree) Insert (node: Tree);
VAR p, father: Tree;

BEGIN p := t;
REPEAT father := p;

IF node.key = p.key THEN RETURN END;
IF node.key < p.key THEN p := p.left ELSE p := p.right END

UNTIL p = NIL;
IF node.key < father.key THEN father.left := node
ELSE father.right := node
END;
node.left := NIL; node.right := NIL

END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree); (*redefinition*)
BEGIN

WriteInt(node(CenterTree).width);
t.Insert↑ (node) (* calls the Insert procedure bound to Tree *)

END Insert;

10.3 Predeclared procedures

The following table lists the predeclared procedures. Some are generic

procedures, i.e. they apply to several types of operands. v stands for a

variable, x and n for expressions, and T for a type.

Function procedures

78

Name Argument type Result type Function

ABS(x) numeric type type of x absolute value
ASH(x, n) x, n: integer type LONGINT arithmetic shift (x * 2 n)
CAP(x) CHAR CHAR if x is a letter, the

corresponding capital letter
CHR(x) integer type CHAR character with ordinal number x
ENTIER(x) real type LONGINT largest integer not greater than x
LEN(v, n) v: array; LONGINT length of v in dimension n

n: integer const. (first dimension = 0)
LEN(v) v: array LONGINT equivalent to LEN(v, 0)
LONG(x) SHORTINT INTEGER identity

INTEGER LONGINT
REAL LONGREAL

MAX(T) T = basic type T maximum value of type T
T = SET INTEGER maximum element of a set

MIN(T) T = basic type T minimum value of type T
T = SET INTEGER 0

ODD(x) integer type BOOLEAN x MOD 2 = 1
ORD(x) CHAR INTEGER ordinal number of x
SHORT(x) LONGINT INTEGER identity

INTEGER SHORTINT identity
LONGREAL REAL identity (truncation possible)

SIZE(T) any type integer type number of bytes required by T

Proper procedures

Name Argument types Function

ASSERT(x) x: Boolean expression terminate program if not x
ASSERT(x, n) x: Boolean expression; terminate program if not x

n: integer constant
COPY(x, v) x: character array, string; v := x

v: character array truncation possible
DEC(v) integer type v := v − 1
DEC(v, n) v, n: integer type v := v − n
EXCL(v, x) v: SET; x: integer type v := v − {x}
HALT(n) integer constant terminate program
INC(v) integer type v := v + 1
INC(v, n) v, n: integer type v := v + n
INCL(v, x) v: SET; x: integer type v := v + {x}
NEW(v) pointer to record or allocate v↑

fixed size array

79

NEW(v, x0, ..., xn) v: pointer to open array; allocate v↑ with
xi: integer type lengths x0.. xn

COPY allows the assignment of a string or a character array containing

a terminating 0X to another character array. If necessary, the assigned

value is truncated to the target length minus one. The target will always

contain 0X as a terminator. In ASSERT(x, n) and HALT(n), the

interpretation of n is left to the underlying system implementation.

11 Modules

A module is a collection of declarations of constants, types, variables,

and procedures, together with a sequence of statements for the purpose

of assigning initial values to the variables. A module constitutes a text

that is compilable as a unit.

$ Module = MODULE ident ";" [ImportList] DeclarationSequence
[BEGIN StatementSequence] END ident ".".

$ ImportList = IMPORT Import {"," Import} ";".
$ Import = [ident ":="] ident.

The import list specifies the names of the imported modules. If a

module A is imported by a module M and A exports an identifier x, then

x is referred to as A.x within M. If A is imported as B := A, the object x

must be referenced as B.x. This allows short alias names in qualified

identifiers. A module must not import itself. Identifiers that are to be

exported (i.e. that are to be visible in client modules) must be marked

by an export mark in their declaration (see Chapter 4).

The statement sequence following the symbol BEGIN is executed

when the module is added to a system (loaded), which is done after the

imported modules have been loaded. It follows that cyclic import of

modules is illegal. Individual (parameterless and exported) procedures

can be activated from the system, and these procedures serve as

commands.

MODULE Trees;
IMPORT Texts, Oberon;
(* exports: Tree, Node, Insert, Search, Write, Init;

exports read−only: Node.name *)
TYPE

Tree* = POINTER TO Node;

80

Node* = RECORD
name−: POINTER TO ARRAY OF CHAR;
left, right: Tree

END;

VAR w: Texts.Writer;

PROCEDURE (t: Tree) Insert* (name: ARRAY OF CHAR);
VAR p, father: Tree;

BEGIN p := t;
REPEAT father := p;

IF name = p.name↑ THEN RETURN END;
IF name < p.name↑ THEN p := p.left ELSE p := p.right END

UNTIL p = NIL;
NEW(p); p.left := NIL; p.right := NIL;
NEW(p.name, LEN(name)+1); COPY(name, p.name↑);
IF name < father.name↑ THEN father.left := p
ELSE father.right := p
END

END Insert;

PROCEDURE (t: Tree) Search* (name: ARRAY OF CHAR): Tree;
VAR p: Tree;

BEGIN p := t;
WHILE (p # NIL) & (name # p.name↑) DO

IF name < p.name↑ THEN p := p.left ELSE p := p.right END
END;
RETURN p

END Search;

PROCEDURE (t: Tree) Write*;
BEGIN

IF t.left # NIL THEN t.left.Write END;
Texts.WriteString(w, t.name↑); Texts.WriteLn(w);
Texts.Append(Oberon.Log, w.buf);
IF t.right # NIL THEN t.right.Write END

END Write;

PROCEDURE Init* (t: Tree);
BEGIN NEW(t.name, 1); t.name[0] := 0X; t.left := NIL; t.right := NIL
END Init;

81

BEGIN Texts.OpenWriter(w)
END Trees.

12 Definition of terms

Integer types SHORTINT, INTEGER, LONGINT

Real types REAL, LONGREAL

Numeric types integer types, real types

Same types

Two variables a and b with types Ta and Tb are of the same type if

1. Ta and Tb are both denoted by the same type identifier, or

2. Ta is declared to equal Tb in a type declaration of the form Ta =

Tb, or

3. a and b appear in the same identifier list in a variable, record field,

or formal parameter declaration and are not open arrays.

Equal types

Two types Ta and Tb are equal if

1. Ta and Tb are the same type, or

2. Ta and Tb are open array types with equal element types, or

3. Ta and Tb are procedure types whose formal parameter lists match.

Type inclusion

Numeric types include (the values of) smaller numeric types according

to the following hierarchy:

LONGREAL >= REAL >= LONGINT >= INTEGER >= SHORTINT

Type extension (base type)

Given a type declaration Tb = RECORD (Ta) ... END, Tb is a direct

extension of Ta, and Ta is a direct base type of Tb. A type Tb is an

extension of a type Ta (Ta is a base type of Tb) if

1. Ta and Tb are the same types, or

2. Tb is a direct extension of an extension of Ta

If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an extension

of Pa (Pa is a base type of Pb) if Tb is an extension of Ta.

Assignment compatible

An expression e of type Te is assignment compatible with a variable v

of type Tv if one of the following conditions hold:

82

1. Te and Tv are the same type;

2. Te and Tv are numeric types and Tv includes Te;

3. Te and Tv are record types and Te is an extension of Tv and the

dynamic type of v is Tv ;

4. Te and Tv are pointer types and Te is an extension of Tv;

5. Tv is a pointer or a procedure type and e is NIL;

6. Tv is ARRAY n OF CHAR, e is a string constant with m characters,

and m < n;

7. Tv is a procedure type and e is the name of a procedure whose

formal parameters match those of Tv.

Array compatible

An actual parameter a of type Ta is array compatible with a formal

parameter f of type Tf if

1. Tf and Ta are the same type, or

2. Tf is an open array, Ta is any array, and their element types are

array compatible, or

3. Tf is ARRAY OF CHAR and a is a string.

Expression compatible

For a given operator, the types of its operands are expression

compatible if they conform to the following table (which shows also the

result type of the expression). Character arrays that are to be compared

must contain 0X as a terminator. Type T1 must be an extension of type

T0, P0 and P1 denote pointer types bound to T0 and T1 respectively and

Q stands for a procedure type. S stands for a character array or a string

literal.

operator first operand second operand result type

+ − * numeric numeric smallest numeric type
including both operands

/ numeric numeric smallest real type
including both operands

+ − * / SET SET SET
DIV MOD integer integer smallest integer type

including both operands
OR & ˜ BOOLEAN BOOLEAN BOOLEAN
= # < <= > >= numeric numeric BOOLEAN

CHAR CHAR BOOLEAN
S S BOOLEAN

= # BOOLEAN BOOLEAN BOOLEAN
SET SET BOOLEAN

83

NIL, P0 or P1 NIL, P0 or P1 BOOLEAN
Q, NIL Q, NIL BOOLEAN

IN integer SET BOOLEAN
IS type T0 type T1 BOOLEAN

Matching formal parameter lists

Two formal parameter lists match if

1. they have the same number of parameters, and

2. they have either the same function result type or none, and

3. parameters at corresponding positions have equal types, and

4. parameters at corresponding positions are both either value or

variable parameters.

84

85

Appendix D

Grammar of Oberon-2

module = MODULE ident ";" [ImportList] DeclarationSequence
[BEGIN StatementSequence] END ident "." .

ImportList = IMPORT import {"," import} ";" .
import = ident [":=" ident].
DeclarationSequence = {CONST {ConstantDeclaration ";"} |

TYPE {TypeDeclaration ";"} | VAR {VariableDeclaration ";"}}
{ProcedureDeclaration ";" | ForwardDeclaration ";"}.

ConstantDeclaration = identdef "=" ConstExpression.
identdef = ident ["*" | "−"].
ConstExpression = expression.
TypeDeclaration = identdef "=" type.
type = qualident | ArrayType | RecordType | PointerType | ProcedureType.
qualident = [ident "."] ident.
ArrayType = ARRAY [length {"," length}] OF type.
length = ConstExpression.
RecordType = RECORD ["(" BaseType ")"] FieldListSequence END.
BaseType = qualident.
FieldListSequence = FieldList {";" FieldList}.
FieldList = [IdentList ":" type].
IdentList = identdef {"," identdef}.
PointerType = POINTER TO type.
ProcedureType = PROCEDURE [FormalParameters].
VariableDeclaration = IdentList ":" type.
ProcedureDeclaration = ProcedureHeading ";" ProcedureBody ident.
ProcedureHeading = PROCEDURE [Receiver] ["*"] identdef

[FormalParameters].
Receiver = "(" [VAR] ident ":" ident ")".
ProcedureBody = DeclarationSequence [BEGIN StatementSequence] END.
FormalParameters = "(" [FPSection {";" FPSection}] ")" [":" qualident].
FPSection = [VAR] ident {"," ident} ":" FormalType.
FormalType = type.
ForwardDeclaration = PROCEDURE [Receiver] "↑" identdef

[FormalParameters].
StatementSequence = statement {";" statement}.
statement = [assignment | ProcedureCall | IfStatement |

CaseStatement | WhileStatement | RepeatStatement | LoopStatement |
WithStatement | ForStatement | EXIT | RETURN [expression]].

86

assignment = designator ":=" expression.
designator = qualident {"." ident | "[" ExpList "]" | "(" qualident ")" | "↑" }.
ExpList = expression {"," expression}.
expression = SimpleExpression [relation SimpleExpression].
relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
SimpleExpression = ["+"|"−"] term {AddOperator term}.
AddOperator = "+" | "−" | OR .
term = factor {MulOperator factor}.
MulOperator = "*" | "/" | DIV | MOD | "&" .
factor = number | CharConstant | string | NIL | set |

designator [ActualParameters] | "(" expression ")" | "˜" factor.
set = "{" [element {"," element}] "}".
element = expression [".." expression].
ProcedureCall = designator [ActualParameters].
ActualParameters = "(" [ExpList] ")" .
IfStatement = IF expression THEN StatementSequence

{ELSIF expression THEN StatementSequence}
[ELSE StatementSequence] END.

CaseStatement = CASE expression OF case {"|" case}
[ELSE StatementSequence] END.

case = [CaseLabelList ":" StatementSequence].
CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].
WhileStatement = WHILE expression DO StatementSequence END.
RepeatStatement = REPEAT StatementSequence UNTIL expression.
LoopStatement = LOOP StatementSequence END.
WithStatement = WITH guard DO StatementSequence

{"|" guard DO StatementSequence} [ELSE StatementSequence] END.
guard = qualident ":" qualident.
ForStatement = FOR ident ":=" expression TO expression

[BY ConstExpression] DO StatementSequence END.

87

Lexical structure

ident = letter {letter | digit}.
number = integer | real.
integer = digit {digit} | digit {hexDigit} "H" .
real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "−"] digit {digit}.
hexDigit = digit | "A" | "B" | "C" | "D" | "E" | "F".
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9".
CharConstant = """ character """ | "'" character "'" | digit {hexDigit} "X".
string = """ {character} """ | "'" {character} "'".

The ASCII-Code

0 1 2 3 4 5 6 7

0 nul dle 0 @ P ` p

1 soh dc1 ! 1 A Q a q

2 stx dc2 " 2 B R b r

3 etx dc3 # 3 C S c s

4 eot dc4 $ 4 D T d t

5 enq nak % 5 E U e u

6 ack syn & 6 F V f v

7 bel etb ' 7 G W g w

8 bs can (8 H X h x

9 ht em) 9 I Y i y

A lf sub * : J Z j z

B vt esc + ; K [k {

C ff fs , < L \ l |

D cr gs − = M] m }

E so rs . > N ↑ n ˜

F si us / ? O _ o del

88

89

Appendix E

Limitations of the Implementation (Version 1.0)

Only one-dimensional open arrays are currently supported.

Ofront assumes that variables of type LONGINT, pointers and

procedure variables are the same size, for example all 32 bit.

The implementation of intermediate-level variables is not reentrant; i.e.,

procedures that access intermediate-level variables cannot be used in a

multithread program.

Range checks are not always emitted, in particular, they are not emitted

for SET operations.

Untagged records (RECORD [1]) are only rudimentarily supported and

should not be used currently.

No link-time interface checking is performed.

There is no translator option to generate code for NIL checks because it

is assumed that NIL checks are always done by the hardware (e.g., by

protecting low memory pages from read and write access). However,

this might not be the case in embedded systems and there are even Unix

systems that allow reading (or even writing) the zero page.

The browsing facilities using the showdef or Browser.ShowDef
commands are not as elaborate as they could be. In particular, currently

they do not allow showing the definition of individual exported objects

but always decode the complete interface of a module.

There are only a few shell scripts prepared that support automation of

the multiple steps necessary to create an application or library.

There is no make file generator included since due to the fine grained

interface checks employed by Ofront a simple file-based time stamping

technique seems to be inappropriate.

HP-UX, IRIX 5: Open array value parameters may confuse the

90

conservative stack collection phase of the garbage collector if they

contain pointers. The reason is that, due to the missing alloca function

in HP-UX and IRIX 5, such arrays are currently copied onto the Unix

heap by means of malloc. As a consequence, pointers inside these arrays

are not seen by the garbage collector when inspecting the procedure

activation stack.

91

Appendix F

Ofront Error Messages

NW, RC, JT / 16.1.95

1. Incorrect use of the language Oberon

 0 undeclared identifier
 1 multiply defined identifier
 2 illegal character in number
 3 illegal character in string
 4 identifier does not match procedure name
 5 comment not closed
 6
 7
 8
 9 "=" expected
 10
 11
 12 type definition starts with incorrect symbol
 13 factor starts with incorrect symbol
 14 statement starts with incorrect symbol
 15 declaration followed by incorrect symbol
 16 MODULE expected
 17
 18 "." missing
 19 "," missing
 20 ":" missing
 21
 22 ")" missing
 23 "]" missing
 24 "}" missing
 25 OF missing
 26 THEN missing
 27 DO missing
 28 TO missing
 29
 30 "(" missing
 31
 32

92

 33
 34 ":=" missing
 35 "," or OF expected
 36
 37
 38 identifier expected
 39 ";" missing
 40
 41 END missing
 42
 43
 44 UNTIL missing
 45
 46 EXIT not within loop statement
 47 illegally marked identifier
 48
 49
 50 expression should be constant
 51 constant not an integer
 52 identifier does not denote a type
 53 identifier does not denote a record type
 54 result type of procedure is not a basic type
 55 procedure call of a function
 56 assignment to non−variable
 57 pointer not bound to record or array type
 58 recursive type definition
 59 illegal open array parameter
 60 wrong type of case label
 61 inadmissible type of case label
 62 case label defined more than once
 63 illegal value of constant
 64 more actual than formal parameters
 65 fewer actual than formal parameters
 66 element types of actual array and formal open array differ
 67 actual parameter corresponding to open array is not an array
 68 control variable must be integer
 69 parameter must be an integer constant
 70 pointer or VAR record required as formal receiver
 71 pointer expected as actual receiver
 72 procedure must be bound to a record of the same scope
 73 procedure must have level 0
 74 procedure unknown in base type

93

 75 invalid call of base procedure
 76 this variable (field) is read only
 77 object is not a record
 78 dereferenced object is not a variable
 79 indexed object is not a variable
 80 index expression is not an integer
 81 index out of specified bounds
 82 indexed variable is not an array
 83 undefined record field
 84 dereferenced variable is not a pointer
 85 guard or test type is not an extension of variable type
 86 guard or testtype is not a pointer
 87 guarded or tested variable is neither a pointer nor a VAR−parameter

record
 88 open array not allowed as variable, record field or array element
 89
 90
 91
 92 operand of IN not an integer, or not a set
 93 set element type is not an integer
 94 operand of & is not of type BOOLEAN
 95 operand of OR is not of type BOOLEAN
 96 operand not applicable to (unary) +
 97 operand not applicable to (unary) −
 98 operand of ˜ is not of type BOOLEAN
 99 ASSERT fault
100 incompatible operands of dyadic operator
101 operand type inapplicable to *
102 operand type inapplicable to /
103 operand type inapplicable to DIV
104 operand type inapplicable to MOD
105 operand type inapplicable to +
106 operand type inapplicable to −
107 operand type inapplicable to = or #
108 operand type inapplicable to relation
109 overriding method must be exported
110 operand is not a type
111 operand inapplicable to (this) function
112 operand is not a variable
113 incompatible assignment
114 string too long to be assigned
115 parameter doesn't match

94

116 number of parameters doesn't match
117 result type doesn't match
118 export mark doesn't match with forward declaration
119 redefinition textually precedes procedure bound to base type
120 type of expression following IF, WHILE, UNTIL or ASSERT is not

BOOLEAN
121 called object is not a procedure (or is an interrupt procedure)
122 actual VAR−parameter is not a variable
123 type of actual parameter is not identical with that of formal

VAR−parameter
124 type of result expression differs from that of procedure
125 type of case expression is neither INTEGER nor CHAR
126 this expression cannot be a type or a procedure
127 illegal use of object
128 unsatisfied forward reference
129 unsatisfied forward procedure
130 WITH clause does not specify a variable
131 LEN not applied to array
132 dimension in LEN too large or negative
135 SYSTEM not imported

150 key inconsistency of imported module
151 incorrect symbol file
152 symbol file of imported module not found
153 object or symbol file not opened (disk full?)
154 recursive import not allowed
155 generation of new symbol file not allowed
156 parameter file not found
157 syntax error in parameter file

2. Limitations of the implementation

200 not yet implemented
201 lower bound of set range greater than higher bound
202 set element greater than MAX(SET) or less than 0
203 number too large
204 product too large
205 division by zero
206 sum too large
207 difference too large
208 overflow in arithmetic shift

95

209 case range too large
213 too many cases in case statement
218 illegal value of parameter (0 <= p < 256)
219 machine registers cannot be accessed
220 illegal value of parameter
221 too many pointers in a record
222 too many global pointers
223 too many record types
224 too many pointer types
225 address of pointer variable too large (move forward in text)
226 too many exported procedures
227 too many imported modules
228 too many exported structures
229 too many nested records for import
230 too many constants (strings) in module
231 too many link table entries (external procedures)
232 too many commands in module
233 record extension hierarchy too high
234 export of recursive type not allowed
240 identifier too long
241 string too long
242 address overflow
244 cyclic type definition not allowed
245 guarded pointer variable may be manipulated by non−local

operations; use auxiliary pointer variable

3. Compiler Warnings

301 implicit type cast
306 inappropriate symbol file ignored

4. Run−time Error Messages

SYSTEM_halt
 0 silent HALT(0)
1..255 HALT(n), cf. SYSTEM_halt
 −1 assertion failed, cf. SYSTEM_assert
 −2 invalid array index
 −3 function procedure without RETURN statement
 −4 invalid case in CASE statement

96

 −5 type guard failed
 −6 implicit type guard in record assignment failed
 −7 invalid case in WITH statement
 −8 value out of range
 −9 (delayed) interrupt
−10 NIL access
−11 alignment error
−12 zero divide
−13 arithmetic overflow/underflow
−14 invalid function argument
−15 internal error

5. Unix signals

 1
 2 interrupt signal
 3 quit signal
 4 invalid instruction, HALT
 5
 6
 7
 8 arithmetic exception: division by zero, overflow, fpu error
 9
 10 bus error, unaligned data access
 11 segmentation violation, NIL−access
 12
 13 access to closed pipe

97

Edit.Print "1:lp" *\p 1\s 1 4\p n ~

Edit.Print "none" *\p f\p -3\a\f Times12.Scn.Fnt~

Edit.Print none *\p f\p -3\a\s -3 96\f Times12.Scn.Fnt~

Edit.Print "1:lp" *\p 1\s 1 4\i 1\p n ~

Edit.Print "2:lp" *\p 1\s 2 4\i 2\p n ~

Edit.Print "1:lp" *\p f\p -3\a\s 81 96\i 1\f Times12.Scn.Fnt~

Edit.Print "2:lp" *\p f\p -3\a\s 82 96\i 2\f Times12.Scn.Fnt~

