
Lightweight Parametric Polymorphism forOberonPaul Roe and Clemens SzyperskiQueensland University of Technology, Brisbane QLD 4001, AustraliaAbstract. Strongly typed polymorphism is necessary for expressing safereusable code. Two orthogonal forms of polymorphism exist: inclusionand parametric, the Oberon language only supports the former. We de-scribe a simple extension to Oberon to support parametric polymor-phism. The extension is in keeping with the Oberon language: it is simpleand has an explicit cost. In the paper we motivate the need for paramet-ric polymorphism and describe an implementation in terms of translatingextended Oberon to standard Oberon.1 IntroductionA key goal of Software Engineering is to support the production and use ofreusable code. Reusable code, by de�nition, is \generic" i.e. applicable in a num-ber of di�erent contexts. To guarantee that code is reused correctly strong typingis desirable. Genericity in code can best be expressed by polymorphic types. Twodi�erent forms of polymorphism have been identi�ed: inclusion and parametric[2]. In theory inclusion and parametric polymorphism are orthogonal conceptsand neither can be used to satisfactorily replace the other.The Oberon language supports inclusion polymorphism via subtyping. Thispermits a certain degree of safe code reuse to be achieved. However parametricpolymorphism cannot be safely expressed. This paper describes how paramet-ric polymorphism can be incorporated into Oberon. The following results areachieved:{ strict extension to Oberon{ relatively simple extension in the style of Oberon{ orthogonal to subtyping{ polymorphic routines can be statically type checked{ requires no change to a compiler back-end or run-time system{ polymorphic code is compiled to real object code shared by all instantiations{ polymorphic libraries can be separately compiled e.g. for DLLs{ incurs no run-time overhead, and can eliminate some type testsThe rest of this paper is organised as follows. Section 2 brie
y describesOberon and its subtyping, for further information see e.g. [10, 12]. Section 3describes the extension to Oberon. The implementation of parametric polymor-phism is described in Section 4. The �nal sections describe further work, relatedwork and conclusions.



2 Motivation: Inclusion Polymorphism and OberonIn Oberon we may de�ne a list of heterogeneous objects (records) thus:TYPE Base = POINTER TO BaseDesc;BaseDesc = RECORD END;List = POINTER TO ListDesc;ListDesc = RECORD elem: Base; next: List END;The Base type is the type of list objects. For the list to support di�erent sizedobjects, objects must be represented via a reference. By extending the Base typewe can support lists of di�erent objects, for example:Point = POINTER TO PointDesc;PointDesc = RECORD (BaseDesc) x,y: REAL END;Emp = POINTER TO EmpDesc;EmpDesc = RECORD (BaseDesc)name, address: String;eno, level: INTEGEREND;The Oberon syntax RECORD (BaseDesc) : : :END indicates that the record typeextends an existing record type (namely BaseDesc). It is also possible to furtherextend the EmpDesc and PointDesc objects.To process a heterogeneous list of objects we need to distinguish betweendi�erent objects in order to determine how to process them. This is achieved bydynamic type inspection or dynamic dispatch. Di�erent procedures (methods),but all with the same interface, may be bound to di�erent types; thus dependingon the type, di�erent procedures may be invoked. For example we may bind aprint method to each of the objects in the previous example, thus:PROCEDURE (r: Base) Print;END Print;PROCEDURE (r: Emp) Print;BEGIN Out.String(r^.name)END Print;PROCEDURE (r: Point) Print;BEGIN Out.Real(r^.x,0); Out.Real(r^.y,0)END Print;In the examples above r is the receiver object, a.k.a. self. (Note, strictly thedereferencing operation (^) used above is redundant, but we leave it for thosereaders more familiar with Pascal or Modula-2.) An object of type Base, Emp orPoint can be printed thus: x.Print. A general list printing procedure can bewritten as follows:



PROCEDURE ListPrint(l: List);VAR t: List;BEGINt := l;WHILE t # NIL DOIF t^.elem # NIL THEN t^.elem.Print END;t := t^.nextENDEND ListPrint;This procedure is polymorphic, it will work on lists of any objects having type atleast Base. Furthermore it may be reused with new types of objects unknown atthe time ListPrint was written. If a new type is created which is a subtype ofBase, lists can be formed containing such objects, and they can be printed usingthe above procedure: without any re-compilation or modi�cation of ListPrint.This kind of reuse arises from inclusion polymorphism (subtyping).We may also de�ne other useful routines such as a list length function:PROCEDURE ListLen(l: List): INTEGER;VAR len: INTEGER; t: List;BEGINt := l; len := 0;WHILE t#NIL DO INC(len); t := t^.next END;RETURN lenEND ListLen;and a list prepend procedure:PROCEDURE ListPrepend(VAR x: List; y: Base);VAR z: List;BEGINNEW(z); z^.elem := y; z^.next := x;x := zEND ListPrepend;This list prepend procedure will prepend any object of type Base to any List.Thus it always allows a heterogeneous list to be constructed. However sometimesa more constrained version of prepend is required. For example an applicationmay utilise a list of employee descriptions (Emp), and it may be that the listshould only contain Emp or its subtypes. Thus we would like to prevent Basetype, Point type or any other type of element not a subtype of Emp from beingprepended to the list. This constraint should be statically enforceable by thetype system. However this is not possible in Oberon, all we can do is de�ne anew list type to contain Emp elements, and new functions on the type: therebyeliminating code reuse { our goal.Another example of a routine which cannot be adequately expressed inOberon is the list map operation. This operation invokes a procedure on allelements of a list:



TYPE BaseProc = PROCEDURE (x: Base);PROCEDURE ListMap(p: BaseProc; l: List);VAR t: List;BEGINt := l;WHILE t#NIL DOp(t^.elem); t := t^.nextENDEND ListMap;Unfortunately the procedure argument must have an argument of type Base;this is necessary since the list may be heterogeneous. However if we have a listof at least Point type elements, and we wish to rotate them, we cannot use thefollowing procedure:PROCEDURE Rotate(r: Point);VAR t: REAL;BEGINt := r^.x; r^.x := -(r^.y); r^.y := tEND Rotate;Instead we must use a type test to dynamically check that the type really is atleast Point:PROCEDURE BRotate(r: Base);BEGIN Rotate(r(Point))END BRotate;(The type guard r(Point) asserts that r has at least type Point, if not theprogram aborts.) This is a poor solution for implementing homogeneous lists.We have no static guarantee that a homogeneous list will be constructed, andeven if it is we must pay the cost of unnecessary type tests and extra procedurecalls. E�ectively what the above example has done is to simulate parametricpolymorphism in Oberon. However in doing so we are programming in an un-typed way, with no static checking, rather like programming in Smalltalk. Forexample there is nothing to stop a program being compiled with an invocationlike ListMap(BRotate,l)where l is a list of Emp. The following section describesan extension to Oberon which supports type checked parametric polymorphism.3 Parametric Polymorphism for OberonWe introduce parametric polymorphismvia our previous example. A type may beparametrised on types in much the same way as a procedure may be parametrisedon values. For example our previous list example may be parametrised on anelement type thus:



TYPE Ptr(A) = POINTER TO A;List(A) = Ptr(ListDesc(A));ListDesc(A) = RECORD elem: Ptr(A); next: List(A) END;We term List and ListDesc polymorphic (or poly) types and similarly we terma type with no type parameters a monomorphic (or mono) type. Actual typeparameters of poly types may be \forward-declared". We shall use the poly typePtr in place of POINTER TO in the remainder of this paper. In general a typemay have multiple type parameters. Some example lists are declared below:VAR emplist : List(EmpDesc);pointlist : List(PointDesc);listpointlist : List(ListDesc(PointDesc));A list having type List(EmpDesc) is statically guaranteed by the type systemto only contain elements of type at least EmpDesc. In addition to parametrisingtypes we can also parametrise procedures on types, for example:PROCEDURE <A> ListPrepend (VAR x: List(A); y: Ptr(A));VAR z: List(A);BEGINNEW(z); z^.elem := y; z^.next := x;x := z;END ListPrepend;Procedure type parameters are listed before the procedure name, enclosed in an-gle brackets. The reason for this is that, unlike poly types, procedures do not haveactual type parameters supplied to them when they are used (invoked). Proce-dure type parameters are scoped over the whole of the procedure body. The typeparameter in ListPrepend enables the procedure to operate on di�erent typesof lists; furthermore the prepended element is guaranteed (by the type system)to have the same, or a more speci�c, type as the list. For example the polymor-phic list prepend procedure can be invoked thus: ListPrepend(emplist,e).Although no actual type parameters are supplied each invocation is staticallychecked to ensure the element being prepended matches the type of list elements.The previous map function may be rewritten:TYPE Proc(A) = PROCEDURE (x: Ptr(A));PROCEDURE <A> ListMap (p: Proc(A); l: List(A));VAR t: List(A);BEGINt := l;WHILE t#NIL DOp(t^.elem); t := t^.nextENDEND ListMap;



For example, this may be invoked thus: ListMap(Rotate,pointlist) orListMap(IncLevel,emplist), where IncLevel is de�ned thus:PROCEDURE IncLevel(e: Emp);BEGIN INC(e.level)END IncLevel;By combining Oberon's inclusion polymorphism (subtyping) with parametricpolymorphism, the map procedure can be abstracted to work for entire familiesof collections, not only lists:TYPE Collection(A) = Ptr(CollectionDesc(A));CollectionDesc(A) = RECORDelem: Ptr(A)END;List(A) = Ptr(ListDesc(A));ListDesc(A) = RECORD (CollectionDesc(A))next: List(A)END;Tree(A) = Ptr(TreeDesc(A));TreeDesc(A) = RECORD (CollectionDesc(A))left, right: Tree(A)END;PROCEDURE <A> (c: Collection(A)) Map (p: Proc(A));BEGIN p(c.elem)END Map;PROCEDURE <A> (l: List(A)) Map (p: Proc(A));BEGINl.Map^(p); (* "super call" to overridden procedure *)IF l.next # NIL THEN l.next.Map(p) ENDEND Map;PROCEDURE <A> (t: Tree(A)) Map (p: Proc(A));BEGINIF t.left # NIL THEN t.left.Map(p) END;l.Map^(p);IF t.right # NIL THEN t.right.Map(p) ENDEND Map;For example, it is now possible to abstractly map Rotate over a collection ofpoints Collection(PointDesc), regardless of whether the collection is actuallya list, a tree, or any other structure derived from the base type Collection(A).



3.1 Language ExtensionThis section describes details of the parametric polymorphism extension toOberon. The syntax of Oberon [10] is extended, by modifying TypeDec, ProcDecand Type thus:TypeDec = IdentDef [TypePars] "=" TypeTypePars = "(" [Ident f"," Identg] ")"ProcDec = PROCEDURE [PTypePars] [Receiver] IdentDef [FormalPars] etc.PTypePars = "<" [Ident f"," Identg] ">"Type = Qualident [TypeActs] j etc.TypeActs = "(" [Type f"," Typeg] ")"Our language extension is a minimal one; a particular goal was to makeexplicit any costs associated with parametric polymorphism, in keeping withOberon. A polymorphic value, by its very name, may have any shape and size.Some languages support arbitrary use of polymorphism. However, supportingthis either entails an implicit run-time cost or prevents compilation of polymor-phic routines. This is discussed further in Section 5.Our solution to the problem is a simple one. We only support references topoly values, analogous to subtyping restrictions in Oberon. That is all poly valuesmust be: explicitly referenced via pointers to poly values, implicitly referencedvia VAR parameters or procedure types. Thus all costs of polymorphism areexplicit.Our approach could be broadened to also support polymorphism over anypointer sized objects. This trick is used by C programmers and for supportingModula-2 opaque types. However this is rather implementation dependent, andmay necessitate the introduction of procedure wrappers and closures, hence weprefer not to do this.The following describes our language extension. Two new forms of type ab-straction (type parametrisation) are introduced:1. Parametrised type declarations, e.g. TYPE List(A) = Texp;. The type para-meter A is scoped over the single type declaration Texp.2. Parametrised procedure declarations, e.g. PROCEDURE <A> Foo (l: List(A)),but not parametrised procedure type declarations1. For example a proceduretype may be declared thus: P(A) = PROCEDURE (l: List(A)), but the fol-lowing is illegal: P = PROCEDURE <A> (l: List(A)).The following restrictions on the use of poly types and type parameters guar-antee the explicit cost model previously described. A poly type or type parametercan only be used in the following type contexts:1. a pointer to a type parameter, e.g. POINTER TO A2. a var parameter, e.g. PROCEDURE <A> Foo (VAR x:A)3. a poly type application, where the actual type parameter is:1 This restricts our system to rank one polymorphism.



(a) a record type, e.g. List(EmpDesc)(b) a type parameter, e.g. List(B)4. an uninstantiated polymorphic receiver object2, for example: PROCEDURE<A> (List(A)) Foo is legal, but PROCEDURE <A> (List(EmpDesc)) Foo isillegal .Instantiated poly record types do not have subtype relationships induced bytheir actual type parameters; this follows naturally from standard Oberon, and isstrictly necessary to be type safe. For example although PointDesc is a subtypeof BaseDesc, List(PointDesc) is not a subtype of List(BaseDesc). This is thereason why methods cannot be bound to instantiated poly types.A variable of poly type has no accessible methods or �elds, unless its type isconstrained via a type guard or WITH statement. The type guard, type test andWITH constructs can all operate on polymorphic values, e.g:PROCEDURE <A> Foo (p:Ptr(A));BEGINIF (p#NIL) & (p IS Emp) THEN p(Emp)^.eno := 123 ENDEND Foo;A procedure may introduce new type parameters. Type parameters are scopedover the whole procedure de�nition. Angle brackets are used to distinguish typeparameters from procedure receiver objects, and also to indicate that they donot need to be, and indeed cannot be, supplied on procedure invocation. Thislatter point is important, we do not want to overburden the program or pro-grammer with specifying types; actual types of actual parameters are suppliedimplicitly to procedures, so are poly types. We wish to encourage the reuse ofparametric poly procedures; thus syntactically they should be no more expensiveto use than ordinary monomorphic procedures.3.2 Type Checking RulesThe instantiation of a poly type does not create a new type; therefore polytypes are type equivalent by structure. Type aliasing of poly types follows thatof ordinary Oberon types.Within a procedure declaration, a type parameter is only type compatiblewith itself; thus the following is type correct:PROCEDURE <A> Foo (x: Ptr(A)): Ptr(A);BEGIN RETURN xEND Foo;but the procedure below is type incorrect:2 In addition the most general receiver objects PROCEDURE <A> (r:Ptr(A)) Foo andPROCEDURE <A> (VAR r:A) Foo are also illegal.



PROCEDURE <A,B> Foo (x: Ptr(A)): Ptr(B);BEGIN RETURN xEND Foo;since x has type Ptr(A) which is not type compatible with Ptr(B). The proce-dure header states that A and B may be di�erent types; therefore they are nottype compatible. E�ectively in the procedure, A and B are abstract types whichcannot be manipulated other than by: inspecting their type with type tests andtype guards, and passing them to other polymorphic procedures.To understand how a procedure invocation is typed it is necessary to explainwhat type a poly procedure has. Polymorphic procedures may be used with dif-ferent types, therefore we can represent a poly procedure's type as a universallyquanti�ed type. For example consider the three procedure headers below:PROCEDURE <A> Id(x: Ptr(A)): Ptr(A);PROCEDURE <A,B> K(x: Ptr(A); y: Ptr(B)): Ptr(A);PROCEDURE <A> Pick(x,y: Ptr(A)): Ptr(A);We may give them the following formal types:8A: (Ptr(A)): Ptr(A)8A;B: (Ptr(A), Ptr(B)): Ptr(A)8A: (Ptr(A), Ptr(A)): Ptr(A)To type the use of a procedure (call or assignment to a procedure variable)its type must unify with the types of its context and any actual parameters.Consider the program fragment below:TYPE S = Ptr(Srec); Srec = RECORD END;T = Ptr(Trec); Trec = RECORD (Srec) END;U = Ptr(Urec); Urec = RECORD (Srec) END;VAR s:S; t:T; u:U;An expression such as Id(t) will type with the uni�er A 7! T, and hencet:=Id(t) or s:=Id(t) will type correctly. Similarly K(t,u) will type with uni-�er A 7! T, B 7! U. However in general subtyping requires a more sophisticatedform of uni�cation to be used. For example the expression s:=Pick(t,s) shouldtype, but the expression t:=Pick(t,s) should not (a valid implementation ofPick is to simply return its second argument). To handle these cases uni�ersneed to be re�ned using a least upper bound rule for subtypes. For exampleconsider the expression Pick(t,s), matching the type of t to A, in the type ofPick above, should produce a uni�er A 7! T. Subsequently matching s to A withthe previous uni�er A 7! T should produce a re�ned uni�er (least upper boundof T and S) of A 7! S. Thus the result of Pick(t,s) has type S, not T. Similarlythe result of Pick(t,u) has type S; since the least upper bound of T and U is S.4 ImplementationIn this section we describe an implementation of the parametric polymorphismextension to Oberon. The implementation of the extended type system is brie
y



described and code generation is described in terms of rewrite rules, which mapextended Oberon to standard Oberon. The rewrite rules show how our extensioncan be implemented, that the extension has no associated run-time cost, and thatno modi�cations to the run-time system or compiler back-end are necessary. Aprototype system to type check extended Oberon and translate it to standardOberon is being constructed [17].4.1 Type CheckingType checking can be performed by a modi�ed Oberon type checker which per-forms uni�cation and re�nement of uni�ed subtypes. It is desirable to reduceall poly types to normal form. This aids type checking by eliminating any un-necessary intermediate poly types. The body of a poly procedure can be simplychecked by treating all poly types as new types. Poly procedures can be usedwith di�erent types. Therefore when a poly routine is typed, its type parametersmust be distinguished from those of di�erent uses of the same routine. Further-more when a context constrains an instance of a type parameter all other relatedinstances must also be constrained. To implement this when a poly procedure isused its formal type is copied and fresh type variables are substituted for boundtype parameters. This is a standard technique, see e.g. [1]. Type variables areinstantiated, like logical variables, during type checking, and are also subject tore�nement, as described in the Section 3.2.4.2 Rewrite RulesOur rewrite rules map extended Oberon to standard Oberon. Poly values (in-stantiated or not) are restricted to be references; these fall into three categories:explicit record pointers, implicit record pointers via var parameters or functionpointers in the case of poly procedure values. Poly values in each category havethe same representation for di�erent record types; this is already required inorder for standard Oberon's subtyping to work. Thus, there is no di�erence be-tween the run-time representation of ordinary values in each category from polyones; since all values in each category have the same representation. (Note thatnot all mono values can be used in poly contexts.) Therefore all that is requiredis to map an extended Oberon program to correct standard Oberon. We assumethat the program has already been type checked by the extended Oberon typechecker which checks poly and mono types.We can identify two places where the rewrite rules must map extendedOberon to standard Oberon: type declarations and type expressions, and pro-gram statements and expressions. In the �rst case all poly type declarations ofthe form: TYPE T(A1 : : :An) = TE are rewritten to TYPE T = TE', where TE'is the result of recursively rewriting the type expression TE. Any instance ofa type parameter in a type expression is rewritten to ANYRECORD the standardbase record type3. Similarly any procedure declaration introducing poly types is3 We assume a standard type ANYRECORD that is the base type of all records that have



rewritten without them, recursively mapping any instances of type parametersto ANYRECORD.The second case concerns program statements and expressions. As previouslymentioned all poly types, instantiated or uninstantiated, have the same repre-sentation as their mono type instances. Thus to coerce values between poly typesand mono types (and vice versa) requires no change of representation; all thatis required is a cast between the appropriate types. This can be achieved usingSYSTEM.VAL; a caveat is that the exact behaviour of this operation is unde�ned4.The following rewrites are necessary:1. Any dereference or NEW operations on instantiated poly pointer types requirethe pointer to be cast to the appropriate pointer type.2. A procedure object may be used in a more speci�c or more general contextthan its type would allow; in which case it must be cast to the type requiredby its context.Note a type guard on a poly type e�ectively instantiates the poly type.An example rewrite is shown below; the extended Oberon program:TYPE Ptr(A) = POINTER TO A;List(A) = Ptr(ListDesc(A));ListDesc(A) = RECORD elem: Ptr(A); next: List(A) END;Proc(A) = PROCEDURE (x: Ptr(A));VAR el: List(EmpDesc); pl: List(PointDesc);PROCEDURE <A> ListMap (p: Proc(A); l: List(A));VAR t: List(A);BEGINt := l;WHILE t#NIL DOp(t^.elem); t := t^.nextENDEND ListMap;...NEW(el); NEW(el^.elem);is rewritten to:TYPE Ptr = POINTER TO ANYRECORD;List = Ptr;ListDesc = RECORD elem: Ptr; next: List END;Proc = PROCEDURE (x: Ptr);no declared base type. If unavailable, such a type can be introduced as part of therewriting process.4 We utilise SYSTEM.VAL in a completely general way. For some compilers we wouldneed to translate some casts a little di�erently.



VAR el: List; pl: List;PROCEDURE ListMap (p: Proc; l: List);VAR t: List;BEGINt := l;WHILE t#NIL DOp(SYSTEM.VAL(ListDesc,t^).elem);t := SYSTEM.VAL(ListDesc,t^).nextENDEND ListMap;...NEW(SYSTEM.VAL(POINTER TO ListDesc,el));NEW(SYSTEM.VAL(Emp,(SYSTEM.VAL(POINTER TO ListDesc,el))^.elem));5 Related WorkMany languages have facilities for supporting some sort of parametric polymor-phism. Table 1 categorises some prominent examples by the properties of theirrespective facilities.language generics are coexistence real object code all run-timegroup type checked with inclusion generated from costs arepolymorphism generics explicitCLU, Ada 83 yes none no yesML, Napier-88 yes none yes noC++, Modula-3 no orthogonal no yesAda 95 yes orthogonal no noEi�el, Sather, Theta yes bounded poly yes noExtended Oberon yes orthogonal yes yesTable 1. Categories of Parametric PolymorphismApproaches that neither support type checking of polymorphic code, nor gen-eration of shared object code really are just glori�ed macros (Modula-3 genericmodules, C++ templates).Constrained parametric polymorphism was �rst introduced for CLU [6, 7].Parametric polymorphism for a Pascal like language was proposed by Tennent in[16]. All functional programming languages in the tradition of ML, and some re-lated languages, such as Napier-88 [9] support parametric polymorphism. Manymodern object-oriented languages also support parametric polymorphism, in-cluding Ei�el [8], Sather [14, 15], or Theta [3, 5]. In all these languages the runtime cost of using parametric polymorphism is hidden.



Hidden costs are caused by the use of uniform representations for all values inshared polymorphic code. Such representations have to cater for all types, irre-spective of size. Usually the uniform representation is an indirection to the nat-ural representation: often called a boxed representation. When a value is movedbetween a poly and mono context, coercion is used to convert values between rep-resentations: often called boxing/unboxing. However boxing and unboxing is animplicit cost involving hidden operations such as heap allocation. Furthermoreboxing can necessitate the use of closures to support partial applications of pro-cedures to types. In extended Oberon we avoid these hidden costs by restrictingpoly types to references.In untyped languages such as Lisp or Smalltalk, where every context ispolymorphic, a uniform representation must be used everywhere, e.g. Lisp S-expressions. However this is rather ine�cient. Optimisation, such as dynamiccompilation, is possible, but still incurs hidden costs.A way to avoid hidden costs without restricting instantiations is to giveup on sharing code and instead generate code for each instantiation, e.g. Adastyle generics. This leads to code explosion and prevents construction of genericdynamically linkable libraries. In addition to leading to code explosion, Ada-stylegenerics are relatively heavyweight, as they require explicit instantiation beforeuse and therefore make extensions to existing generics subtle and complicated5.Various unsafe practices that do not cause any run-time cost and allow for thesharing of object code are in common use to simulate parametric polymorphismin languages that do not support it, demonstrating the need for safe and e�cientlanguage-level support. Examples are unsafe type casts in C or unsafe constructsclosed o� by multiple safe interfaces such as Gough's Device (Chapter 7 in [4]).Recently some work similar to ours has investigated parametric polymor-phism for an abstract imperative language called Polymorphic C [13]. This alsorestricts parametric polymorphism to pointers. However, the emphasis of thiswork is more theoretical than ours: a formal type system is presented and typesoundness proven, but no implementation exists. Our work concentrates on thesmooth practical integration of parametric polymorphism with an existing lan-guage, Oberon. The relationship between our work and Polymorphic C requiresfurther investigation.6 Further WorkThere are several areas which we wish to pursue further. It is desirable to sup-port parametric polymorphismover arrays. The present implementation strategycould support this providing references to arrays (explicit and implicit) have thesame representation as references to records; since a poly procedure must becapable of accepting either references to records or arrays. An alternative wouldbe to perform a run-time test, but this is not in keeping with our zero costimplementation strategy.5 Extensions have to de�ne a local instantiation that is parametrised with the typeparameters of the extending generic.



More general combinations of inclusion and parametric polymorphism arepossible, for example bounded polymorphism [2]. With the polymorphism intro-duced e�ectively all poly types must be at least ANYRECORD, for example:PROCEDURE <A> ListMap (p: Proc(A); l: List(A));the ListMap procedure will operate on all values of type A, from ANYRECORDdownwards in the subtype hierarchy. The procedure can assume nothing aboutthe type of A, and hence its �elds and methods. Thus it is rather like sayingA must be at least of type ANYRECORD. A more powerful form of polymorphismthan that proposed here allows the type of A to be bounded. However, there arealso known pitfalls of general bounded polymorphism [11].It is desirable to develop a library of poly routines and poly types for Oberon,as has been successfully done for Smalltalk and C++ (STL).We have produced a translator which rewrites extended Oberon to standardOberon; we wish to incorporate extended Oberon into our standard compiler.7 ConclusionsParametric polymorphism supports type parametrisation, just as proceduressupport code parametrisation. As such, this is a proven and well-established con-cept and part of many languages. Parametric polymorphism does not interferewith or substitute inclusion polymorphism (subtyping), but the two mutuallybene�t from each other. When properly designed and implemented, parametricpolymorphism improves type safety, maintainability and reusability of code.In current languages, parametric polymorphism comes at one of two costs. Ei-ther polymorphic code cannot be separately compiled into shared generic objectcode, or the use of such shared code incurs signi�cant hidden costs. Languagesin the former category simply generate code for each instantiation of a generic,leading to code explosion and, possibly worse, preventing the construction ofgeneric dynamic link libraries. Languages in the latter category, which hide run-time costs, can signi�cantly a�ect the programmer's control over execution costin time and space.In this paper we presented a simple extension to the language Oberon that islightweight in all dimensions. The extension is carefully restricted to simultane-ously support type checking and full separate compilation of polymorphic codeand to not introduce any run-time cost in time or space. The extension is notonly simple but also strictly upwards compatible with Oberon. The extensiononly a�ects the front-end of a compiler: after type checking, extended Oberoncan be rewritten into standard Oberon.AcknowledgementsWe would like to thank J�urgen Wendel for implementing our ideas in the formof an extended Oberon to Oberon translator, and for his comments on a draftof this paper. This work was partially funded by ARC grant ARCSG 55, 7056.



References1. A V Aho, R Sethi, and J D Ullman. Compilers, principles, techniques, and tools.Addison-Wesley, 1986.2. L Cardelli and P Wegner. On understanding types, data abstraction, and poly-morphism. Computing Surveys, 17(4):471{522, December 1985.3. M Day, R Gruber, B Liskov, and A Myers. Subtypes vs. Where Clauses: Con-straining parametric polymorphism. In Proc, 10th Conf on Object-Oriented Pro-gramming Systems, Languages, and Applications (OOPSLA'95), pages 156{168,October 1995.4. K J Gough and G M Mohay. Modula-2: A Second Course in Programming. Pren-tice Hall, 1988.5. B Liskov, D Curtis, M Day, S Ghemawat, R Gruber, P Johnson, and A C Myers.Theta Reference Manual, preliminary version. Programming Methodology GroupMemo 88, MIT Laboratory for Computer Science, Cambridge, MA, February 1995.6. B Liskov and J Guttag. Abstraction and Speci�cation in Program Development.MIT Press, 1986.7. B Liskov, A Snyder, R Atkinson, and C Scha�ert. Abstraction mechanisms in clu.Comm ACM, 20(8):564{576, August 1977.8. B Meyer. Ei�el { The Language. Prentice Hall, 2 edition, 1992.9. R Morrison, A Dearle, R C H Connor, and A L Brown. An ad-hoc approach tothe implementation of polymorphism. ACM TOPLAS, 13(3):342{371, 1991.10. H M�ossenb�ock. Object-Oriented Programming in Oberon-2. Springer Verlag, 1993.11. B C Pierce. Bounded quanti�cation is undecidable. Information and Computation,112(1):131{165, July 1994.12. M Reiser and N Wirth. Programming in Oberon { Steps beyond Pascal andModula.Addison-Wesley, 1992.13. G Smith and D Volpano. Towards an ML-style Polymorphic Type System for C.In 1996 Eurpoean Symposium on Programming, Link�oping, Sweden, April 1996.14. D Stoutamire and S Omohundro. Sather 1.1. Technical report, International Com-puter Science Institute, Berkeley, CA, 1996.15. C Szyperski, S Omohundro, and S Murer. Engineering a ProgrammingLanguager| the Type and Class System of Sather. In Proc, 1st Intl Conf onProgramming Languages and System Architectures, number 782 in Springer LNCS,Zurich, Switzerland, March 1994.16. R D Tennent. Principles of Programming Languages. Prentice Hall Int., 1981.17. J Wendel. Parametric Polymorphism for Oberon. Technical report, Faculty ofInformation Technology, QUT, Brisbane, in preparation.
This article was processed using the LATEX macro package with LLNCS style


