
LL(1) Conflict Resolution
in a Recursive Descent Compiler Generator 1

Albrecht Wöß, Markus Löberbauer, Hanspeter Mössenböck

Johannes Kepler University Linz, Institute of Practical Computer Science,
{woess,loeberbauer,moessenboeck}@ssw.uni-linz.ac.at

Abstract. Recursive descent parsing is restricted to languages whose grammars
are LL(1), i.e., which can be parsed top-down with a single lookahead symbol.
Unfortunately, many languages such as Java, C++, or C# are not LL(1). There-
fore recursive descent parsing cannot be used or the parser has to make its deci-
sions based on semantic information or a multi-symbol lookahead.
 In this paper we suggest a systematic technique for resolving LL(1) conflicts in
recursive descent parsing and show how to integrate it into a compiler generator
(Coco/R [9]). The idea is to evaluate user-defined boolean expressions, in order
to allow the parser to make its parsing decisions where a one symbol lookahead
does not suffice.
 Using our extended compiler generator we implemented a compiler front end
for C# that can be used as a framework for implementing a variety of tools.

1 Introduction

Recursive descent parsing [16] is a popular top-down parsing technique that is sim-
ple, efficient, and convenient for integrating semantic processing. However, it re-
quires the grammar of the parsed language to be LL(1), which means that the parser
must always be able to select between alternatives with a single symbol lookahead.
Unfortunately, many languages such as Java, C++ or C# are not LL(1) so that one
either has to resort to bottom-up LALR(1) parsing [5, 1], which is more powerful but
less convenient for semantic processing, or the parser has to resolve the LL(1) con-
flicts using semantic information or a multi-symbol lookahead.

In this paper we suggest a systematic technique for resolving LL(1) conflicts in re-
cursive descent parsing and show how to integrate it into an existing compiler gen-
erator (Coco/R). Section 2 gives a brief overview of Coco/R. In Section 3 we explain
the LL(1) property of grammars and show how to resolve certain LL(1) conflicts by
grammar transformations. For those conflicts that cannot be eliminated, Section 4
introduces our conflict resolution technique, which is based on evaluation of user-
defined boolean expressions. Section 5 describes a C# compiler front end built with
our extended version of Coco/R, while Section 6 discusses related work. Finally,
Section 7 summarizes the results and points out future plans.

1 This is a modified version of the paper adapted to the new Coco/R syntax as of April 2005.

2 The Compiler Generator Coco/R

Coco/R [8, 9] is a compiler generator, which takes an attributed grammar and pro-
duces a scanner and a recursive descent parser from it. The user has to add classes
(e.g. for symbol table handling, optimization and code generation), whose methods
are called from the semantic actions of the attributed grammar.

Attributed grammars were introduced by Knuth [6] as a notation for describing the
translation of languages. Originally they were declarative in nature. However, we use
them as procedural descriptions. In this form, an attributed grammar consists of the
following parts:

§ A context-free grammar in EBNF as introduced by Wirth [15]. It describes the
syntax of the language to be processed.

§ Attributes that can be considered as parameters of the nonterminal symbols in the
grammar. Input attributes provide information from the context of the nonterminal
while output attributes deliver results computed during the processing of the non-
terminal. In Coco/R attributes are enclosed in angle brackets (<...>).

§ Semantic actions, which are statements in an imperative programming language
(e.g. C#) that are executed during parsing. They compute attribute values and call
methods, e.g. for symbol table handling or code generation. In Coco/R semantic
actions are enclosed by (. and .).

Every production of an attributed grammar is processed from left to right. While the
syntax is parsed the semantic actions are executed where they appear in the produc-
tion. Here is an example of a production that processes variable declarations:

VarDeclaration (. Structure type; string name; .)
= Type<out type>
 Ident<out name> (. symTab.Enter(name, type); .)
 { "," Ident<out name> (. symTab.Enter(name, type); .)
 } ";".

In order to increase the readability, the syntax parts are written on the left-hand side
while semantic actions are written on the right-hand side. Curly braces ({...}) denote
repetition, square brackets ([...]) denote optional parts, and vertical bars (|) separate
alternatives. Coco/R translates the above production into the following recursive
descent parsing routine where sym is the lookahead symbol:

void VarDeclaration() {
 Structure type; string name;
 Type(out type);
 Ident(out name); symTab.Enter(name, type);
 while (sym == Tokens.comma) {
 scanner.Scan();
 Ident(out name); symTab.Enter(name, type);
 }
 Expect(Tokens.semicolon);
}

Further information on how to use Coco as well as its source code and the executable
can be obtained from [9, 14].

3 LL(1) Conflicts

A grammar is said to be LL(1) (i.e., parsable from Left to right with Left-canonical
derivations and 1 symbol lookahead), if at any point, where the grammar allows a
selection between two or more alternatives, the set of terminal start symbols of those
alternatives are pairwise disjoint.

In EBNF grammars, there are the following three situations where LL(1) conflicts
can occur (greek symbols denote arbitrary EBNF expressions such as a[b]C; first(α)
denotes the set of terminal start symbols of the EBNF expression α; follow(A) de-
notes the set of terminal symbols that can follow the nonterminal A):

§ Explicit alternatives
e.g. A = α | β | γ. check that first(α) ∩ first(β) = {} ∧ first(α) ∩ first(γ) = {} ∧
 first(β) ∩ first(γ) = {}.

§ Options
e.g. A = [α] β. check that first(α) ∩ first(β) = {}
e.g. A = [α]. check that first(α) ∩ follow(A) = {}

§ Iterations
e.g. A = {α} β. check that first(α) ∩ first(β) = {}
e.g. A = {α}. check that first(α) ∩ follow(A) = {}

Resolving LL(1) Conflicts

Factorization. LL(1) conflicts can usually be resolved by factorization, i.e. by ex-
tracting the common parts of conflicting alternatives and moving them to the front.
For example, the production

A = a b c | a b d.

can be transformed to

A = a b (c | d).

Left recursion. Left recursion always represents an LL(1) conflict. In the production

A = A b | c.

both alternatives start with c (because first(A) = {c}). However, left recursion can
always be transformed into an iteration, e.g. the previous production becomes

A = c {b}.

Hard conflicts. Some LL(1) conflicts cannot be resolved by grammar transformations.
Consider the following (simplified) production taken from the C# grammar:

IdentList = ident {"," ident} [","].

The conflict arises, because both the iteration and the option can start with a comma.
There is no way to get rid of this conflict by transforming the grammar. The only way
to resolve it, is to look ahead two symbols in order to see what follows after the
comma. We will deal with this problem in Section 4.

Readability issues. Some grammar transformations can degrade the readability of the
grammar. Consider the following example (again taken from a simplified form of the
C# grammar):

UsingClause = "using" [ident "="] Qualident ";".
Qualident = ident {"." ident}.

The conflict is in UsingClause where both the option and Qualident start with
ident. Although this conflict could be eliminated by transforming the production
to

UsingClause = "using" ident ({"." ident}
 | "=" Qualident
) ";".

the readability would clearly deteriorate. It is better to resolve this conflict as shown
in Section 4.

Semantic issues. Finally, factorization is sometimes inhibited by the fact that the
semantic processing of conflicting alternatives differs, e.g.:

A = ident (. x = 1; .) {"," ident (. x++; .) } ":"
 | ident (. Foo(); .) {"," ident (. Bar(); .) } ";".

The common parts of these two alternatives cannot be factored out, because each
alternative has its own way to be processed semantically. Again this problem can be
solved with the technique explained in Section 4.

4 Conflict Resolvers

This section shows how to resolve LL(1) conflicts by so-called conflict resolvers,
which are in a similar form also used in other compiler generators (e.g. JavaCC,
ANTLR, see Section 6 for a description of their approaches).

A conflict resolver is a boolean expression that is inserted into the grammar at the
beginning of the first of two conflicting alternatives and decides by a multi-symbol
lookahead or by semantic checks, whether this alternative matches the actual input. If
the resolver yields true, the alternative is selected, otherwise the next alternative will
be checked. A conflict resolver is given in the form

Resolver = "IF" "(" {ANY} ")" .

where {ANY} means an arbitrary piece of code that represents a boolean expression.
In most cases this will be a method call that returns true or false.

Thus we can resolve the LL(1) conflict from Section 3 in the following way:

UsingClause = "using" [IF(IsAlias()) ident "="]
 Qualident ";".

IsAlias is a user-defined method that reads two symbols ahead. It returns true, if
ident is followed by "=", otherwise false.

4.1 Multi-symbol Lookahead

The Coco/R generated parser remembers the last recognized terminal symbol as well
as the current lookahead symbol in the following two global variables:

Token t; // last recognized terminal symbol
Token la; // lookahead symbol

In case one wants to look ahead more than just one symbol, the Coco/R generated
scanner offers the following two methods to do this:

• StartPeek() initializes peeking in the scanner by synchronizing it with the posi-
tion after the current lookahead symbol.

• Peek() returns the next symbol as a Token object. The symbols returned by Peek
are not removed from the input stream, so that the scanner will deliver them again
when "normal" parsing resumes.

Using these methods we can implement IsAlias in the following way:

bool IsAlias () {
 scanner.StartPeek();
 Token x = scanner.Peek();
 return la.kind == Tokens.ident && x.kind == Tokens.eql;
}

The last conflict mentioned in Section 3 can be resolved by the grammar rule

A = IF(FollowedByColon())
 ident (. x = 1; .) {"," ident (. x++; .) } ":"
 | ident (. Foo(); .) {"," ident (. Bar(); .) } ";".

and the following implementation of the function FollowedByColon:

bool FollowedByColon () {
 scanner.StartPeek();
 Token x = la;
 while (x.kind == Tokens.comma || x.kind == Tokens.ident)
 x = scanner.Peek();
 return x.kind == Tokens.colon;
}

4.2 Conflict Resolution With Semantic Information

A conflict resolver can base its decision not only on the result of checking arbitrarily
many lookahead symbols but any other kind of information as well. For example it
could access a symbol table or other semantic information.

The following LL(1) conflict between assignments and declarations can be found
in many programming languages:

Statement = Type IdentList ";"
 | ident "=" Expression ";"
 | … .
Type = ident | … .

Both alternatives of the Statement rule begin with ident. This conflict can be resol-
ved by checking whether ident denotes a type or a variable:

Statment = IF(IsType()) Type IdentList ";"
 | ident "=" Expression ";"
 | … .

IsType looks up ident in the symbol table and returns true, if it is a type name:

bool IsType () {
 if (la.kind == Tokens.ident) {
 object obj = SymTab.find(la.val);
 return obj != null && obj.kind == Type;
 } else return false;
}

4.3 Translation of Conflict Resolvers into the Parser

Coco/R treats conflict resolvers similarly to semantic actions and simply copies them
into the generated parser at the same position where they appear in the grammar. The
production for the UsingClause from above is translated into the following parser
method:

void UsingClause () {
 Expect(Tokens.using);
 if (IsAlias()) {
 Expect(Tokens.ident); Expect(Tokens.eql);
 }
 Qualident();
 Expect(Tokens.semicolon);
}

4.4 A Different Approach: Resolver Symbols

In a previous version of Coco/R, we have examined a different approach to resolve
LL(1) conflicts: artificial tokens—so-called resolver symbols—were inserted into the
input stream on-the-fly (at parse time) in order to guide the parser along the right
way. The symbols had to be placed properly in the grammar rules. They were defined
in a separate section of the grammar (keyword: RESOLVERS) and combined with a
resolution routine that determined, whether the resolver symbol was needed. If so, the
parser inserted it into the input stream. Coco/R put the invocations of the resolution
routines automatically at the right places in the generated parser.

Comparing the two approaches, we find that the current conflict resolver version
(IF(…)) requires less implementation changes compared to the original Coco/R
(without conflict resolution), is less complex and appears to be easier to understand
from the users perspective than the insertion of artificial tokens at parse time.

5 A Compiler Front End for C#

In a project supported by Microsoft under the Rotor initiative [11] we used Coco/R
and its conflict resolution technique for building a compiler framework for C# that
can be used to build compilers, source code analyzers and other tools. Our framework
consists of an attributed C# grammar to which the user can attach semantic actions as
required for the tool that he is going to implement. From this description Coco/R
generates a scanner and a parser that also contains the attached semantic actions.

We started out by downloading the C# grammar from the ECMA standardization
page [12]. Since this grammar was designed for being processed by a bottom-up
parser, it is full of left recursions and other LL(1) conflicts. Some of these conflicts
could be resolved by grammar transformations as discussed in Section 3, the others
were eliminated using conflict resolvers. The resulting grammar is available at [17 or
3].

One of the first applications that have been developed with our framework is a
white box testing tool [7] that instruments a C# program with counters in order to get
path coverage information. Another application analyzes C# source code to provide
helpful hints as to where performance optimizations could be applied or coding style
rules have been violated [13]. Other applications that could be implemented with our
framework are for example:

§ Profilers that measure the execution frequencies or execution times of C# pro-
grams.

§ Source code analyzers that compute complexity measures or data flow information
from C# programs.

§ Pretty printers that transform a C# program according to certain style guidelines.
§ Proper compilers that translate C# programs to IL, machine code, Java bytecodes,

or to XML schemata.

6 Related Work

Recursive descent parsers are usually written by hand, because this is straightforward
to do. In manually written parsers it is common to resolve LL(1) conflicts by semantic
information or by multi-symbol lookahead. However, these are only ad-hoc solutions
and do not follow a systematic pattern as we described it in Section 4.

Compiler generators, on the other hand, usually generate bottom-up parsers that
use the more powerful LALR(1) technique instead of LL(1) parsing. In bottom-up
parsers, however, it is more difficult to integrate semantic processing, because seman-
tic actions can only be performed at the end of productions.

Recently, there seems to be a growing interest in compiler generators that produce
recursive descent parsers. In the following subsections we will describe two of these
generators and their LL(1) conflict resolution strategies.

6.1 JavaCC

JavaCC [4] is a compiler generator that was jointly developed by Metamata and Sun
Microsystems. It produces recursive descent parsers and offers various strategies for
resolving LL(1) conflicts.

First, one can instruct JavaCC to produce an LL(k) parser with k > 1. Such a parser
maintains k lookahead symbols and uses them to resolve conflicts. Many languages,
however, not only fail to be LL(1), but they are not even LL(k) for an arbitrary, but
fixed k. Therefore JavaCC offers local conflict resolution techniques. A local conflict
resolver can be placed in front of alternatives in the same way as in Coco/R. The
following syntax is available (greek letters denote arbitrary EBNF expressions):

§ (LOOKAHEAD(k) α | β) tells the parser that it should look ahead k symbols in the
attempt to recognize an α.

§ (LOOKAHEAD(γ) α | β) allows the user to specify an EBNF expression γ. If the
next input symbols match this expression, then α is selected.

§ (LOOKAHEAD(boolExpr) α | β) allows the user to specify a boolean expression
(which can also be the call to a function that returns true or false). If the expression
evaluates to true, then α is selected. This is the only strategy currently supported
by Coco/R.

So JavaCC offers more ways of how to resolve LL(1) conflicts than does Coco/R.
Other differences are:

§ JavaCC produces parsers in Java while Coco/R produces parsers in C#. Further-
more, the new conflict resolution feature will be incorporated in the Java version
of Coco/R and a complete port to VB.NET is also on the agenda.

§ Coco/R uses Wirth's EBNF [15], while JavaCC uses an EBNF notation that is simi-
lar to regular expressions.

6.2 ANTLR

ANother Tool for Language Recognition (ANTLR) [2, 10] is part of the Purdue Com-
piler Construction Tool Set (PCCTS), which includes also SORCERER (a tree parser
generator) and DLG (a scanner generator). ANTLR generates recursive descent parsers
from so-called "pred-LL(k)" grammars, where "pred" indicates that syntactic or se-
mantic predicates are used to direct the parsing process. The current version of
ANTLR can produce parsers in Java, C++, and C#.

Syntactic predicates allow the user to specify a syntax expression in front of an al-
ternative. If this expression is recognized, the alternative is selected (this is similar to
JavaCC's syntactic LOOKAHEAD feature (the second in the above list)):

stat: (list "=")=> list "=" list
 | list ;

Semantic predicates are used in two ways: Firstly, for checking context conditions,
throwing an exception, if the conditions are not met:

decl: "var" ID ":" t:ID
 { isTypeName(t.getText()) }? ;

Secondly, they are used for selecting between alternatives:

stat: { isTypeName(LT(1)) }?
 ID ID ";" // declaration (Type ident;)
 | ID "=" expr ";" ; // assignment

Both cases have the same syntax. They are only distinguished by the position of the
predicate: disambiguating predicates must appear at the beginning of an alternative.

ANTLR's approach is similar to that of JavaCC and Coco/R. All evaluate boolean
expressions in order to guide the parsing process, i.e., the user is given control to
define the conditions under which an alternative shall be selected.

7 Summary

In this paper we showed how to resolve LL(1) conflicts systematically by using boo-
lean expressions—so-called conflict resolvers—that are evaluated at parse time in
order to guide the parser along the right path. In this way the parser can exploit either
semantic information or on-demand multi-symbol lookahead in its decision-making
process. We also described the integration of our technique into the compiler genera-
tor Coco/R.

The work described in this paper is ongoing research. In the future we plan to add
more resolution strategies to Coco/R in a similar way as it is done for JavaCC. For
example, we plan to implement a feature that does an LL(k) lookahead without re-
quiring the user to specify a resolver routine. We hope that it will even be possible to
let Coco/R decide, at which points a k-symbol lookahead is necessary and to do it
automatically without any intervention of the user. Finally, since the original version
of Coco/R is available for a variety of languages such as C#, Java, C++ and others, we
plan to port our conflict resolution technique from the C# version of Coco/R also to
the other versions and offer a new VB.NET version. The current state of our project as
well as downloads of the source code and the executables of Coco/R are available at
[17, 3].

Acknowledgements

This work was supported by Microsoft under the Rotor initiative [11].

References

1. Aho A.V., Ullman J.D.: Principles of Compiler Design, Addison-Wesley, 1977
2. ANTLR (ANother Tool for Language Recognition). http://www.antlr.org
3. Coco Tools Project at the Rotor Community Site, http://cocotools.sscli.net
4. JavaCC™ (Java Compiler Compiler), The Java Parser Generator.

http://www.experimentalstuff.com/Technologies/JavaCC
5. Knuth, D.E.: On the Translation of Languages from Left to Right. Information and Control,

vol. 6, pp.607-639, 1965
6. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems Theory, vol 2,

pp.127-145, 1968
7. Löberbauer, M.: Ein Werkzeug für den White-Box-Test. Diploma thesis, Institute of Practical

Computer Science, University of Linz, Austria, February 2003
8. Mössenböck, H.: A Generator for Production Quality Compilers. 3rd intl. workshop on

compiler compilers (CC'90), Schwerin, Lecture Notes in Computer Science 477, Springer-
Verlag, 1990, pp. 42-55.

9. Mössenböck, H.: Coco/R for various languages - Online Documentation.
http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/

10. Parr, T.: Language Translation Using PCCTS and C++. Automata Publishing Company,
1993.

11. Rotor: The Microsoft Rotor Project,
 http://research.microsoft.com/collaboration/university/europe/rotor/
12. Standard ECMA-334, C# Language Specification, December 2001,

http://www.ecma-international.org/publications/standards/ecma-334.htm
13. Steineder, K.H.: Optimization Hint Tool. Diploma thesis, Institute for Practical Computer

Science, University of Linz, Austria, August 2003.
14. Terry, P.: Compilers and Compiler Generators – An Introduction Using C++. International

Thomson Computer Press, 1997.
15. Wirth, N.: What Can We Do about the Unnecessary Diversity of Notation for Syntactic

Definitions? Communications of the ACM, November 1977
16. Wirth, N.: Compiler Construction. Addison-Wesley, 1996.
17. Wöß, A., Löberbauer, M.: SSCLI-Project: Compiler Generation Tools for C#.

http://dotnet.jku.at/Projects/Rotor/

