
A Better Way to Combine
Efficient String Length Encoding

and
Zero-termination

C. Bron
E.J . Di jkstra

D e p a r t m e n t of Mathemat ics and C o m p u t i n g Science
Universi ty of Groningen

Nether lands

December 13, 1988

Abstract
In this note we describe conventions for string handling, and in particular for efficient

string length encoding. These conventions are based on the (C-language) zero-terminator
convention, and assume that the size of the area containing the string is known. They
do not require any special provisions on the part of the language implementation. The
mechanism to be described caters smoothly for strings of arbitrary length. The notes are
based on several years of experience within the framework of Modular Pascal.

1 I n t r o d u c t i o n

In [1], "Some Sad Remarks About String Handling in C", Paul Abrahams comments on the
inherent inefficiencies of the C programming language convention to terminate strings with
an (ASCII-)null character. The inefficiencies arise from determining the length of the string,
which necessarily takes time proportional to the length of the string, presuming the string
can be accessed from one end only.

Abrahams proposes to encode the length of the string explicitly, as the (pre-)first byte
of the string, thus providing increased efficiency in operations like s z r c a t which need the
length of the first string in order to append the second.

Since the convention to add an additional length byte at the front of the string has
already found its way into several language implementations, notably Turbo Pascal 1 [2], and
may be adopted in the course of several ongoing language standardization efforts, it seemed
worthwhile to publicize an attractive alternative which we have adopted in Modular Pascal
[3], a home grown extension of Pascal, with which we have gained positive experiences in
recent years.

The main advantages of our approach are that it provides the efficiency gain of Abrahams'
proposal without any impact on the existing language implementation, and requires very little
discipline of the user. The enforcement of this discipline is supported by a library module
providing a limited but very widely applicable set of string handling routines.

1Turbo Pascal is a Registered Trade Mark of Borland International

ii
SIGPLAN Notices, Vol. 24, No. 6

Before proceeding with the details, we present the essence of our solution: the length of
the string is not encoded at the front of the string but at the end, and only if there is sufficient
unused space at the end. The only requirement on the language implementat ion (which may
not be fulfilled by C) is that the size of the string-container be known, either at run time or
at compile time.

2 String Containers

In Modular Pascal we may have to deal with three kinds of strings

1. string literals

2. declared string variables of type PACKED ARRAY [. . . .] OF char

3. strings passed to procedures as parameters (cf. the conformant array parameters of
ISO-Pascal)

For each of these string kinds the size of the container is known:

1. it equals the number of characters in the string denotation (compile t ime constant)

2. it follows from the bounds in the array type specification (compile t ime constant)

3. it is an additional data i tem passed to a procedure as part of the string parameter (run
time constant). Note that according to the ISO-Pascal [4] s tandard both lower and
upper bound must be passed as part of the conformant array parameter since they can
be addressed as named constants.

In Modular Pascal, the standard functions l w b (. .) and u p b (. .) yield lower, c.q. upper
bound of the index range for cases 2) and 3). In what is to follow, we make two simplifying
assumptions, viz. that for every string container s: lwb(s) = 0 and tha t upb(s) >= 0,
in other words we do not consider containers that can not contain at least one character.
Neither assumption is essential but they both contribute to the simplification of an algorithm
for finding the length of a string. The first simplification is in some cases fully language
enforced (as in C) and in others only partially (as in Modula-2 [5]) where a shift of index
range takes place when a character array is passed to a procedure as an open array parameter.
The second assumption is fulfilled by the Pascal Standard which forbids the empty string
literal.

3 String Length Encoding

In the Modular Pascal approach we combined the following principles:

• no deviation from language definition

• no hidden, additional data fields associated with strings

• no compiler action required

• null-termination wherever possible

• fast string length encoding

12

For the sake of the description we will consider the component type of strings as (small)
integers in the range 0..255 instead of as characters, therefore we will not make explicit use
of the Pa~scal type transfer oral.

A vital role in encoding the length of a string s is played by the last element of s :

s [upb (s)] . Its value will primarily be interpreted as the distance from the end of s where
the null- terminator may be found if the string s contains a null-terminator at all. This
encoding has a number of attractive properties:

• if the last character in the string container is a null-character it indeed locates the
position of the (terminating) null-character.

• if the position in the string so designated does not contain a null-character, the string
is 'full', i.e. the number of relevant characters in the string equals the size of the string
container, and it is, consequently, not null-terminated.

• if string containers are long (longer than~ say, 256 bytes) and almost full, only a small
(byte-sized) integer will do to encode the end-of-string position. If the long string
container is far from full, the tail of the string container has plenty of unused space to
encode by means of some 'escape value' the position of the terminating null-character
as a more than byte-sized integer.

These aspects have been incorporated in the function e o s (s) , which - for strings indexed
from 0 - is the same as l e n g t h (s) . Another interpretation of e o s (s) is as the position
where the terminat ing null-character may be found. For strings not indexed start ing from 0
we obviously have the equivalence:
length(s) = eos(s) - lwb(s).

A non-null terminated string can be recognized by:

eos(s) = upb(s) + 1

The implementation of the eos function follows directly from the above:

CONST esc_val = 255 (*?*);

FUNCTION eos(CONST s: STRING) : integer;

VAR poe: integer;

BEGIN pos := upb(s) - s[upb(s)];

eos := upb(s) + I; (* default for non null-terminated *)

IF pos >= 0 THEN

IF s[pos] = null_char

THEN eos := pos ELSE

IF s[upb(s)] = esc_val

THEN BEGIN

pos := s[upb(s) - 2] * 256 + s[upb(s) - I];

(* in this case the encoding is relative to location 0 *)

IF (pos >= O) AND (pos <= upb(s) AND (s[pos] = null_char)

THEN eos := poe

END

END (* eos *) ;

Note that in spite of the apparent complexity of the above implementation of eos, the common
cases, especially the 'short ' , null-terminated string, are dealt with very efficiently. The above
may be improved on by moving the default assignment of the function result to the individual

13 •

default branches of the conditional statements. It was only written this way for clarity of
presentation. In the last (poe >= 0 test the term (poe >= 0) may be omit ted in
the case of 32-bit integers, for the result cannot be negative. If it can be guaranteed that
strings do not contain the character value used for esc_val then the only reason for this
value to appear in s [upb(s)] is that it was deliberately put there for the encoding of the
null-terminator position. This requirement seems reasonable and reduces the algorithm to:

...IF s[upb(s)] = esc_val

THEN eos := s[upb(s) - 2] * 256 + s[upb(s) - I]

In the case that a two byte integer must be used to encode the distance of the end-of-string to
the end-of-container, the routine responsible for encoding the string length (t e r m i n a t e must
ensure that s [upb(s) - esc_val] <> n u l l _ c h a r otherwise this position would erroneously

be recognized as the end-of-string position.

4 The User's Disc ipl ine

Little discipline is required in this respect, because:

• Any string literal not containing a null-character satisfies the requirements.

• Any string literal only containing a null-character in its last position satisfies the re-
quirements.

• Any string produced as a result of an operation from the STRINGS module satisfies
the requirements.

• Any string produced by any other module from the Modular Pascal library satisfies the
requirements because the library obeys the preceding three rules.

• Any string smaller than its container contains a terminating null-character.

Where terminat ing null-characters are required, they can either be supplied at the end
of string literals, or - in cases where their presence is not certain - they are obtained by
copying the string into a container of sufficient size, using the procedure a s s i g n from
the STRINGS module.

When the characters of a string have been filled in without the help of procedures from
the STRINGS module, the string can be made to satisfy the requirements by calling
for that string: t e r m i n a t e (s , e) where e is the position that will subsequently be
the result of eos (s) . The only requirement for t e rmina ' t e is that s [0 . . e - l] contain
meaningful (non-null) characters.

[Remark]
The requirement that a string not contain null-characters other than in the terminating po-
sition can be relaxed if it can be ascertained that operations on the string do not proceed
'from left to right ' until a null-character is encountered, but make use of the result of eos (s)
instead. Such use of a string is suggested by the example in [1, page 66]. Obviously, the
proposed organization of strings does not prohibit in any way such an application.
[End o f R e m a r k]

14

The last part of the discipline imposed on the user concerns strings that are null-terminated
but originate from 'somewhere'. Such a string may be adapted to the proposed conventions
by means of a c c e p t (s) . The role of accep't is (of course) to find the null-character by a
left-to-right scan of s and subsequently to encode its length in the described way.

5 A truly different a l ternat ive

Another, radically different, way to encode the length of a string is again based on the
possibility of locating both the beginning and the end of the string container. It further
precludes the use of strings that contain interior null-characters.

We postulate that , within the string container, all characters following the last significant
character should be null-characters. It is then possible to locate the end-of-string position
by a binary search (!!) because the contents of the string container monotonically 'increase ~
from non-null to null-characters!

According to this convention string literals, either with or without null- terminator are
acceptable. String variables must, however, be set to all null-characters when they are created
or initialized. After that, strings continue to satisfy the conventions as long as they are not
shrunk. This can only take place on account of t e r m i n a t e (s , e) , therefore null-characters
should now be added upto the first position p >= e for which s ip] = n u l l _ c h a r . It is the
user's obligation to guarantee that s [0 . . e - l] not contain nulls.

We have no experience with an actual implementation of this alternative, but i t i s almost
certainly an improvement over the linear length search described in [1] for C. Furthermore the
proposed implementation is very elegant since no distinction whatsoever needs to be made

between short and long string containers.

6 A S T R I N G S Library Module

Textbooks on present day programming languages abound with descriptions of procedures
(either library defined or standard) for string handling, so why bother to present ' just another
interface'. The motivation is that the present STRINGS module of Modular Pascal is not
the result of a quick design, but evolved over a number of years of careful deliberation into
its present form. As a result of this evolution it has not only proven to be widely applicable,
but it also contains several novel features not found in other string handling packages.

For a better understanding of the given procedure headings, note that apart from the
Pascal mechanisms of value- and var-parameters Modular Pascal provides const-parameters,
which may be thought of as 'write-protected' var-parameters, i.e. no value can be assigned to
them, nor can they be passed to procedures in vat-parameter positions. The symbol STRING

stands for a conformant packed character array parameter.
So here we go. The first set can be considered elementary and follows immediately from

the above descriptions:

CONST null_char = chr(O);

PROCEDURE init(VAR s: STRING);

(* makes s an empty string *)

FUNCTION is_empty(CONST s: STRING): boolean;

15

This function is actually superfluous because its result is equiva/ent to that off
cos(s) = lwb(s)

or, a/ternatively, to that of

s [lwb(s)] = null_char

for a/l but the empty string container.

PROCEDURE terminate(VAR s: STRING; e: integer);

PROCEDURE accept(VAR s: STRING);

PROCEDURE assign(VAR sl: STRING; CONST sr: STRING);

PROCEDURE append(VAR sl: STRING; CONST st: STRING);

This i s , as can be expected, the equiva/ent of C's s t r c a t .

PROCEDURE append_char(VAR s: STRING; c: char);

So far, there is very little new under the sun, but the following set of procedures illustrates a
very useful feature: an additional position (integer) variable is passed to the string handling
procedure by means of which the procedure can communicate its progress to the calling
environment. In all cases where two strings are involved, the first one contains the result and
is therefore terminated, so the string position designates a position in the second string.

FUNCTION next_char(CONST s: STRING; VAR pos: integer): char;

pos must be initialized to the position of the first character of s to be delivered, and is updated
to the next. Calling this function for every single character to be retrieved is not the utmost
of efficiency, but the elegance of this function lies in its delivering a null-character after the
last significant character, regardless of whether the null-character is actually encoded in the
string.

PROCEDURE append_upto(VAR sl: STRING; CONST st: STRING;

VAR pos: integer; c: char
);

This procedure appends the part of s r onto s l , starting at s r [p o s] upto (but not including)
the first occurrence of the character c in sr , or (if c is not found) upto the end of sr . Upon
completion pos satisfies:
(pos = e o s (s r)) OR (s r [p o s] = c)
The following procedures are analogous, except for their termination condition:

PROCEDURE append_upto_ccond(VAR sl: STRING; CONST sr: STRING;

VAR pos: integer;

FUNCTION ccond(c: char): boolean
);

Upon completion: (pos = e o s (s r) OR c c o n d (s r [p o s]))
And to allow other forms of termination than on account of the character value itself:

16

PROCEDURE append_upto_pcond(VAR sl: STRING; CONST sr: STRING;

VAR pos: integer;
FUNCTION pcond(p: integer): boolean

);

Upon completion: (pos = sos(st) OR pcond(pos))
Note the interesting hierarchy present in this set of procedures; in the following list each one
can be expressed in terms of the next one!

assign
\/ (* after an init *)

append
\/ (* using null_char for c $)

append_upto
\/ (* using sr[pos] = c for ccond(c) *)

append_upt o_ ccond
\/ (* using ccond(s[p]) for pcond(p) *)

append_upto_pcond

Finally, string comparison follows the suggestion made in [i, page 66] where an integer result
is returned, of which only its comparison with 0 is relevant. This is a very general technique
that can be applied to virtually any data type for which a total ordering is defined. It not
only obviates the necessity to write several comparison operators (we need at least two: <
and =, the others can be made by negation and interchanging of operands), but it also may
significantly save in cases where the outcome of a single boolean operator is insufficient, as,
for example, in dealing with binary search trees. (Are we reinventing FORTRAN's three way

branch?)

FUNCTION compare(CONST sl, s2: STRING): integer;
VAR pl, p2: integer; cl, c2: char;
BEGIN pl := 0; p2 := O;

REPEAT cl := next_char(sl, pl); c2 := nex%_char(s2, p2)
UNTIL (cl <> c2) OR (el = null_char);
compare := ord(cl) - ord(c2)

END ;

Note how even a small algorithm like this can be full of subtlety.

6.1 C o m p a r i s o n w i t h a r e c e n t p r o p o s a l

The use of an additional position parameter in many of the string copying procedures com-
pares favorably with a very recent proposal[6], especially where efficiency is concerned.

The first example shows the construction of a new file name from a given one, merely by
changing its suffix (extension).

pos := 0;
append_upto(NewFileName, OldFileName, pos, '. ') ;

append(NewFileName, ' .PAG')

Note that this does the trick, regardless if the old file name did or did not have a suffix.
In the example the position parameter is not used~ but it could have been used to extract

17

the suffix of the old file name. Needless to say that this operation is itself encapsulated in
a procedure s e t _ s u f f i x which can be found in a Modular Pascal libraxy procedure for file
name manipulation.

The second example concerns a

FUNCTION Parse(VAR source: string; separator: string): string;

which splits the given string source in a header part (preceding the separator), which is
delivered as the function result, and the tail part (following the separator) which is left in
source . The implementation of Parse as given in [6] is itself inefficient because the separator
string must be located twice. This can easily be remedied by resorting to the 'low-level'
function pos. Worse is the inefficiency in the example demonstrating the use of Parse ,
where a command(string) with a first separator ':' and further separators ~,' is split into its
constituents. The tail of the input string is copied onto itself as many times as the number
of constituents in the command:

commandname := Before(command, ' : ');
parms := A f t e r (command, ' : ');
i := O;

WHILE Length(parms) > 0 DO BEGIN
i := i + 1; parm[i] := Parse(parms,

END

, ,)

With the position parameter of our STRINGS module, the solution (using a small local
declaration for text compactification) would read:

PROCEDURE ass_upto(VAR part: STRING; sep: char);

BEGIN init(part);

append_upto(part, command, pos, sep);

pos := pos+ 1

END;
, , o , o

i := O; pos := O; epos := eos(command);

ass_upto(commandname, ':');
WHILE pos< epos D0 BEGIN

i := i + 1; ass_upto(parm[i], ',')

END

7 C o n c l u d i n g R e m a r k s

We have shown that it is possible to combine zero-termination (as is required by some system
environments) and an efficient determination of string length without making any demands
on existing language implementations. The proposal will work for any Pasca/-like implemen-
tation of strings. In particular, it should be noted that it can be adopted for Standard Pascal
(without conformant array parameters) by defining a type s t r i n g of sufficient length, and
adding, for a sufficient number of commonly expected lengths, routines of the form:
assign_lO(VAR sl: string; sr: string_lO)

the function of which typically consists of copying sr into sl, stripping off trailing blanks,
and terminating sl in the proper manner. Most Pascal implementations do not need such a

'kludge', as they accept short string literals where longer ones are expected.

18

R e f e r e n c e s

[1] Paul W. Abrahams, Some Sad Remarks About String Handling in C., SIGPLAN Notices
Vol.23, #10-(Oct. 88), 61-6-8

[2] Turbo Pascal 4.0 Owner's Handbook, Borland International, Scotts Valley, CA, U.S.A.

[3] C. Bron, E.J. Dijkstra, Report on the Programming Language Modular Pascal (3d Ed.),
Department of Computing Science, University of Groningen

[4] K. Jensen, N. Wirth, A.B. Mickel, J.F. Miner, Pascal User Manual and Report (3d Ed.),
Springer Verlag 1984

[5] N. Wirth, Programming in Modula-2, Springer Verlag 1982

[6] Dick Pountaln, Untangling Pascal Strings, BYTE (Dec. 1988), 307-314

19

