Lightweight Parametric Polymorphism for
Oberon

Paul Roe and Clemens Szyperski

Queensland University of Technology, Brisbane QLD 4001, Australia

Abstract. Strongly typed polymorphism is necessary for expressing safe
reusable code. T'wo orthogonal forms of polymorphism exist: inclusion
and parametric, the Oberon language only supports the former. We de-
scribe a simple extension to Oberon to support parametric polymor-
phism. The extension is in keeping with the Oberon language: it is simple
and has an explicit cost. In the paper we motivate the need for paramet-
ric polymorphism and describe an implementation in terms of translating
extended Oberon to standard Oberon.

1 Introduction

A key goal of Software Engineering is to support the production and use of
reusable code. Reusable code, by definition, is “generic” i.e. applicable in a num-
ber of different contexts. To guarantee that code is reused correctly strong typing
is desirable. Genericity in code can best be expressed by polymorphic types. Two
different forms of polymorphism have been identified: inclusion and parametric
[2]. In theory inclusion and parametric polymorphism are orthogonal concepts
and neither can be used to satisfactorily replace the other.

The Oberon language supports inclusion polymorphism via subtyping. This
permits a certain degree of safe code reuse to be achieved. However parametric
polymorphism cannot be safely expressed. This paper describes how paramet-
ric polymorphism can be incorporated into Oberon. The following results are
achieved:

— strict extension to Oberon

— relatively simple extension in the style of Oberon

— orthogonal to subtyping

— polymorphic routines can be statically type checked

— requires no change to a compiler back-end or run-time system

— polymorphic code is compiled to real object code shared by all instantiations
— polymorphic libraries can be separately compiled e.g. for DLLs

— incurs no run-time overhead, and can eliminate some type tests

The rest of this paper is organised as follows. Section 2 briefly describes
Oberon and its subtyping, for further information see e.g. [10, 12]. Section 3
describes the extension to Oberon. The implementation of parametric polymor-
phism 1s described in Section 4. The final sections describe further work, related
work and conclusions.

2 Motivation: Inclusion Polymorphism and Oberon

In Oberon we may define a list of heterogeneous objects (records) thus:

TYPE Base POINTER TO BaseDesc;
BaseDesc = RECORD END;

List = POINTER TO ListDesc;
ListDesc = RECORD elem: Base; next: List END;

The Base type is the type of list objects. For the list to support different sized
objects, objects must be represented via a reference. By extending the Base type
we can support lists of different objects, for example:

Point POINTER TO PointDesc;
PointDesc = RECORD (BaseDesc) x,y: REAL END;

Emp
EmpDesc

POINTER TO EmpDesc;
RECORD (BaseDesc)
name, address: String;
eno, level: INTEGER
END;

The Oberon syntax RECORD (BaseDesc) ...END indicates that the record type
extends an existing record type (namely BaseDesc). It is also possible to further
extend the EmpDesc and PointDesc objects.

To process a heterogeneous list of objects we need to distinguish between
different objects in order to determine how to process them. This is achieved by
dynamic type inspection or dynamic dispatch. Different procedures (methods),
but all with the same interface, may be bound to different types; thus depending
on the type, different procedures may be invoked. For example we may bind a
print method to each of the objects in the previous example, thus:

PROCEDURE (r: Base) Print;
END Print;

PROCEDURE (r: Emp) Print;
BEGIN Out.String(r~.name)
END Print;

PROCEDURE (r: Point) Print;
BEGIN Out.Real(r”~.x,0); Out.Real(r~.y,0)
END Print;

In the examples above r is the receiver object, a.k.a. self. (Note, strictly the
dereferencing operation () used above is redundant, but we leave it for those
readers more familiar with Pascal or Modula-2.) An object of type Base, Emp or
Point can be printed thus: x.Print. A general list printing procedure can be
written as follows:

PROCEDURE ListPrint(l: List);
VAR t: List;
BEGIN
t = 1;
WHILE t # NIL DO
IF t".elem # NIL THEN t~.elem.Print END;
t := t".next
END
END ListPrint;

This procedure 1s polymorphic, it will work on lists of any objects having type at
least Base. Furthermore it may be reused with new types of objects unknown at
the time ListPrint was written. If a new type is created which is a subtype of
Base, lists can be formed containing such objects, and they can be printed using
the above procedure: without any re-compilation or modification of ListPrint.
This kind of reuse arises from inclusion polymorphism (subtyping).

We may also define other useful routines such as a list length function:

PROCEDURE ListLen(l: List): INTEGER;
VAR len: INTEGER; t: List;
BEGIN
t :=1; len := 0;
WHILE t#NIL DO INC(len); t := t~.next END;
RETURN len
END ListLen;

and a list prepend procedure:

PROCEDURE ListPrepend(VAR x: List; y: Base);

VAR z: List;

BEGIN
NEW(z); z".elem := y; z".next := x;
X =z

END ListPrepend;

This list prepend procedure will prepend any object of type Base to any List.
Thus 1t always allows a heterogeneous list to be constructed. However sometimes
a more constrained version of prepend is required. For example an application
may utilise a list of employee descriptions (Emp), and it may be that the list
should only contain Emp or its subtypes. Thus we would like to prevent Base
type, Point type or any other type of element not a subtype of Emp from being
prepended to the list. This constraint should be statically enforceable by the
type system. However this is not possible in Oberon, all we can do is define a
new list type to contain Emp elements, and new functions on the type: thereby
eliminating code reuse — our goal

Another example of a routine which cannot be adequately expressed in
Oberon is the list map operation. This operation invokes a procedure on all
elements of a list:

TYPE BaseProc = PROCEDURE (x: Base);

PROCEDURE ListMap(p: BaseProc; 1: List);
VAR t: List;
BEGIN
t = 1;
WHILE t#NIL DO
p(t~.elem); t := t~.next
END
END ListMap;

Unfortunately the procedure argument must have an argument of type Base;
this is necessary since the list may be heterogeneous. However if we have a list
of at least Point type elements, and we wish to rotate them, we cannot use the
following procedure:

PROCEDURE Rotate(r: Point);

VAR t: REAL;
BEGIN

t :=r.x; r'.x = -(rr.y); r'.y =t
END Rotate;

Instead we must use a type test to dynamically check that the type really is at
least Point:

PROCEDURE BRotate(r: Base);
BEGIN Rotate(r(Point))
END BRotate;

(The type guard r(Point) asserts that r has at least type Point, if not the
program aborts.) This is a poor solution for implementing homogeneous lists.
We have no static guarantee that a homogeneous list will be constructed, and
even if it is we must pay the cost of unnecessary type tests and extra procedure
calls. Effectively what the above example has done is to simulate parametric
polymorphism in Oberon. However in doing so we are programming in an un-
typed way, with no static checking, rather like programming in Smalltalk. For
example there i1s nothing to stop a program being compiled with an invocation
like ListMap(BRotate, 1) where 1 is a list of Emp. The following section describes
an extension to Oberon which supports type checked parametric polymorphism.

3 Parametric Polymorphism for Oberon

We introduce parametric polymorphism via our previous example. A type may be
parametrised on types in much the same way as a procedure may be parametrised
on values. For example our previous list example may be parametrised on an
element type thus:

TYPE Ptr(4) POINTER TO 4;
List(4) Ptr(ListDesc(4));
ListDesc(A) = RECORD elem: Ptr(A); next: List(A) END;

We term List and ListDesc polymorphic (or poly) types and similarly we term
a type with no type parameters a monomorphic (or mono) type. Actual type
parameters of poly types may be “forward-declared”. We shall use the poly type
Ptr in place of POINTER TO in the remainder of this paper. In general a type
may have multiple type parameters. Some example lists are declared below:

VAR emplist : List(EmpDesc);
pointlist : List(PointDesc);
listpointlist : List(ListDesc(PointDesc));

A list having type List (EmpDesc) is statically guaranteed by the type system
to only contain elements of type at least EmpDesc. In addition to parametrising
types we can also parametrise procedures on types, for example:

PROCEDURE <A> ListPrepend (VAR x: List(A); y: Ptr(4));
VAR z: List(4);

BEGIN
NEW(z); z".elem := y; z".next := x;
X = z;

END ListPrepend;

Procedure type parameters are listed before the procedure name, enclosed in an-
gle brackets. The reason for this is that, unlike poly types, procedures do not have
actual type parameters supplied to them when they are used (invoked). Proce-
dure type parameters are scoped over the whole of the procedure body. The type
parameter in ListPrepend enables the procedure to operate on different types
of lists; furthermore the prepended element is guaranteed (by the type system)
to have the same, or a more specific, type as the list. For example the polymor-
phic list prepend procedure can be invoked thus: ListPrepend(emplist,e).
Although no actual type parameters are supplied each invocation is statically
checked to ensure the element being prepended matches the type of list elements.
The previous map function may be rewritten:

TYPE Proc(A) = PROCEDURE (x: Ptr(4));

PROCEDURE <A> ListMap (p: Proc(A); 1: List(A));
VAR t: List(4);
BEGIN
t = 1;
WHILE t#NIL DO
p(t~.elem); t := t~.next
END
END ListMap;

For example, this may be invoked thus: ListMap(Rotate,pointlist) or
ListMap(IncLevel,emplist), where IncLevel is defined thus:

PROCEDURE Inclevel(e: Emp);
BEGIN INC(e.level)
END InclLevel;

By combining Oberon’s inclusion polymorphism (subtyping) with parametric
polymorphism, the map procedure can be abstracted to work for entire families
of collections, not only lists:

TYPE Collection(A) = Ptr(CollectionDesc(4));
CollectionDesc(A) = RECORD
elem: Ptr(A)
END;

List(A) = Ptr(ListDesc(4));

ListDesc(A) = RECORD (CollectionDesc(A))
next: List(A4)

END;

Tree(A) = Ptr(TreeDesc(4));

TreeDesc(A) = RECORD (CollectionDesc(A))
left, right: Tree(4)

END;

PROCEDURE <A> (c: Collection(A)) Map (p: Proc(A));
BEGIN p(c.elem)
END Map;

PROCEDURE <A> (1: List(4)) Map (p: Proc(A));

BEGIN
1.Map~(p); (* "super call" to overridden procedure *)
IF l.next # NIL THEN 1l.next.Map(p) END

END Map;

PROCEDURE <A> (t: Tree(4)) Map (p: Proc(A));

BEGIN
IF t.left # NIL THEN t.left.Map(p) END;
1.Map~(p);
IF t.right # NIL THEN t.right.Map(p) END
END Map;

For example, it is now possible to abstractly map Rotate over a collection of
points Collection(PointDesc), regardless of whether the collection is actually
a list, a tree, or any other structure derived from the base type Collection(4).

3.1 Language Extension

This section describes details of the parametric polymorphism extension to
Oberon. The syntax of Oberon [10] is extended, by modifying TypeDec, ProcDec
and Type thus:

TypeDec = IdentDef [TypePars] ”=" Type

TypePars = 7(” [Ident {”,” Ident}] ”)”

ProcDec = PROCEDURE [PTypePars] [Receiver| IdentDef [FormalPars] etc.
PTypePars = ”<” [Ident {”,” Ident}] ”>"

Type = Qualident [TypeActs] | etc.

TypeACtS — ” (77 [Type {77’77 Type}] 77)77

Our language extension is a minimal one; a particular goal was to make
explicit any costs associated with parametric polymorphism, in keeping with
Oberon. A polymorphic value, by its very name, may have any shape and size.
Some languages support arbitrary use of polymorphism. However, supporting
this either entails an implicit run-time cost or prevents compilation of polymor-
phic routines. This 1s discussed further in Section 5.

Our solution to the problem is a simple one. We only support references to
poly values, analogous to subtyping restrictions in Oberon. That 1s all poly values
must be: explicitly referenced via pointers to poly values, implicitly referenced
via VAR parameters or procedure types. Thus all costs of polymorphism are
explicit.

Our approach could be broadened to also support polymorphism over any
pointer sized objects. This trick is used by C programmers and for supporting
Modula-2 opaque types. However this is rather implementation dependent, and
may necessitate the introduction of procedure wrappers and closures, hence we
prefer not to do this.

The following describes our language extension. Two new forms of type ab-
straction (type parametrisation) are introduced:

1. Parametrised type declarations, e.g. TYPE List(A) = T, ;. The type para-
meter A is scoped over the single type declaration T¢gp.

2. Parametrised procedure declarations, e.g. PROCEDURE <A> Foo (1: List(A4)),
but not parametrised procedure type declarations!. For example a procedure
type may be declared thus: P(A) = PROCEDURE (1: List(A)), but the fol-
lowing is #llegal: P = PROCEDURE <A> (1: List(4)).

The following restrictions on the use of poly types and type parameters guar-
antee the explicit cost model previously described. A poly type or type parameter
can only be used in the following type contexts:

1. a pointer to a type parameter, e.g. POINTER TO A
2. a var parameter, e.g. PROCEDURE <A> Foo (VAR x:A)
3. a poly type application, where the actual type parameter is:

! This restricts our system to rank one polymorphism.

(a) a record type, e.g. List (EmpDesc)
(b) a type parameter, e.g. List (B)

4. an uninstantiated polymorphic receiver object?, for example: PROCEDURE
<A> (List(A)) Foo is legal, but PROCEDURE <A> (List(EmpDesc)) Foo is
llegal.

Instantiated poly record types do not have subtype relationships induced by
their actual type parameters; this follows naturally from standard Oberon, and is
strictly necessary to be type safe. For example although PointDesc is a subtype
of BaseDesc, List(PointDesc) is not a subtype of List (BaseDesc). This is the
reason why methods cannot be bound to instantiated poly types.

A variable of poly type has no accessible methods or fields, unless its type is
constrained via a type guard or WITH statement. The type guard, type test and
WITH constructs can all operate on polymorphic values, e.g:

PROCEDURE <A> Foo (p:Ptr(4));
BEGIN

IF (p#NIL) & (p IS Emp) THEN p(Emp)~.eno := 123 END
END Foo;

A procedure may introduce new type parameters. Type parameters are scoped
over the whole procedure definition. Angle brackets are used to distinguish type
parameters from procedure receiver objects, and also to indicate that they do
not need to be, and indeed cannot be, supplied on procedure invocation. This
latter point is important, we do not want to overburden the program or pro-
grammer with specifying types; actual types of actual parameters are supplied
implicitly to procedures, so are poly types. We wish to encourage the reuse of
parametric poly procedures; thus syntactically they should be no more expensive
to use than ordinary monomorphic procedures.

3.2 Type Checking Rules

The instantiation of a poly type does not create a new type; therefore poly
types are type equivalent by structure. Type aliasing of poly types follows that
of ordinary Oberon types.

Within a procedure declaration, a type parameter is only type compatible
with itself; thus the following is type correct:

PROCEDURE <A> Foo (x: Ptr(A)): Ptr(a);
BEGIN RETURN x
END Foo;

but the procedure below is type incorrect:

2 In addition the most general receiver objects PROCEDURE <A> (r:Ptr(A)) Foo and
PROCEDURE <A> (VAR r:A) Foo are also illegal.

PROCEDURE <A,B> Foo (x: Ptr(A)): Ptr(B);
BEGIN RETURN x
END Foo;

since x has type Ptr(4) which is not type compatible with Ptr(B). The proce-
dure header states that & and B may be different types; therefore they are not
type compatible. Effectively in the procedure, & and B are abstract types which
cannot be manipulated other than by: inspecting their type with type tests and
type guards, and passing them to other polymorphic procedures.

To understand how a procedure invocation is typed it is necessary to explain
what type a poly procedure has. Polymorphic procedures may be used with dif-
ferent types, therefore we can represent a poly procedure’s type as a universally
quantified type. For example consider the three procedure headers below:

PROCEDURE <A> Id(x: Ptr(4a)): Ptr(Ad);
PROCEDURE <A,B> K(x: Ptr(A); y: Ptr(B)): Ptr(A);
PROCEDURE <A> Pick(x,y: Ptr(A)): Ptr(A);

We may give them the following formal types:

VA. (Ptr(A)): Ptr(A4)
VA, B. (Ptr(A), Ptr(B)): Ptr(A4)
VA. (Ptr(A), Ptr(A)): Ptr(A4)

To type the use of a procedure (call or assignment to a procedure variable)
its type must unify with the types of its context and any actual parameters.
Consider the program fragment below:

TYPE S = Ptr(Srec); Srec = RECORD END;
T = Ptr(Trec); Trec = RECORD (Srec) END;
U = Ptr(Urec); Urec = RECORD (Srec) END;

VAR s:S; ©:T; u:U;

An expression such as Id(t) will type with the unifier A — T, and hence
t:=Id(t) or s:=Id(t) will type correctly. Similarly K(t,u) will type with uni-
fier A — T, B — U. However in general subtyping requires a more sophisticated
form of unification to be used. For example the expression s:=Pick(t,s) should
type, but the expression t:=Pick(t,s) should not (a valid implementation of
Pick is to simply return its second argument). To handle these cases unifiers
need to be refined using a least upper bound rule for subtypes. For example
consider the expression Pick(t,s), matching the type of t to A, in the type of
Pick above, should produce a unifier A — T. Subsequently matching s to A with
the previous unifier A — T should produce a refined unifier (least upper bound
of T and S) of A — S. Thus the result of Pick(t,s) has type S, not T. Similarly
the result of Pick(t,u) has type S; since the least upper bound of T and U is S.

4 Implementation

In this section we describe an implementation of the parametric polymorphism
extension to Oberon. The implementation of the extended type system is briefly

described and code generation is described in terms of rewrite rules, which map
extended Oberon to standard Oberon. The rewrite rules show how our extension
can be implemented, that the extension has no associated run-time cost, and that
no modifications to the run-time system or compiler back-end are necessary. A
prototype system to type check extended Oberon and translate it to standard
Oberon is being constructed [17].

4.1 Type Checking

Type checking can be performed by a modified Oberon type checker which per-
forms unification and refinement of unified subtypes. It is desirable to reduce
all poly types to normal form. This aids type checking by eliminating any un-
necessary intermediate poly types. The body of a poly procedure can be simply
checked by treating all poly types as new types. Poly procedures can be used
with different types. Therefore when a poly routine is typed, its type parameters
must be distinguished from those of different uses of the same routine. Further-
more when a context constrains an instance of a type parameter all other related
instances must also be constrained. To implement this when a poly procedure is
used its formal type is copied and fresh type variables are substituted for bound
type parameters. This is a standard technique, see e.g. [1]. Type variables are
instantiated, like logical variables, during type checking, and are also subject to
refinement, as described in the Section 3.2.

4.2 Rewrite Rules

Our rewrite rules map extended Oberon to standard Oberon. Poly values (in-
stantiated or not) are restricted to be references; these fall into three categories:
explicit record pointers, implicit record pointers via var parameters or function
pointers in the case of poly procedure values. Poly values in each category have
the same representation for different record types; this is already required in
order for standard Oberon’s subtyping to work. Thus, there is no difference be-
tween the run-time representation of ordinary values in each category from poly
ones; since all values in each category have the same representation. (Note that
not all mono values can be used in poly contexts.) Therefore all that is required
is to map an extended Oberon program to correct standard Oberon. We assume
that the program has already been type checked by the extended Oberon type
checker which checks poly and mono types.

We can identify two places where the rewrite rules must map extended
Oberon to standard Oberon: type declarations and type expressions, and pro-
gram statements and expressions. In the first case all poly type declarations of
the form: TYPE T(A;...A,) = TE are rewritten to TYPE T = TE’, where TE’
is the result of recursively rewriting the type expression TE. Any instance of
a type parameter in a type expression is rewritten to ANYRECORD the standard
base record type®. Similarly any procedure declaration introducing poly types is

® We assume a standard type ANYRECORD that is the base type of all records that have

rewritten without them, recursively mapping any instances of type parameters
to ANYRECORD.

The second case concerns program statements and expressions. As previously
mentioned all poly types, instantiated or uninstantiated, have the same repre-
sentation as their mono type instances. Thus to coerce values between poly types
and mono types (and vice versa) requires no change of representation; all that
is required is a cast between the appropriate types. This can be achieved using
SYSTEM.VAL; a caveat is that the exact behaviour of this operation is undefined*.
The following rewrites are necessary:

1. Any dereference or NEW operations on instantiated poly pointer types require
the pointer to be cast to the appropriate pointer type.

2. A procedure object may be used in a more specific or more general context
than its type would allow; in which case it must be cast to the type required
by its context.

Note a type guard on a poly type effectively instantiates the poly type.
An example rewrite is shown below; the extended Oberon program:

TYPE Ptr(4) POINTER TO A;

List(4) = Ptr(ListDesc(4));
ListDesc(A) = RECORD elem: Ptr(A); next: List(A) END;
Proc(4) = PROCEDURE (x: Ptr(4));

VAR el: List(EmpDesc); pl: List(PointDesc);

PROCEDURE <A> ListMap (p: Proc(A); 1: List(A));
VAR t: List(4);
BEGIN
t = 1;
WHILE t#NIL DO
p(t~.elem); t := t~.next
END
END ListMap;

NEW(el); NEW(el".elem);

1s rewritten to:

TYPE Ptr = POINTER TO ANYRECORD;
List = Ptr;
ListDesc = RECORD elem: Ptr; next: List END;
Proc = PROCEDURE (x: Ptr);

no declared base type. If unavailable, such a type can be introduced as part of the
rewriting process.

* We utilise SYSTEM.VAL in a completely general way. For some compilers we would
need to translate some casts a little differently.

VAR el: List; pl: List;

PROCEDURE ListMap (p: Proc; 1: List);
VAR t: List;
BEGIN
t = 1;
WHILE t#NIL DO
p(SYSTEM.VAL(ListDesc,t”).elem);
t := SYSTEM.VAL(ListDesc,t”).next
END
END ListMap;

NEW(SYSTEM.VAL(POINTER TO ListDesc,el));
NEW(SYSTEM.VAL(Emp, (SYSTEM.VAL(POINTER TO ListDesc,el))”.elem));

5 Related Work

Many languages have facilities for supporting some sort of parametric polymor-
phism. Table 1 categorises some prominent examples by the properties of their
respective facilities.

language generics are | coexistence |real object codelall run-time
group type checked|with inclusion | generated from | costs are
polymorphism | generics explicit
CLU, Ada 83 yes none no yes
ML, Napier-88 yes none yes no
C++, Modula-3 no orthogonal no yes
Ada 95 yes orthogonal no no
Eiffel, Sather, Theta yes bounded poly yes no
Extended Oberon yes orthogonal yes yes

Table 1. Categories of Parametric Polymorphism

Approaches that neither support type checking of polymorphic code, nor gen-
eration of shared object code really are just glorified macros (Modula-3 generic
modules; C4++ templates).

Constrained parametric polymorphism was first introduced for CLU [6, 7].
Parametric polymorphism for a Pascal like language was proposed by Tennent in
[16]. All functional programming languages in the tradition of ML, and some re-
lated languages, such as Napier-88 [9] support parametric polymorphism. Many
modern object-oriented languages also support parametric polymorphism, in-
cluding Eiffel [8], Sather [14, 15], or Theta [3, 5]. In all these languages the run
time cost of using parametric polymorphism is hidden.

Hidden costs are caused by the use of uniform representations for all values in
shared polymorphic code. Such representations have to cater for all types, irre-
spective of size. Usually the uniform representation is an indirection to the nat-
ural representation: often called a bozed representation. When a value is moved
between a poly and mono context, coercion is used to convert values between rep-
resentations: often called boxing/unboxing. However boxing and unboxing is an
implicit cost involving hidden operations such as heap allocation. Furthermore
boxing can necessitate the use of closures to support partial applications of pro-
cedures to types. In extended Oberon we avoid these hidden costs by restricting
poly types to references.

In untyped languages such as Lisp or Smalltalk, where every context is
polymorphic, a uniform representation must be used everywhere, e.g. Lisp S-
expressions. However this is rather inefficient. Optimisation, such as dynamic
compilation, is possible, but still incurs hidden costs.

A way to avoid hidden costs without restricting instantiations is to give
up on sharing code and instead generate code for each instantiation, e.g. Ada
style generics. This leads to code explosion and prevents construction of generic
dynamically linkable libraries. In addition to leading to code explosion, Ada-style
generics are relatively heavyweight, as they require explicit instantiation before
use and therefore make extensions to existing generics subtle and complicated®.

Various unsafe practices that do not cause any run-time cost and allow for the
sharing of object code are in common use to simulate parametric polymorphism
in languages that do not support it, demonstrating the need for safe and efficient
language-level support. Examples are unsafe type casts in C or unsafe constructs
closed off by multiple safe interfaces such as Gough’s Device (Chapter 7 in [4]).

Recently some work similar to ours has investigated parametric polymor-
phism for an abstract imperative language called Polymorphic C [13]. This also
restricts parametric polymorphism to pointers. However, the emphasis of this
work 1s more theoretical than ours: a formal type system is presented and type
soundness proven, but no implementation exists. Our work concentrates on the
smooth practical integration of parametric polymorphism with an existing lan-
guage, Oberon. The relationship between our work and Polymorphic C requires
further investigation.

6 Further Work

There are several areas which we wish to pursue further. It is desirable to sup-
port parametric polymorphism over arrays. The present implementation strategy
could support this providing references to arrays (explicit and implicit) have the
same representation as references to records; since a poly procedure must be
capable of accepting either references to records or arrays. An alternative would
be to perform a run-time test, but this is not in keeping with our zero cost
implementation strategy.

® Extensions have to define a local instantiation that is parametrised with the type
parameters of the extending generic.

More general combinations of inclusion and parametric polymorphism are
possible, for example bounded polymorphism [2]. With the polymorphism intro-
duced effectively all poly types must be at least ANYRECORD, for example:

PROCEDURE <A> ListMap (p: Proc(A); 1: List(A));

the ListMap procedure will operate on all values of type A, from ANYRECORD
downwards in the subtype hierarchy. The procedure can assume nothing about
the type of A, and hence its fields and methods. Thus it is rather like saying
A must be at least of type ANYRECORD. A more powerful form of polymorphism
than that proposed here allows the type of A to be bounded. However, there are
also known pitfalls of general bounded polymorphism [11].

It is desirable to develop a library of poly routines and poly types for Oberon,
as has been successfully done for Smalltalk and C++ (STL).

We have produced a translator which rewrites extended Oberon to standard
Oberon; we wish to incorporate extended Oberon into our standard compiler.

7 Conclusions

Parametric polymorphism supports type parametrisation, just as procedures
support code parametrisation. As such, this is a proven and well-established con-
cept and part of many languages. Parametric polymorphism does not interfere
with or substitute inclusion polymorphism (subtyping), but the two mutually
benefit from each other. When properly designed and implemented, parametric
polymorphism improves type safety, maintainability and reusability of code.

In current languages, parametric polymorphism comes at one of two costs. Ei-
ther polymorphic code cannot be separately compiled into shared generic object
code, or the use of such shared code incurs significant hidden costs. Languages
in the former category simply generate code for each instantiation of a generic,
leading to code explosion and, possibly worse, preventing the construction of
generic dynamic link libraries. Languages in the latter category, which hide run-
time costs, can significantly affect the programmer’s control over execution cost
in time and space.

In this paper we presented a simple extension to the language Oberon that is
lightweight in all dimensions. The extension is carefully restricted to simultane-
ously support type checking and full separate compilation of polymorphic code
and to not introduce any run-time cost in time or space. The extension is not
only simple but also strictly upwards compatible with Oberon. The extension
only affects the front-end of a compiler: after type checking, extended Oberon
can be rewritten into standard Oberon.

Acknowledgements

We would like to thank Jurgen Wendel for implementing our ideas in the form
of an extended Oberon to Oberon translator, and for his comments on a draft

of this paper. This work was partially funded by ARC grant ARCSG 55, 7056.

References

1.

2.

10.
11.

12.

13.

14.

15.

16.
17.

A V Aho, R Sethi, and J D Ullman. Compilers, principles, techniques, and tools.
Addison-Wesley, 1986.

L. Cardelli and P Wegner. On understanding types, data abstraction, and poly-
morphism. Computing Surveys, 17(4):471-522, December 1985.

M Day, R Gruber, B Liskov, and A Myers. Subtypes vs. Where Clauses: Con-
straining parametric polymorphism. In Proc, 10th Conf on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’95), pages 156-168,
October 1995.

. K J Gough and G M Mohay. Modula-2: A Second Course in Programming. Pren-

tice Hall, 1988.

. B Liskov, D Curtis, M Day, S Ghemawat, R Gruber, P Johnson, and A C Myers.

Theta Reference Manual, preliminary version. Programming Methodology Group
Memo 88, MIT Laboratory for Computer Science, Cambridge, MA, February 1995.
B Liskov and J Guttag. Abstraction and Specification in Program Development.
MIT Press, 1986.

B Liskov, A Snyder, R Atkinson, and C Schaffert. Abstraction mechanisms in clu.
Comm ACM, 20(8):564-576, August 1977.

B Meyer. Fiffel - The Language. Prentice Hall, 2 edition, 1992.

R Morrison, A Dearle, R C H Connor, and A L. Brown. An ad-hoc approach to
the implementation of polymorphism. ACM TOPLAS, 13(3):342-371, 1991.

H Mossenbock. Object-Oriented Programming in Oberon-2. Springer Verlag, 1993.
B C Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131-165, July 1994.

M Reiser and N Wirth. Programming in Oberon — Steps beyond Pascal and Modula.
Addison-Wesley, 1992.

G Smith and D Volpano. Towards an ML-style Polymorphic Type System for C.
In 1996 Furpoean Symposium on Programming, Linkoping, Sweden, April 1996.
D Stoutamire and S Omohundro. Sather 1.1. Technical report, International Com-
puter Science Institute, Berkeley, CA, 1996.

C Szyperski, S Omohundro, and S Murer. Engineering a Programming
Languager— the Type and Class System of Sather. In Proc, 1st Intl Conf on
Programming Languages and System Architectures, number 782 in Springer LNCS,
Zurich, Switzerland, March 1994.

R D Tennent. Principles of Programming Languages. Prentice Hall Int., 1981.

J Wendel. Parametric Polymorphism for Oberon. Technical report, Faculty of
Information Technology, QUT, Brisbane, in preparation.

This article was processed using the ITEX macro package with LLNCS style

