
Web Turtle Compiler

and Interpreter using Coco/R

IKT408 Project

June 6, 2008

Christian Auby
Thomas Jager

Torbjørn Skagestad

Abstract

In this report we describe our e�orts to create a Webturtle Compiler
and interpreter using the compiler generator Coco/R

1

Contents

1 Background 3

1.1 LOGO . 3
1.2 Turtle Graphics / Turtle Geometry 3
1.3 Web Turtle . 3
1.4 Compiler Generator . 4
1.5 Coco/R . 4

1.5.1 Scanner . 4
1.5.2 Parser . 4
1.5.3 Attributed grammar 5

1.6 devkitPro . 5
1.7 SDL . 5

2 Project description 6

3 Implementation 6

3.1 Early Experiments . 6
3.2 Compiler . 8
3.3 Designing a stack machine 9
3.4 General purpose instructions 10
3.5 Special purpose instructions 10
3.6 Interpreter . 11
3.7 Test suite . 12

4 Discussion and further work 13

4.1 Di�culties . 13
4.2 Future work . 14

List of Figures

1 Extended Backus-Naur Form grammar 5

2 Successfull run of square test . 7

3 Recursive Web Turtle programs 7

4 Compiler generation process. 8

5 Compiling Web Turtle source code into byte code 9

6 Interpreting byte code and generating the result 11

7 Interpreter running on Nintendo DS 12

8 Test output . 13

2

1 Background

1.1 LOGO

Logo is a computer programming language used for functional programming.
Today, it is known mainly for its turtle graphics, but it also has signi�cant
facilities for handling lists, �les, I/O, and recursion.

Logo was created for educational use, more so for constructivist teaching, by
Daniel G. Bobrow, Wally Feurzeig and Seymour Papert. It can be used to teach
most computer science concepts, as UC Berkeley Lecturer Brian Harvey does
in his Computer Science Logo Style trilogy.[2]

1.2 Turtle Graphics / Turtle Geometry

Turtle graphics is a method of programming vector graphics using a relative
cursor (the "turtle") upon a plane. This geometry describes paths "from within"
rather than "from outside" or "from above." For example, "turn right" means
turn right relative to whatever direction you were heading before; by contrast,
"turn east" speci�es an apparently absolute direction.

The turtle has three attributes:

1. Position

2. Orientation

3. Pen (With attributes like color, width)

The turtle moves with commands that are relative to its own position, such
as "move forward 10 spaces" and "turn left 90 degrees". The pen carried by
the turtle can also be controlled, by enabling it, setting its color, or setting
its width. From these building blocks one can build more complex shapes like
squares, triangles, circles and other composite �gures. Combined with �ow
control, procedures, and recursion, Turtle Graphics can also generate fractals.[2]

1.3 Web Turtle

Web Turtle takes the drawing system from LOGO / Turtle Graphics and imple-
ments it in a more traditional programming language. It is presented as a web
based tool where the user writes code to move the turtle, and when submitted
the code is executed on the server side of Web Turtle, displaying the results
as an image. The language speci�cations for Web Turtle were designed by Bill
Kendrick of Tux Paint fame.[1]

3

1.4 Compiler Generator

Compiler generators, also known as compiler compilers, are programs that gener-
ates the source code of a scanner, parser and possibly other parts of the compiler
from a programming language description. In the most general case, it takes
a full machine-independent syntactic and semantic description of a program-
ming language, along with a full language-independent description of a target
instruction set architecture, and generates a compiler.

1.5 Coco/R

Coco/R is a compiler generator written by a group of people from the Johannes
Kepler University of Linz, Austria. It provides a grammar language to de�ne the
syntax of the source language. By parsing this language de�nition it generates
a scanner and a parser. We have chosen Coco/R as it was recommended to
us by an individual in an on-line discussion, and as we looked at it we felt it
would suit our needs without being too complicated. Coco/R supports several
target languages, among such as C# and Java. The generated output will be in
this language, as well as the language/machine speci�c code we supply to the
generator. The Parts that must be supplied by us are the symbol table and the
code generator. [5]

1.5.1 Scanner

The scanner provided by Coco/R is a deterministic �nite automaton.[3] The
scanner is generated in the language the user speci�es, and is built from the
grammar de�nition stored in a ATG �le. As the scanner reads one symbol
at the time, semantic errors are detected exactly where they occur, giving the
user of your compiler very helpful error messages. Features such as these would
be di�cult to provide with a traditional built from the ground up approach.
Although it is possible to separate the scanner and the tokenizer, the scanner
generated by Coco/R implements both of these.

1.5.2 Parser

The parser uses recursive descent, built with a set of mutually-recursive functions.[3]
As the parser only uses one look-ahead token by default, there might be con�icts
as a result of this. These can be resolved by additional multi-symbol look-ups,
or semantic checks. In the case of our attributed grammar there was no need
for us to do con�ict resolution.

4

digit = "0123456789" .
number = digit | { digit } .

Figure 1: Extended Backus-Naur Form grammar

1.5.3 Attributed grammar

The attributed grammar, a manually written ATG �le, is written in Extended
Backus-Naur Form (EBNF) . EBNF is used to describe a set of rules, used by
the tokenizer. A simple example of this would be, in the style of Coco/R:

The �rst line describes a set of characters that make a digit. This alone would
match only the characters listed; no repeats and no other characters. The second
uses the �rst, requiring a digit, and allowing none or more digits following it.
Thus matching 1, 22, 323, 1123 and so on. Using the simple rules of EBNF
complex grammar can be described. Coco/R splits these in three categories;
Characters, as seen by digit, Tokens, as seen by number, and Productions.
Productions are more complex rules that can have arguments and generate
code. From our experience the main task of writing the attributed grammar
will be spent on the productions.

1.6 devkitPro

devkitPro is a set of compilers and libraries for embedded consoles, such as
Nintendo DS, Nintendo Wii and Sony PlayStation Portable. [6]It provides a
feature rich stable environment for building applications targeting these plat-
forms. devkitPPC was used for Wii and devkitARM was used for the DS port
of our interpreter, and selected on the basis of being the only actively developed
tool chain to use with the consoles we have chosen. Previous experiences with
devkitPro also contributed to the choice.

The tool chains are free of charge and do not contain any copyrighted code. The
compiler is based on GCC and maintained by Dave Murphy, with additional
contributors. The libraries are written in C and assembly, and are maintained
by several enthusiast developers.

1.7 SDL

Simple DirectMedia Layer is a library for graphics, sound and input for a wide
range of systems. [7] The C++ interpreter uses SDL for graphics, through a
hardware abstraction in the actual interpreter. This allowed us to develop this
interpreter e�ciently, debugging on PC which has extensive debugging features,
and once working, porting the C++ code to the other targets. Note that the
console ports do not use SDL but the graphics hardware of the target system
directly.

5

2 Project description

Our project is to create grammar suitable for the Coco/R compiler-compiler.
With this grammar in place Coco/R can create a compiler that can convert Web
Turtle code into a binary code that's easier to interpret. We have decided to
implement the following Web Turtle commands in the compiler:

• Draw

• Right, Left

• Repeat

• Let

• Color

• Go, Return

• Remember, Goback

• Home

• Push, Pop

Some of these will require us to implement stack allocation in the compiler,
as well as expression evaluation. The output of the compiler will be a binary
format for a self-designed CPU instruction set. The output from the compiler is
a binary intermediate code that we design ourselves. This code will be parsed by
the interpreter to perform the actual drawing. Two of the lesser used functions
in Turtle Graphics are if/else and user input. Due to the limited amount of
Web Turtle scripts that use these we have decided to not include them in our
requirements. If we feel we have time to implement them near the end we will
reevaluate this decision. The original requirments can be found in Appendix B.

3 Implementation

3.1 Early Experiments

The �rst version of our compiler was written from scratch without the help
from Coco/R, and was mostly feature complete. Due to the request from our
mentor we decided to follow his advice and use a Compiler-Compiler instead,
and generate the scanner and parser as opposed to writing all of it. The manual
compiler was hard to maintain, especially when adding new instructions and
debugging errors.

6

Figure 2: Successfull run of square test

Figure 3: Recursive Web Turtle programs

7

From a user perspective the old compiler was very hard to use. If the source
code being compiled had any errors the compiler hardly ever knew what was
wrong, or was able to tell the user where the error occurred. Adding these
features would mean a ton of extra work, compared to Coco/R where you get
them automatically.

3.2 Compiler

We have chosen C# for our compiler language, and although it does not o�er the
best performance our priorities lie with ease of use and cross platform compat-
ibility. C# will let us develop the compiler at a rapid pace using functionality
from the vast .NET library.

Figure 4: Compiler generation process.

Coco/R uses our attributed grammar and generates the scanner and parser for
us. This however does not output any code that generates machine instructions
by default, as the instruction set is machine speci�c. To compile concrete code
the productions in the annotated grammar must have semantic actions using the
code generator, as displayed in Figure 4. Memory allocation is handled by the
external symbol table. These four �les are compiled together using csc.exe (C-
Sharp Compiler) from Visual Studio, to produce our �nal compiler executable.

8

Figure 5: Compiling Web Turtle source code into byte code

The generated Coco/R scanner and parser reads the source code and using the
symbol table allocates memory for variables. As our compiler is a one pass
compiler it simultaneously generates the byte code using the code generator
supplied by us, targeting our speci�c instruction set.

Originally we did not intend to implement if/else statements, as mentioned un-
der project description. Once development got started we decided to implement
them anyway. Because of this some of the more advanced examples also compile
and run.

3.3 Designing a stack machine

We wanted the output of our compiler to mean something, that is, to actually
do something. This would require a target instead of a dummy implementation,
and although targeting x86 or another known hardware architecture would have
been interesting, the scope of such an implementation would go way beyond the
time allotted to this course. The solution was simple, and something we had
thought about even before starting: design our own machine architecture and
target this in our compiler.

A stack machine is a machine that works on one or more stacks to perform most
of it's operations. The input to a stack machine is the initial content of stack 1;
all the other stacks start empty. Each state of a stack machine is either a read
state or a write state; and each state speci�es a stack number to read (pop)
from, or write (push) onto. In addition, a write state speci�es the symbol to
write, and the next state to transition to. A read state speci�es, for each symbol
in the alphabet, what state it would transition to if that symbol were read; in
addition, it also speci�es what state to transition to if the stack were empty. A
stack machine halts when it transitions into a special halting state. Due to this

9

the instruction set is compact, as most instructions do not have any operands
but operate on the top most value(s) of the stack implicitly. This way the job
of designing the instruction set is made easier, as most will only be a single
byte. Some simple abstract stack machines can work with a single stack. In
our case the machine will be running compiled Web Turtle applications, and as
such a more specialized design makes more sense. Some features of Web Turtle
is easiest to implement using additional stacks, and as a result the machine we
have designed mimics this.

Our stack machine is reminiscent of the Java virtual machine, in that it allows
a single compiled binary to run on many platforms.

As a side note we can mention that a stack machine with multiple stacks is
equivalent to a Turing machine. For example, a 2-stack machine can emulate
a Turing Machine by using one stack for the tape portion to the left of the
Turing Machine's current head position and the other stack for the portion to
the right.[5]

3.4 General purpose instructions

Even though the machine will be specialized, it will still need a set of instruc-
tions found in most modern CPUs. These are instructions unrelated to any
Turtle Graphics feature, but required for computations, program �ow and so
on. These instructions include add (for adding numbers together), sub (sub-
tracting numbers), mul (multiply numbers), div (divide numbers), neg (negate)
and several others are in this group of general purpose instructions. See the
instruction reference for details in Appendix A.

3.5 Special purpose instructions

Providing a code library written for our stack machine that implements line
drawing, angle calculations and other complex library functions would be di�-
cult, and in some cases, most likely impossible. As a specialized machine, we
can decide to implement these in hardware. Instructions that perform complex
tasks otherwise given to a code library include move and draw, which do line
calculations. Repeat which uses the repeat stack to support recursive functions
that use repeat, and �remember�, which puts the current turtle location and
angle on a remember stack. The set of special purpose instructions represent
most of the Turtle Graphics speci�c functionality and takes up most of the code
in the interpreter. Note that this also makes the code generator easier to write;
there is no extra code to generate for complex operations as they are still written
by the code generator as a single instruction.

10

Figure 6: Interpreting byte code and generating the result

3.6 Interpreter

To actually use the generated binary we had to implement our specialized stack
machine. A hardware approach would have been very interesting, but hardly
time e�cient, and also harder to debug. A software solution was the obvious
approach; implement an interpreter in the same language as the target language
of the compiler, and have this interpreter store the generated image in a �le on
disk. This also helps debugging the actual code generator, as following the
code in an interpreter is easier than reading the binary to look for errors. The
interpreter starts by opening the generated .bin �le, and reads a byte. Using
the same enumeration as the compiler it identi�es the current instruction, and
performs the function of this instruction. This continues until the last byte is
read. If there is an error in the compiled binary the error will be executed, and
the state of the interpreter will be erroneous; this is the default behavior of most
execution environments, as doing code quality checks is not the responsibility
of the host. Capturing the output makes it possible to compare the results with
the Web Turtle o�cial results, providing a nice and easy way to check for bugs
as well as being very satisfying visually.

Our reference interpreter is written in C# as a part of the compiler project, but
to illustrate the advantages of compiling to a binary format another interpreter
was written in C++. There are several target platforms possible when the
interpreter is written in C++.

The interpreter uses the bresenham line drawing algorithm, through an imple-
mentation written by Kenny Ho�. This implementation does not come with
any licence at all, and is used by the SDL, Wii and DS ports.

Even a simple example shown in Figure 2 requires that the scanner, parser, code
generator, symbol table and interpreter are in a working state.

After initial development was done on the C++ interpreter, which uses SDL and
runs on Windows / Linux, we started work on the console ports. All the C++

11

based interpreters share the same code base, but require speci�c initialization
and video code. The Nintendo Wii and Nintendo DS ports use GCC and also
requires a make�le to target each platform. On both cases we use make�les
provided by devkitPro.

Figure 7: Interpreter running on Nintendo DS

3.7 Test suite

Once the compiler and interpreter started compiling and running simple demos
it became quite apparent we needed a better way to check for bugs without man-
ually trying the examples every time something was changed. A test application
was written that takes all the source �les it �nds in a certain folder, compiles
them, runs them in the interpreter and stores the interpreter output as a png
graphics �le with the same name as the source code it comes from. Once this
is done it generates a HTML document with image links to the reference image
as well as the result from our implementation. Opening this �le �le displays the
test results as side by side comparisons.

The test application can be easily launched after every new build of the com-
piler and/or interpreter, and speed up development of the more advanced parts
rapidly. It also assures us that new changes does not break examples that used

12

Figure 8: Test output

to work earlier, as this would be spotted right away. A full test run from the
test suite can be found in Appendix C.

4 Discussion and further work

4.1 Di�culties

Although we are quite satis�ed with the result, there were some di�culties
along the way. Early on writing the EBNF grammar was very di�cult; being
completely di�erent from anything else we have done before. This made for a
slow start, but fortunately once we got into it functionality started to come in
place. The grammar and the resulting auto generated code also shows weakness;
any small error will result in completely unpredictable errors in the resulting
compiler. These were handled one at a time, but thankfully we did not have
many of them.

In addition to this we decided to skip two of Web Turtle's features, namely
�thick�, which changes the thickness of the line, and �color�, which changes

13

the color. The reason for this is inconsistent syntax in Web Turtle. This in-
consistency makes it very di�cult to implement in the grammar. For regular
arithmetic operations �+1� means the positive integer one. For �thick� and
�color� this has a di�erent meaning; add one to the current value. We use the
same arithmetic parser for all instructions and as such we could not change its
behavior for these ops only. Instead we decided to drop these two, of which only
one was in our original plan, as they are purely cosmetic and do not a�ect the
actual path the turtle takes. Thick would also require a di�erent line drawing
algorithm from the one we currently use.

4.2 Future work

In its current state the compiler is very basic. It parses the source code and
outputs the byte code in a single sweep, skipping optional compiler steps such
as memory and speed optimizations. A future revision could include byte code
optimization. Other targets for the interpreter could also be implemented.

The two instructions we skipped could be implemented by separate rules. There
are also other Web Turtle instructions, such as �text�, that we decided not to
implement that with additional work could be supported.

Web Turtle was made as a way to introduce Turtle Graphics. By extending
Web Turtle and adding more features we could enhance its capabilities and
create new and exciting graphics. User input during interpretation would be an
interesting way to a�ect the graphic as it is being drawn.

14

References

[1] http://www.sonic.net/~nbs/webturtle

[2] http://www.erzwiss.uni-hamburg.de/Sonstiges/Logo/logofaqx.htm

[3] http://www.ssw.uni-linz.ac.at/coco/

[4] http://catalog.compilertools.net/

[5] http://www.ece.cmu.edu/~koopman/stack_computers/

[6] http://www.devkitpro.org/about/

[7] http://www.libsdl.org/index.php

15

