
Data Structures in Coco/R 
Hanspeter Mössenböck 

Johannes Kepler University Linz 
Institute of System Software 

April 2005 
 
This technical note describes the data structures in the C# and Java implementations 
of the compiler generator Coco/R. The major data structures are: 
 
§ The Symbol table (Classes: Symbol). All terminals, pragmas and nonterminals in 

linear sequence. This data structure is trivial and therefore not further described. 

§ The Syntax graph (Classes: Node, Graph). The productions of the grammar as 
separate subgraphs.  For every nonterminal sym there is a pointer sym.graph to the 
root of this symbol's syntax graph. A snapshot of this data structure is described in 
Section 1. 

§ The Scanner automaton (Classes: State, Action, Target, Melted). The DFA 
generated from token declarations. The token declarations are first translated to a 
syntax graph which is then transformed into a deterministic finite automaton. These 
steps are shown in Section 2. 

§ The Character classes (Class: CharClass). The character sets declared in the 
grammar stored as a linear list. This data structure is trivial and therefore not further 
explained. 

§ The literals table (Class: Tab). A mapping between token names and their literal 
representation. 

1. Syntax Graph 

Production: A = (a {b} c | d [e] f | ) g. 
 
Graph: 

 

 
alt 

alt 

ntsym.graph 

a iter 

b 

c 

d opt 

e 

f 

alt 

eps 

g 
next 

down 
sub 

 
 
Gray lines denote next pointers that point upwards. For any node n, if n.next points 
upwards, then n.up is true. 
 



Operations to build the syntax graph 
 
Tab.MakeFirstAlt(g) 

 

 g.r g.l 

alt 

g.l g.r 
connects right 
open ends 
of a graph 

 
  
Tab.MakeAlternative(g1, g2) 

 

 g1.r g1.l 

alt 

g2.l g2.r 

+ 
alt 

g1.l g1.r 

alt 

 
Tab.MakeSequence(g1, g2) 

 

 g2.r g2.l 

+ 
alt 

g1.l g1.r 

alt 

alt 

g1.l g1.r 

alt 

 
  
 
Tab.MakeOption(g) 

 

 g.r g.l 

opt 

g.l g.r 

 
  
Tab.MakeIteration(g) 

 

 g.r g.l 

iter 

g.l g.r 

 
  
Tab.Finish(g) 

 

 

alt 

g1.l g1.r 

alt 

iter 

alt 

g1.l g1.r 

alt 

iter 

 
  
 



2. Scanner automaton 

Declarations  
CHARACTERS 
 digit = '0'..'9'. 
 hex = digit + 'a'..'f'. 
TOKENS 
 number = digit {digit}. 
 hexnum = digit {digit} 'H'. 
 special = "0x". 

 
Syntax graph for the tokens  

 

 digit iter 
0 

number 

digit 
1 

1 

digit iter 
0 

hexnum 

digit 
2 

2 

H 
2 

0 
0 

special x 
4  

  
The bold numbers denote the states that were assigned to the nodes by the method 
DFA.NumberNodes. They are used to derive the automaton from the graph as follows: if 
a node for a character or a character class c has the number n and its next pointer 
points to a node with a number m, then this leads to a transition 

  n mc 
 

If there is no next node, the transition leads to a new state. 
 
Nondeterministic automaton 

 

 digit 0 1 digit 

digit 2 digit 

3 

H

0 4 x 
3  

The automaton is nondeterministic since there are three transitions with '0' in state 0 
and two with digit in state 0. The first step in making the automaton deterministic is 
to split overlapping character ranges. This is done by DFA.MakeUnique. 
 
 



After MakeUnique  

 

 0, 1..9 0 1 digit 

0, 1..9 2 digit 

3 

H

0 4 x 
3  

The next step is to melt those states that can be reached by a transition with the same 
symbol from the same state. This is done in DFA.MeltStates. 
 
After MeltStates 

 

 

1..9 

0 1 

digit 2 

H

4 x 

6 
digit 

7 

3 

5 0 

digit H

H x 

digit 

 
The only remaining task now is to delete the redundant states (here 1, 2 and 4). 
 
After DeleteRedundantStates 

 

 1..9 0 6 
digit 

7 

3 

5 0 

digit H

H x 
 

  
 
This is the resulting deterministic finite automaton from which the scanner is 
generated. 
 



Concrete data structures 
 
Nondeterministic automaton 

 

 

nr 
firstAction 
... 
next 

0 

States 

typ 
sym 
target 
next 

clas 
digit 

typ 
sym 
target 
next 

clas 
digit 

typ 
sym 
target 
next 

clas 
digit 

state 
next 

to state 1 

state 
next 

to state 2 

state 
next 

to state 2 

Actions 

Targets 

nr 
firstAction 
... 
next 

1 
... 

...  
  
After MakeUnique  

 

 

nr 
firstAction 
... 
next 

0 

States 

typ 
sym 
target 
next 

clas 
1..9 

typ 
sym 
target 
next 

chr 
'0' 

state 
next 

to state 1 

state 
next 

to state 1 

Actions 

Targets 

state 
next 

to state 2 

state 
next 

to state 2 

state 
next 

to state 4 

... 

 
This means: from state 0 one can go with the characters 1..9 to state 1 and 2, and with 
the character 0 to state 1, 2 and 4. 
 



After MeltStates 

 

 

nr 
firstAction 
... 
next 

0 

States 

typ 
sym 
target 
next 

clas 
1..9 

typ 
sym 
target 
next 

chr 
'0' 

state 
next 

to state 6 

Actions 

Targets 

state 
next 

to state 7 

... 

 
The states 1 and 2 have been "melted" into a new state 6, the states 1, 2 and 4 have 
been melted into a new state 7. This information is kept in class Melted using the 
following data structure: 

 

 
state 
set 
next 

6 
{1, 2} 

state 
set 
next 

7 
{1, 2, 4} 

Melted.first 

 
 
 
The literals table 
 
If a token is explicitly declared as a string, e.g.: 

TOKENS 
  while = "while". 
  ... 

it can be referenced in the productions both by its name (while) and by its literal 
representation ("while"). The symbol table just stores the names of such tokens. The 
hash table Tab.literals is used to map their literal representation to their node in the 
symbol table. 


