Coco/R Pitfallsand tips Pagel of 5

Pitfalls and tips when using Coco/R

The following examples and discussion highlight the various features of Cocol, and draw attention to common beginners
problems and misconceptions. Thereisafull " user manual" for Coco/R in the text book, chapter 10. Thereisalso a complete,
comprehensive, Coco Manual on PDF format available on the cour se web page at

http://ww. cs. ru. ac. zal/ cour ses/ CSc301/ Tr ansl at or s/ CocoManual . pdf .

CHARACTERS section

This optional section describesthe character setsfrom which tokens can be built in the later TOKENS section. It does nothing
more; in particular it does not define tokens themselves even though at first it might seem to do so. While the definitions seem to
introduce strings, thisisillusory - the quotation marks are used in the sense that mathematicians would use curly braces.

Any number of sets can be defined, and they can have elementsin common or not, asis convenient.

The + and - operators can be used to form the union or differences of sets, and the .. notation can be used to simplify the
specification of arange. Thisis especially useful where thisrangeincludes control characters.

Avoid putting escape sequences like\ n into the stringsthat define sets. Rather use the CHR(n) notation.

One cannot put spacesinto literal stringsin Coco/R (seelater), whether these strings are being used in the CHARACTERS
section to denote a set of characters, or in the TOKENS or PRODUCTIONS section to denote a literal string (terminal).

From these two pointsit follows that control characterslike CR (CHR(13)) and LF (CHR(10)) haveto berepresented using the
CHR(n) notation. So does SP (space, or CHR(32)) if for some strange reason it isneeded as an internal character in atoken.

ANY isa keyword that in this context means" all character s acceptable to the implementation of Coco/R" . Although Java itself
uses Unicode, Coco/R for Javaisrestricted at present to the low end (8 bit) subset of UNICODE. Thefirst 128 elements of
ASCII and Unicode are the same.

Examples

Here are some correct CHARACTERS declarations:

CHARACTERS
ULetter = " ABCDEFCHI JKLMNOPQRSTUVWKYZ" . [/* set of upper case letters */
LLetter = "abcdef ghi j kl mopqgr stuvwxyz" . /* set of |lower case letters */
digit = "0123456789" . /* set of all possible digits */
hexDi gi t = "0123456789ABCDEF" . /* Hexadecimal digits */
AnyVowel = " AEl QUaei ou" . /* The English vowels in either case */

Here are some alternativesthat arevalid. We can use ranges, set unions and differ ences:

ULetter ="A L "2 /* set of upper case letters */

LLetter ="a" .. "z" . /* set of |lower case letters */

letter = ULetters + LLetters . /* set of all possible letters */

control = CHR(O) .. CHR(31) . /* set of all ASCI| control characters */
inString = ANY - control - """ - CHR(92) . /* set of all easy characters within a string */
printable = ANY - control . /* set of all easily printable characters */
hexDi gi t = digit + "ABCDEFabcdef" . /* all hex digits, either case acceptable */

Here are some" singleton” onesused to get round the problem of representing certain charactersin the" string" version:

LF = CHR(10) . /* Line feed */

CR = CHR(13) . /* Carriage return */

backsl ash = CHR(92) . /* the dreaded \ used in escape sequences */
Space = CHR(32).

\Whi t eSpace = CHR(9) .. CHR(13) + Space .

Here are someinvalid ones:

BadLetter = "A .Z" . /* bad notation */

BadDigitl = { "0" , "1" , "2" , "3" , "4" _ 5" _ "g" "7v _ vg" . wgu } _ /% pad notation */
BadDigit2 = { 0" | "1 | "2" | "3 | "4" | "5" | "6 | "7" | "8" | "9" } . /* bad notation */
BadDi git3 = { "0123456789" } . /* bad notation */
BadDigit3 ={ 0123456789 } . /* bad notation */
CRLF = CR LF . /* cannot define a TOKEN in this section */

You cannot put the names of CHARACTER sets, or the notations using CHR into the PRODUCTIONS, no matter how tempting
this might seem:

http://www.cs.r u.ac.za/cour sesCSc301/Trandator coco.htm 5/10/2009

Coco/R Pitfallsand tips Page2 of 5

CHARACTERS
CR = CHR(13);
PRODUCTI ONS
Line = "SOMETHI NG' /* Here the SOVETHING is a string representing a TOKEN, and is allowed */
CR /* Wong - CRis the name of a singleton CHARACTER set, not a token */
CHR(10) . /* Wong - CHR(n) can only be used in defining CHARACTER sets or TOKENS */

TOKENS section

Theoptional TOKENS section istypically used to define the expected patternsthat thingslike identifiers, strings and numbers
can have. That is, it specifies how generic tokens may be constructed. " Generic" tokens ar e effectively regarded by the parser as
terminal symbols, of which there might be several instances. They are all described in the same way, but they are actually
lexically distinct (because they will actually be spelled differently).

The definitions are done using the Wirth EBNF metabrackets, but restricted effectively to rules equivalent to regular expressions.
Any namesthat appear in these definitions must be the names of CHARACTER sets, and effectively here mean " select any
character from that character set". Here are the obvious common ones:

TOKENS
identifier = letter { letter | digit } . /* For exanple Pat or Terry */
unsi gnednunmber = digit { digit } . /* For exanple 1234 or 51 */
CRLF = CR LF .

One can also define tokens by a mixture of such characters drawn one at a time from named character setsand explicit strings.
Within a token definition these strings " stand for themselves' . Her e are some simple examples:

TOKENS
si gnedNumnber =("+" | "-") digit { digit } . [/* mandatory + or - followed by digit sequence */
hexNunber =digit { hexDigit } "H"
string = { instring | backslash printable } """’

One can declare complete, very specific tokensin thisway too. For example

TOKENS
Begi nKeyWord = "begin"

in which the string " begi n" standsfor itself. Thisisunusual - keywords are nearly always declared simply by strings that appear
where needed in the PRODUCTIONS section.

Tokens can get quite involved. For example, consider the following:

TOKENS
f | oat nunber =["+" | "-"] digit { digit } /* whole part */
"." digit { digit } /* digits after the nandatory point */
[("E" | "e") /* optional exponent part */
[+ "-"1 /* optional sign within this */

digit { digit } /* mandatory digit sequence */
] .

Thisdefinition demandsthat there must be at least one digit before the point, there must be a point, and at least one digit after the
point.

Convince your self that this could match numberslike +12.3 or 12.4E+5 or 12.4E3 or 1.4€26.

Hereisavariation that will match integer or float numbers:

TOKENS
f I oat nunmber =["+ | "-"] digit { digit } /* whol e part */
[/* optional fraction */
"." digit { digit } /* digits after the nandatory point */
[("E" | "e") /* optional exponent part */
[+ "-"1 /* optional sign within this */
digit { digit } /* mandatory digit sequence */

]
1.

Thiswill not match numberslike 123E45 or 123E-45. As an exer cise, wor k out what you would need to allow such
representations, as well as the ones we have seen so far.

The biggest trapsthat beginnersfall into are asfollows:

http://www.cs.r u.ac.za/cour sesCSc301/Trandator coco.htm 5/10/2009

Coco/R Pitfallsand tips Page3 of 5

(a) Thetoken namesintroduced on the left of the TOKENS production rules may not be used on theright side of the TOKENS
rulesin adirect or indirect way. Put another way, you cannot define one token in terms of another token, or recursively in terms
of itself. So the following attempt to define a float number isinvalid:

TOKENS
i nt eger =digit { digit } . /* so far so good */
f | oat nunber = integer "." integer . /* 1 ooks seductive! */

Theonly "names" you can use within the definition part, following the = sign, are names of character setsdeclared in the
CHARACTERS section.

However, the token names invariably appear somewhere on the right sides of productionsin the PRODUCTIONS section.

(b) All the token definitions must be given by uniquely distinguishable regular expressions. So you cannot write

TOKENS
firstName = ULetter { LLetter } .
sur name = ULetter { LLetter } .
longName = U etter LLetter { LLetter } . /* at least two letters */

because all of these amount to describing the same patter ns of characters. Note, however, that you could write (if you think it
appropriate) something like

TOKENS
firstName = ULetter { LLetter } .
sur nane = ULetter { LLetter } "."
i nt eger = digit { digits }

| digit { hexDigit } "H' .

wherethefull stop at the end is sufficient to distinguish a sur name (whereit must appear) from afirst Name (whereit must not
appear), or an implicitly decimal integer number from an implicitly hexadecimal number.

To sum up, the production rulesin the TOKENS section are expressed in EBNF, but they do not haveto bein LL (1) form
(although they often are).

(c) Sometimes a token must be described in terms of a single element from a character set. Thisisa useful device - and in fact the
only real way - for defining a terminal token that consists of a control character. By extension one might need to specify a simple
sequence of awkward control characters:

TOKENS
EOL = LF .
CRLF = CR LF .

Notethat thereisone predefined token, denoted by the keyword EOF, that can be used in the PRODUCTIONS section to ensure
that a grammar describes all the input up to the end of file (see below).

(d) A token definition specifies a complete token as a string of contiguous characters. A common mistakeisto try to put too
much into a token definition - for example

TOKENS
Header = "void main () {" .

Thissort of construction should be specified in the PRODUCT I ONS section in terms of discrete tokens:

PRODUCTI ONS
Header = "void" identifier (" ") BRI

(e) In any event, spaces cannot appear within literal strings used to define tokens. If a token really needsto incor por ate a space
(very unusual!), thismust be done using something like

TOKENS
Devil = "Pat" Space "Terry" .

Ignorable features and characters

Coco/R optionally allows one to specify that a set of charactersis”ignorable", meaning that members of this set will be skipped
over each timethe scanner looksfor the next token. The basic space character (SP, CHR(32)) isalways in this set. Usually all the
control characters- or at least the whitespace control characters- are also ignorable, meaning that they can befreely used to
separate different tokensin the manner familiar to all Java programmers.

http://www.cs.r u.ac.za/cour sesCSc301/Trandator coco.htm 5/10/2009

Coco/R Pitfallsand tips Page4 of 5

Because a character isignorable does not mean that it cannot form an internal part of atoken, but an ignorable character cannot
betheinitial character of atoken.

Case-insensitive par ser s/scanner s can be constructed by using the keyword | GNORECASE, as shown below. If thisisrequired, the
| GNORECASE directive must appear before any others.

Examples

COWPI LER Exanpl e
| GNORECASE /* case insensitive scanner */

/* CHARACTERS, TOKENS sections, followed by */

| GNORE CHR(0) .. CHR(31) . /* control characters */
| GNORE CHR(9) + CHR(11) .. CHR(13) . /* white space, but not LF */
| GNORE CHR(9) .. CHR(13) . /* all white space */

COMMENTS section

The optional COMMENTS section allows one to specify the format of comments that might beinjected into the file for which a
grammar is needed, but which will beignored. That is, comments aretreated like white spaceif they appear between tokens.
Typically these comments are specified with adirectivelike

COMMENTS FROM " (*" TO "*)" NESTED /* Mdul a-2 style nested coments */

COMMENTS FROM "/*" TO "*/* /* Java style comments - 1 */
COVMMENTS FROM "/ /" TO EOL /* Java style coments - 2 */
COWMENTS FROM "; " TO EOL /* Assenbl er style comments */

In thelast two examples EOL would have been defined under the TOKENS section as shown earlier.

One can have mor e than one comment format for a single grammar, but the tokens that delimit comments can be only one or two
characterslong.

PRODUCTIONS Section

All Cocol grammars must have a PRODUCTIONS section, and there must be a production for the Goal symbol, which isalso
used as the name of the grammar. The shortest possible Cocol specification (which, of course, does nothing useful) would thus be

COWPI LER Goal

PRODUCTI ONS
Goal = .

END Goal .

Within the PRODUCTIONS section there must be one (and only one) defining production for each non-terminal. This production
can, of course, be defined to allow alternatives. The productions can appear in any order.

Cocol can only be used for context-free grammars, so that the left side of each production must always be a single non-terminal.
Theright side can include

o Terminalsrepresented directly by strings - for example " voi d"
« Thenames of terminal tokens named under the TOKENS section - for example Nunber
« Thenames of other non-terminals- for example Expr essi on
¢ Themeta-characters|{}[]and ().
Theright side cannot include

« Thenames of character setsas defined in the CHARACTERS section, however tempting it might beto do so. Use an
intermediate token definition, asillustrated previously.

A typical production might be

Factor = nunber | ["sqrt"] "(" Expression ")"
Productions may be recursive, but left recursive grammarsareintrinsically non-LL (1) and thusrarely of any use. In general
Coco/R only generates usable parsersif the PRODUCTIONS section definesan LL (1) grammar. There are a few exceptionsto
this- for examplethe" dangling else" construction isnon-LL (1), but a Coco/R generated parser doesthe sensiblething.

Empty alter natives can be defined using squar e brackets (the recommended way), or by using a | followed by nothing, for

http://www.cs.r u.ac.za/cour sesCSc301/Trandator coco.htm 5/10/2009

Coco/R Pitfallsand tips Pageb5 of 5

example:

| f St at enent
| f St at enent

"if" "(" Condition ")" Statenent ["else" Statenent]
"if" "(" Condition ")" Statenent ("else" Statement |) .

Be careful of the precedencerules - alternation | is" weaker" than concatenation, so that

A=BC| DE.

means

A= (BC) (DE) .
and not

A=B (C| D) E .

Thisisavery easy mistake to make, and aswith forgetting to put bracesround blocks of statementsin Java programs, it can lead
to very-hard-to-find bugs. The production below is acceptable to Coco/R, but is (hopefully obviously) wrong:

IfStatement = "if" "(" Condition ")" Statement "else" Statenent |
A production like

Goal = { Something } EOF .
isoften (but not always) preferable to the simpler, less explicit

Goal = { Something } .

Thefirst form will signal an error if the sequence of Somet hi ngs does not reach the end of file, the second form might just stop
prematurely and leave the user wondering what happened.

Be careful to avoid introducing optional partsin too many ways. This sometimes happens accidently, often indirectly. For
example, do not fall into thetrap of writing productionslike

Conpl et e =[{ Partl } { Part2 }]

Sonet hi ng =[[Inner 1 7.

LotsOFOptions = { [First] [Second] [Third] } .
Whol ePar t =[Partl Part2]

Part 1 = { Sonething } .

Part 2 =[Part3]

Cocol Pragmas

A Cocol grammar can include pragmas - generally placed right near the start. These start with a $, followed by a few key letters,
for example $CNF. Lettersof interest are

e« C - generateadriver program aswell asthe scanner and parser
¢ N - generate names for thetokens (like poi nt Symor commaSym) rather than cryptic numbers
o F-list the FIRST and FOLLOW setsfor each non-terminal (in thefileli sting. t xt).

e T - test thegrammar but do not generate any scanner, parser or driver

Home © P.D. Terry

http://www.cs.r u.ac.za/cour sesCSc301/Trandator coco.htm 5/10/2009

